Search results for: array signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5667

Search results for: array signal processing

2007 Effect of Blanching and Drying Methods on the Degradation Kinetics and Color Stability of Radish (Raphanus sativus) Leaves

Authors: K. Radha Krishnan, Mirajul Alom

Abstract:

Dehydrated powder prepared from fresh radish (Raphanus sativus) leaves were investigated for the color stability by different drying methods (tray, sun and solar). The effect of blanching conditions, drying methods as well as drying temperatures (50 – 90°C) were considered for studying the color degradation kinetics of chlorophyll in the dehydrated powder. The hunter color parameters (L*, a*, b*) and total color difference (TCD) were determined in order to investigate the color degradation kinetics of chlorophyll. Blanching conditions, drying method and drying temperature influenced the changes in L*, a*, b* and TCD values. The changes in color values during processing were described by a first order kinetic model. The temperature dependence of chlorophyll degradation was adequately modeled by Arrhenius equation. To predict the losses in green color, a mathematical model was developed from the steady state kinetic parameters. The results from this study indicated the protective effect of blanching conditions on the color stability of dehydrated radish powder.

Keywords: chlorophyll, color stability, degradation kinetics, drying

Procedia PDF Downloads 400
2006 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chaos, lambda diode, strange attractor, nonlinear system

Procedia PDF Downloads 86
2005 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation

Authors: Ksenia Meshkova

Abstract:

With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.

Keywords: neural networks, computer vision, representation learning, autoencoders

Procedia PDF Downloads 127
2004 Designing an Introductory Python Course for Finance Students

Authors: Joelle Thng, Li Fang

Abstract:

Objective: As programming becomes a highly valued and sought-after skill in the economy, many universities have started offering Python courses to help students keep up with the demands of employers. This study focuses on designing a university module that effectively educates undergraduate students on financial analysis using Python programming. Methodology: To better satisfy the specific demands for each sector, this study adopted a qualitative research modus operandi to craft a module that would complement students’ existing financial skills. The lessons were structured using research-backed educational learning tools, and important Python concepts were prudently screened before being included in the syllabus. The course contents were streamlined based on criteria such as ease of learning and versatility. In particular, the skills taught were modelled in a way to ensure they were beneficial for financial data processing and analysis. Results: Through this study, a 6-week course containing the chosen topics and programming applications was carefully constructed for finance students. Conclusion: The findings in this paper will provide valuable insights as to how teaching programming could be customised for students hailing from various academic backgrounds.

Keywords: curriculum development, designing effective instruction, higher education strategy, python for finance students

Procedia PDF Downloads 79
2003 Effect of Thermal Treatment on Mechanical Properties of Reduced Activation Ferritic/Martensitic Eurofer Steel Grade

Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma

Abstract:

Reduced activation ferritic/martensitic (RAFM) steels like EUROFER97 are primary candidate structural materials for first wall application in the future demonstration (DEMO) fusion reactor. Existing steels of this type obtain their functional properties by a two-stage heat treatment, which consists of an annealing stage at 980°C for thirty minutes followed by quenching and an additional tempering stage at 750°C for two hours. This thermal quench and temper (Q&T) treatment creates a microstructure of tempered martensite with, as main precipitates, M23C6 carbides, with M = Fe, Cr and carbonitrides of MX type, e.g. TaC and VN. The resulting microstructure determines the mechanical properties of the steel. The ductility is largely determined by the tempered martensite matrix, while the resistance to mechanical degradation, determined by the spatial and size distribution of precipitates and the martensite crystals, plays a key role in the high temperature properties of the steel. Unfortunately, the high temperature response of EUROFER97 is currently insufficient for long term use in fusion reactors, due to instability of the matrix phase and coarsening of the precipitates at prolonged high temperature exposure. The objective of this study is to induce grain refinement by appropriate modifications of the processing route in order to increase the high temperature strength of a lab-cast EUROFER RAFM steel grade. The goal of the work is to obtain improved mechanical behavior at elevated temperatures with respect to conventionally heat treated EUROFER97. A dilatometric study was conducted to study the effect of the annealing temperature on the mechanical properties after a Q&T treatment. The microstructural features were investigated with scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the mechanical properties of the furnace-heated lab-cast EUROFER RAFM steel grade. A significant prior austenite grain (PAG) refinement was obtained by lowering the annealing temperature of the conventionally used Q&T treatment for EUROFER97. The reduction of the PAG results in finer martensitic constituents upon quenching, which offers more nucleation sites for carbide and carbonitride formation upon tempering. The ductile-to-brittle transition temperature (DBTT) was found to decrease with decreasing martensitic block size. Additionally, an increased resistance against high temperature degradation was accomplished in the fine grained martensitic materials with smallest precipitates obtained by tailoring the annealing temperature of the Q&T treatment. It is concluded that the microstructural refinement has a pronounced effect on the DBTT without significant loss of strength and ductility. Further investigation into the optimization of the processing route is recommended to improve the mechanical behavior of RAFM steels at elevated temperatures.

Keywords: ductile-to-brittle transition temperature (DBTT), EUROFER, reduced activation ferritic/martensitic (RAFM) steels, thermal treatments

Procedia PDF Downloads 299
2002 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: rice disease, data analysis system, mobile application, iOS operating system

Procedia PDF Downloads 287
2001 Use of Anti-Stick to Reduce Bitterness in Ultra Filtrated Chees-es(Single Packaged)

Authors: B. Khorram, M. Taslikh, R. Sattarzadeh, M. Ghazanfari

Abstract:

Bitterness is one of the most important problems in cheese processing industry all over the world. There are several reasons that bitterness may develop in cheese. With a few exceptions bitterness is generally associated with proteolysis. In this investigation, anti-stick as a neutral substance in proteolysis were considered and studied for reducing the problem. This vast survey was conducted in a big cheese production factory (in Neyshabur) and in the same procedure anti-stick as interested factor in cheeses packaging compared to standard cheeses production, one line productions (65200 packs with anti-stick were tested by 2953 persons for bitterness and another line was included the same procedure with standard cheese. In this investigate: 83% of standard packaging cheeses, compared with only28% of consumers cheese with anti-stick which confirmed bitterness. Although bitterness is generally associated with proteolysis and Microbial factors, Somatic cell, Starters play important role in generating bitterness in ultra filtrated cheeses, but based on the results the other factors such as anti-stick in packaging can be effective methods for reducing and removing unfavorable bitterness in cheese production.

Keywords: bitterness, uf cheese, anti-stick, single packaged

Procedia PDF Downloads 472
2000 Mapping of Urban Green Spaces Towards a Balanced Planning in a Coastal Landscape

Authors: Rania Ajmi, Faiza Allouche Khebour, Aude Nuscia Taibi, Sirine Essasi

Abstract:

Urban green spaces (UGS) as an important contributor can be a significant part of sustainable development. A spatial method was employed to assess and map the spatial distribution of UGS in five districts in Sousse, Tunisia. Ecological management of UGS is an essential factor for the sustainable development of the city; hence the municipality of Sousse has decided to support the districts according to different green spaces characters. And to implement this policy, (1) a new GIS web application was developed, (2) then the implementation of the various green spaces was carried out, (3) a spatial mapping of UGS using Quantum GIS was realized, and (4) finally a data processing and statistical analysis with RStudio programming language was executed. The intersection of the results of the spatial and statistical analyzes highlighted the presence of an imbalance in terms of the spatial UGS distribution in the study area. The discontinuity between the coast and the city's green spaces was not designed in a spirit of network and connection, hence the lack of a greenway that connects these spaces to the city. Finally, this GIS support will be used to assess and monitor green spaces in the city of Sousse by decision-makers and will contribute to improve the well-being of the local population.

Keywords: distributions, GIS, green space, imbalance, spatial analysis

Procedia PDF Downloads 204
1999 Detection of Autistic Children's Voice Based on Artificial Neural Network

Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono

Abstract:

In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.

Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform

Procedia PDF Downloads 461
1998 Impact of Sericin Treatment on Perfection Dyeing of Polyester Viscose Blend

Authors: Omaima G. Allam, O. A. Hakeim, K. Haggag, N. S. Elshemy

Abstract:

In the midst of the two decades the use of microwave dielectric warming in the field of science has transformed into a powerful methodology to redesign compound procedures. The potential benefit of the application of these modern methods of treatment emphasize so as to reach to optimum treatment conditions and the best results, especially hydrophobicity, moisture content and increase dyeing processing while maintaining the physical and chemical properties of each textile. Moreover, polyester fibres are sometimes spun together with natural fibres to produce a cloth with blended properties. So that at the present task, the polyester/viscose mix fabrics (60 /40) were pretreated with 4 g/l of KOH for 2 min in microwave irradiation with a liquor ratio 1:25. Subsequently fabrics were inundated with different concentrations of sericin (10, 30, 50 g/l). Treated fabrics were coloured with the commercial dyes samples: Reactive Red 84(Dye 1). C. I. Acid Blue 203(Dye 2) and C.I. Reactive violet 5 (Dye 3). Colour value was specified as well as fastness properties. Likewise, the physical properties of untreated and treated fabrics such as moisture content %, tensile strength, elongation % and were evaluated. The untreated and treated fabrics are described by infrared spectroscopy (FTIR) and scanning electron microscopy.

Keywords: polyester viscose blends fabric, sericin, dyes, colour value

Procedia PDF Downloads 238
1997 Disaster Management Using Wireless Sensor Networks

Authors: Akila Murali, Prithika Manivel

Abstract:

Disasters are defined as a serious disruption of the functioning of a community or a society, which involves widespread human, material, economic or environmental impacts. The number of people suffering food crisis as a result of natural disasters has tripled in the last thirty years. The economic losses due to natural disasters have shown an increase with a factor of eight over the past four decades, caused by the increased vulnerability of the global society, and also due to an increase in the number of weather-related disasters. Efficient disaster detection and alerting systems could reduce the loss of life and properties. In the event of a disaster, another important issue is a good search and rescue system with high levels of precision, timeliness and safety for both the victims and the rescuers. Wireless Sensor Networks technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. This paper studies the capacity of sensors and a Wireless Sensor Network to collect, collate and analyze valuable and worthwhile data, in an ordered manner to help with disaster management.

Keywords: alerting systems, disaster detection, Ad Hoc network, WSN technology

Procedia PDF Downloads 404
1996 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis

Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho

Abstract:

This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.

Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis

Procedia PDF Downloads 182
1995 On the Qarat Kibrit Salt Dome Faulting System South of Adam, Oman: In Search of Uranium Anomalies

Authors: Alaeddin Ebrahimi, Narasimman Sundararajan, Bernhard Pracejus

Abstract:

Development of salt domes, often a rising from depths of some 10 km or more, causes an intense faulting of the surrounding host rocks (salt tectonics). The fractured rocks then present ideal space for oil that can migrate and get trapped. If such moving of hydrocarbons passes uranium-carrying rock units (e.g., shales), uranium is collected and enriched by organic carbon compounds. Brines from the salt body are also ideal carriers for oxidized uranium species and will further dislocate uranium when in contact with uranium-enriched oils. Uranium then has the potential to mineralize in the vicinity of the dome (blue halite is evidence for radiation having affected salt deposits elsewhere in the world). Based on this knowledge, the Qarat Kibrit salt dome was investigated by a well-established geophysical method like very low frequency electromagnetic (VLF-EM) along five traverses approximately 250 m in length (10 m intervals) in order to identify subsurface fault systems. In-phase and quadrature components of the VLF-EM signal were recorded at two different transmitter frequencies (24.0 and 24.9 kHz). The images of Fraser filtered response of the in-phase components indicate a conductive zone (fault) in the southeast and southwest of the study area. The Karous-Hjelt current density pseudo section delineates subsurface faults at depths between 10 and 40 m. The stacked profiles of the Fraser filtered responses brought out two plausible trends/directions of faults. However, there seems to be no evidence for uranium enrichment has been recorded in this area.

Keywords: salt dome, uranium, fault, in-phase component, quadrature component, Fraser filter, Karous-Hjelt current density

Procedia PDF Downloads 240
1994 Biodistribution of Fluorescence-Labelled Epidermal Growth Factor Protein from Slow Release Nanozolid Depots in Mouse

Authors: Stefan Gruden, Charlott Brunmark, Bo Holmqvist, Erwin D. Brenndorfer, Martin Johansson, Jian Liu, Ying Zhao, Niklas Axen, Moustapha Hassan

Abstract:

Aim: The study was designed to evaluate the ability of the calcium sulfate-based NanoZolid® drug delivery technology to locally release the epidermal growth factor (EGF) protein while maintaining its biological activity. Methods: NanoZolid-formulated EGF protein labelled with a near-infrared dye (EGF-NIR) depots or EGF-NIR dissolved in PBS were injected subcutaneously into mice bearing EGF receptor (EGFR) positive human A549 lung cancer tumors inoculated subcutaneously. The release and biodistribution of the EGF-NIR were investigated in vivo longitudinally up to 96 hours post-administration, utilizing whole-body fluorescence imaging. In order to confirm the in vivo findings, histological analysis of tumor cryosections was performed to investigate EGF-NIR fluorescent signal and EGFR expression level by immunofluorescence labelling. Results: The in vivo fluorescence imaging showed a controlled release profile of the EGF-NIR loaded in the NanoZolid depots compared to free EGF-NIR. Histological analysis of the tumors further demonstrated a prevailing distribution of EGF-NIR in regions with high levels of EGFR expression. Conclusion: Calcium sulfate based depots can be used to formulate EGF while maintaining its biological activity, e.g., receptor binding capability. This may have good clinical potential for local delivery of biomolecules to enhance treatment efficacy and minimize systemic adverse effects.

Keywords: bioresorbable, calcium sulfate, controlled release, NanoZolid

Procedia PDF Downloads 165
1993 Understanding the Experiences of School Teachers and Administrators Involved in a Multi-Sectoral Approach to the Creation of a Physical Literacy Enriched Community

Authors: M. Louise Humbert, Karen E. Chad, Natalie E. Houser, Marta E. Erlandson

Abstract:

Physical literacy is the motivation, confidence, physical competence, knowledge, and understanding to value and takes responsibility for engagement in physical activities for life. In recent years, physical literacy has emerged as a determinant of health, promoting a positive lifelong physical activity trajectory. Physical literacy’s holistic approach and emphasis on the intrinsic valuation of movement provide an encouraging avenue for intervention among children to develop competent and confident movers. Although there is research on physical literacy interventions, no evidence exists on the outcomes of multi-sectoral interventions involving a combination of home, school, and community contexts. Since children interact with and in a wide range of contexts (home, school, community) daily, interventions designed to address a combination of these contexts are critical to the development of physical literacy. Working with school administrators and teachers, sports and recreation leaders, and community members, our team of university and community researchers conducted and evaluated one of the first multi-contextual and multi-sectoral physical literacy interventions in Canada. Schools played a critical role in this multi-sector intervention, and in this project, teachers and administrators focused their actions on developing physical literacy in students 10 to 14 years of age through the instruction of physical literacy-focused physical education lessons. Little is known about the experiences of educators when they work alongside an array of community representatives to develop physical literacy in school-aged children. Given the uniqueness of this intervention, we sought to answer the question, ‘What were the experiences of school-based educators involved in a multi-sectoral partnership focused on creating a physical literacy enriched community intervention?’ A thematic analysis approach was used to analyze data collected from interviews with educators and administrators, informal conversations, documents, and observations at workshops and meetings. Results indicated that schools and educators played the largest role in this multi-sector intervention. Educators initially reported a limited understanding of physical literacy and expressed a need for resources linked to the physical education curriculum. Some anxiety was expressed by the teachers as their students were measured, and educators noted they wanted to increase their understanding and become more involved in the assessment of physical literacy. Teachers reported that the intervention’s focus on physical literacy positively impacted the scheduling and their instruction of physical education. Administrators shared their desire for school and division-level actions targeting physical literacy development like the current focus on numeracy and literacy, treaty education, and safe schools. As this was one of the first multi-contextual and multi-sectoral physical literacy interventions, it was important to document creation and delivery experiences to encourage future growth in the area and develop suggested best practices.

Keywords: physical literacy, multi sector intervention, physical education, teachers

Procedia PDF Downloads 102
1992 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 142
1991 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot

Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan

Abstract:

With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.

Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots

Procedia PDF Downloads 546
1990 Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology

Authors: Mahdi Farajzadeh Ajirlou

Abstract:

Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer.

Keywords: fetal, cardiac MRI, ultrasound, 3D, 4D, heart disease, invasive, noninvasive, catheter

Procedia PDF Downloads 39
1989 Climate Change and the Role of Foreign-Invested Enterprises

Authors: Xuemei Jiang, Kunfu Zhu, Shouyang Wang

Abstract:

In this paper, we selected China as a case and employ a time-series of unique input-output tables distinguishing firm ownership and processing exports, to evaluate the role of foreign-invested enterprises (FIEs) in China’s rapid carbon dioxide emission growth. The results suggested that FIEs contributed to 11.55% of the economic outputs’ growth in China between 1992-2010, but accounted for only 9.65% of the growth of carbon dioxide emissions. In relative term, until 2010 FIEs still emitted much less than Chinese-owned enterprises (COEs) when producing the same amount of outputs, although COEs experienced much faster technology upgrades. In an ideal scenario where we assume the final demands remain unchanged and COEs completely mirror the advanced technologies of FIEs, more than 2000 Mt of carbon dioxide emissions would be reduced for China in 2010. From a policy perspective, the widespread FIEs are very effective and efficient channel to encourage technology transfer from developed to developing countries.

Keywords: carbon dioxide emissions, foreign-invested enterprises, technology transfer, input–output analysis, China

Procedia PDF Downloads 398
1988 Synthesis of Human Factors Theories and Industry 4.0

Authors: Andrew Couch, Nicholas Loyd, Nathan Tenhundfeld

Abstract:

The rapid emergence of technology observably induces disruptive effects that carry implications for internal organizational dynamics as well as external market opportunities, strategic pressures, and threats. An examination of the historical tendencies of technology innovation shows that the body of managerial knowledge for addressing such disruption is underdeveloped. Fundamentally speaking, the impacts of innovation are unique and situationally oriented. Hence, the appropriate managerial response becomes a complex function that depends on the nature of the emerging technology, the posturing of internal organizational dynamics, the rate of technological growth, and much more. This research considers a particular case of mismanagement, the BP Texas City Refinery explosion of 2005, that carries notable discrepancies on the basis of human factors principles. Moreover, this research considers the modern technological climate (shaped by Industry 4.0 technologies) and seeks to arrive at an appropriate conceptual lens by which human factors principles and Industry 4.0 may be favorably integrated. In this manner, the careful examination of these phenomena helps to better support the sustainment of human factors principles despite the disruptive impacts that are imparted by technological innovation. In essence, human factors considerations are assessed through the application of principles that stem from usability engineering, the Swiss Cheese Model of accident causation, human-automation interaction, signal detection theory, alarm design, and other factors. Notably, this stream of research supports a broader framework in seeking to guide organizations amid the uncertainties of Industry 4.0 to capture higher levels of adoption, implementation, and transparency.

Keywords: Industry 4.0, human factors engineering, management, case study

Procedia PDF Downloads 68
1987 Hydrologic Balance and Surface Water Resources of the Cheliff-Zahrez Basin

Authors: Mehaiguene Madjid, Touhari Fadhila, Meddi Mohamed

Abstract:

The Cheliff basin offers a good hydrological example for the possibility of studying the problem which elucidated in the future, because of the unclearity in several aspects and hydraulic installation. Thus, our study of the Cheliff basin is divided into two principal parts: The spatial evaluation of the precipitation: also, the understanding of the modes of the reconstitution of the resource in water supposes a good knowledge of the structuring of the precipitation fields in the studied space. In the goal of a good knowledge of revitalizes them in water and their management integrated one judged necessary to establish a precipitation card of the Cheliff basin for a good understanding of the evolution of the resource in water in the basin and that goes will serve as basis for all study of hydraulic planning in the Cheliff basin. Then, the establishment of the precipitation card of the Cheliff basin answered a direct need of setting to the disposition of the researchers for the region and a document of reference that will be completed therefore and actualized. The hydrological study, based on the statistical hydrometric data processing will lead us to specify the hydrological terms of the assessment hydrological and to clarify the fundamental aspects of the annual flow, seasonal, extreme and thus of their variability and resources surface water.

Keywords: hydrological assessment, surface water resources, Cheliff, Algeria

Procedia PDF Downloads 304
1986 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 182
1985 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 167
1984 Structural Damage Detection in a Steel Column-Beam Joint Using Piezoelectric Sensors

Authors: Carlos H. Cuadra, Nobuhiro Shimoi

Abstract:

Application of piezoelectric sensors to detect structural damage due to seismic action on building structures is investigated. Plate-type piezoelectric sensor was developed and proposed for this task. A film-type piezoelectric sheet was attached on a steel plate and covered by a layer of glass. A special glue is used to fix the glass. This glue is a silicone that requires the application of ultraviolet rays for its hardening. Then, the steel plate was set up at a steel column-beam joint of a test specimen that was subjected to bending moment when test specimen is subjected to monotonic load and cyclic load. The structural behavior of test specimen during cyclic loading was verified using a finite element model, and it was found good agreement between both results on load-displacement characteristics. The cross section of steel elements (beam and column) is a box section of 100 mm×100 mm with a thin of 6 mm. This steel section is specified by the Japanese Industrial Standards as carbon steel square tube for general structure (STKR400). The column and beam elements are jointed perpendicularly using a fillet welding. The resulting test specimen has a T shape. When large deformation occurs the glass plate of the sensor device cracks and at that instant, the piezoelectric material emits a voltage signal which would be the indicator of a certain level of deformation or damage. Applicability of this piezoelectric sensor to detect structural damages was verified; however, additional analysis and experimental tests are required to establish standard parameters of the sensor system.

Keywords: piezoelectric sensor, static cyclic test, steel structure, seismic damages

Procedia PDF Downloads 123
1983 Digital Technology Relevance in Archival and Digitising Practices in the Republic of South Africa

Authors: Tashinga Matindike

Abstract:

By means of definition, digital artworks encompass an array of artistic productions that are expressed in a technological form as an essential part of a creative process. Examples include illustrations, photos, videos, sculptures, and installations. Within the context of the visual arts, the process of repatriation involves the return of once-appropriated goods. Archiving denotes the preservation of a commodity for storage purposes in order to nurture its continuity. The aforementioned definitions form the foundation of the academic framework and premise of the argument, which is outlined in this paper. This paper aims to define, discuss and decipher the complexities involved in digitising artworks, whilst explaining the benefits of the process, particularly within the South African context, which is rich in tangible and intangible traditional cultural material, objects, and performances. With the internet having been introduced to the African Continent in the early 1990s, this new form of technology, in its own right, initiated a high degree of efficiency, which also resulted in the progressive transformation of computer-generated visual output. Subsequently, this caused a revolutionary influence on the manner in which technological software was developed and uterlised in art-making. Digital technology and the digitisation of creative processes then opened up new avenues of collating and recording information. One of the first visual artists to make use of digital technology software in his creative productions was United States-based artist John Whitney. His inventive work contributed greatly to the onset and development of digital animation. Comparable by technique and originality, South African contemporary visual artists who make digital artworks, both locally and internationally, include David Goldblatt, Katherine Bull, Fritha Langerman, David Masoga, Zinhle Sethebe, Alicia Mcfadzean, Ivan Van Der Walt, Siobhan Twomey, and Fhatuwani Mukheli. In conclusion, the main objective of this paper is to address the following questions: In which ways has the South African art community of visual artists made use of and benefited from technology, in its digital form, as a means to further advance creativity? What are the positive changes that have resulted in art production in South Africa since the onset and use of digital technological software? How has digitisation changed the manner in which we record, interpret, and archive both written and visual information? What is the role of South African art institutions in the development of digital technology and its use in the field of visual art. What role does digitisation play in the process of the repatriation of artworks and artefacts. The methodology in terms of the research process of this paper takes on a multifacted form, inclusive of data analysis of information attained by means of qualitative and quantitative approaches.

Keywords: digital art, digitisation, technology, archiving, transformation and repatriation

Procedia PDF Downloads 52
1982 The Shannon Entropy and Multifractional Markets

Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese

Abstract:

Introduced by Shannon in 1948 in the field of information theory as the average rate at which information is produced by a stochastic set of data, the concept of entropy has gained much attention as a measure of uncertainty and unpredictability associated with a dynamical system, eventually depicted by a stochastic process. In particular, the Shannon entropy measures the degree of order/disorder of a given signal and provides useful information about the underlying dynamical process. It has found widespread application in a variety of fields, such as, for example, cryptography, statistical physics and finance. In this regard, many contributions have employed different measures of entropy in an attempt to characterize the financial time series in terms of market efficiency, market crashes and/or financial crises. The Shannon entropy has also been considered as a measure of the risk of a portfolio or as a tool in asset pricing. This work investigates the theoretical link between the Shannon entropy and the multifractional Brownian motion (mBm), stochastic process which recently is the focus of a renewed interest in finance as a driving model of stochastic volatility. In particular, after exploring the current state of research in this area and highlighting some of the key results and open questions that remain, we show a well-defined relationship between the Shannon (log)entropy and the memory function H(t) of the mBm. In details, we allow both the length of time series and time scale to change over analysis to study how the relation modify itself. On the one hand, applications are developed after generating surrogates of mBm trajectories based on different memory functions; on the other hand, an empirical analysis of several international stock indexes, which confirms the previous results, concludes the work.

Keywords: Shannon entropy, multifractional Brownian motion, Hurst–Holder exponent, stock indexes

Procedia PDF Downloads 110
1981 Estimating Industrial Pollution Load in Phnom Penh by Industrial Pollution Projection System

Authors: Vibol San, Vin Spoann

Abstract:

Manufacturing plays an important role in job creation around the world. In 2013, it is estimated that there were more than half a billion jobs in manufacturing. In Cambodia in 2015, the primary industry occupies 26.18% of the total economy, while agriculture is contributing 29% and the service sector 39.43%. The number of industrial factories, which are dominated by garment and textiles, has increased since 1994, mainly in Phnom Penh city. Approximately 56% out of total 1302 firms are operated in the Capital city in Cambodia. Industrialization to achieve the economic growth and social development is directly responsible for environmental degradation, threatening the ecosystem and human health issues. About 96% of total firms in Phnom Penh city are the most and moderately polluting firms, which have contributed to environmental concerns. Despite an increasing array of laws, strategies and action plans in Cambodia, the Ministry of Environment has encountered some constraints in conducting the monitoring work, including lack of human and financial resources, lack of research documents, the limited analytical knowledge, and lack of technical references. Therefore, the necessary information on industrial pollution to set strategies, priorities and action plans on environmental protection issues is absent in Cambodia. In the absence of this data, effective environmental protection cannot be implemented. The objective of this study is to estimate industrial pollution load by employing the Industrial Pollution Projection System (IPPS), a rapid environmental management tool for assessment of pollution load, to produce a scientific rational basis for preparing future policy direction to reduce industrial pollution in Phnom Penh city. Due to lack of industrial pollution data in Phnom Penh, industrial emissions to the air, water and land as well as the sum of emissions to all mediums (air, water, land) are estimated using employment economic variable in IPPS. Due to the high number of employees, the total environmental load generated in Phnom Penh city is estimated to be 476.980.93 tons in 2014, which is the highest industrial pollution compared to other locations in Cambodia. The result clearly indicates that Phnom Penh city is the highest emitter of all pollutants in comparison with environmental pollutants released by other provinces. The total emission of industrial pollutants in Phnom Penh shares 55.79% of total industrial pollution load in Cambodia. Phnom Penh city generates 189,121.68 ton of VOC, 165,410.58 ton of toxic chemicals to air, 38,523.33 ton of toxic chemicals to land and 28,967.86 ton of SO2 in 2014. The results of the estimation show that Textile and Apparel sector is the highest generators of toxic chemicals into land and air, and toxic metals into land, air and water, while Basic Metal sector is the highest contributor of toxic chemicals to water. Textile and Apparel sector alone emits 436,015.84 ton of total industrial pollution loads. The results suggest that reduction in industrial pollution could be achieved by focusing on the most polluting sectors.

Keywords: most polluting area, polluting industry, pollution load, pollution intensity

Procedia PDF Downloads 260
1980 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection

Procedia PDF Downloads 446
1979 Surface Quality Improvement of Abrasive Waterjet Cutting for Spacecraft Structure

Authors: Tarek M. Ahmed, Ahmed S. El Mesalamy, Amro M. Youssef, Tawfik T. El Midany

Abstract:

Abrasive waterjet (AWJ) machining is considered as one of the most powerful cutting processes. It can be used for cutting heat sensitive, hard and reflective materials. Aluminum 2024 is a high-strength alloy which is widely used in aerospace and aviation industries. This paper aims to improve aluminum alloy and to investigate the effect of AWJ control parameters on surface geometry quality. Design of experiments (DoE) is used for establishing an experimental matrix. Statistical modeling is used to present a relation between the cutting parameters (pressure, speed, and distance between the nozzle and cut surface) and responses (taper angle and surface roughness). The results revealed a tangible improvement in productivity by using AWJ processing. The taper kerf angle can be improved by decreasing standoff distance and speed and increasing water pressure. While decreasing (cutting speed, pressure and distance between the nozzle and cut surface) improve the surface roughness in the operating window of cutting parameters.

Keywords: abrasive waterjet machining, machining of aluminum alloy, non-traditional cutting, statistical modeling

Procedia PDF Downloads 250
1978 SIF Computation of Cracked Plate by FEM

Authors: Sari Elkahina, Zergoug Mourad, Benachenhou Kamel

Abstract:

The main purpose of this paper is to perform a computations comparison of stress intensity factor 'SIF' evaluation in case of cracked thin plate with Aluminum alloy 7075-T6 and 2024-T3 used in aeronautics structure under uniaxial loading. This evaluation is based on finite element method with a virtual power principle through two techniques: the extrapolation and G−θ. The first one consists to extrapolate the nodal displacements near the cracked tip using a refined triangular mesh with T3 and T6 special elements, while the second, consists of determining the energy release rate G through G−θ method by potential energy derivation which corresponds numerically to the elastic solution post-processing of a cracked solid by a contour integration computation via Gauss points. The SIF obtained results from extrapolation and G−θ methods will be compared to an analytical solution in a particular case. To illustrate the influence of the meshing kind and the size of integration contour position simulations are presented and analyzed.

Keywords: crack tip, SIF, finite element method, concentration technique, displacement extrapolation, aluminum alloy 7075-T6 and 2024-T3, energy release rate G, G-θ method, Gauss point numerical integration

Procedia PDF Downloads 337