Search results for: components of entrance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4118

Search results for: components of entrance

488 Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels

Authors: Michael Huber, Maximilian J. Poller, Jens Tochtermann, Wolfgang Korth, Andreas Jess, Jakob Albert

Abstract:

Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations.

Keywords: oxidative reaction pathway, denitrogenation of fuels, molecular catalysis, polyoxometalate

Procedia PDF Downloads 163
487 Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles

Authors: V. Samulionis, J. Banys, A. Sánchez-Ferrer

Abstract:

Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites.

Keywords: inorganic nanotubes, polyurea elastomer composites, ultrasonic velocity, ultrasonic attenuation

Procedia PDF Downloads 290
486 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 209
485 Developing a Culturally Adapted Family Intervention for Relatives Living with Schizophrenia in Oman

Authors: Aziza Al-Sawafi

Abstract:

Introduction: The evidence of family interventions in schizophrenia is robust primarily in high-income settings. However, they have been adapted to other settings and cultures to improve effectiveness and acceptability. In Oman, there is limited integration of psychosocial interventions in the treatment of schizophrenia. Therefore, the adaptation of family intervention to the Omani culture may facilitate its uptake. Most service users in Oman live with their families outside the healthcare system, and nothing is known about their experience, needs, or resources. Furthermore, understanding caregivers' and mental health professionals' preferences, perceptions, and experience is a fundamental element in the process of intervention development. Therefore, this study aims to develop a culturally sensitive, feasible, and acceptable family intervention for relatives living with schizophrenia in Oman. Method: The Medical Research Council's framework for the evaluation of complex health care interventions provided the conceptual structure for the study. The development phase was carried out, which involved three stages: 1) systematically reviewing the available literature regarding culturally adapted family interventions in the Arab world 2) In-depth interviews with caregivers to explore their experience and perceived needs and preferences regarding intervention 3) A focus group study involving health professionals to explore the acceptability and feasibility of delivering the family intervention in the Omani context. Data synthesis determined the design of the proposed intervention according to the findings obtained from the previous stages. Results: Stage one: The systematic review found limited evidence of culturally-adapted family interventions in the Arab region. However, the cultural adaptation process was comprehensive, and the implementation was reported to be feasible and acceptable. Stage two: The experience of family caregivers illuminated four main themes: burden, stigma, violence, and family needs. Burdens of care included objective and subjective burdens, positive feelings, and coping mechanisms. Caregivers gave their opinion about the content and preference of the intervention from their personal experiences. Stage three: mental health professionals discussed the delivery system of the intervention from a clinical standpoint concerning issues and barriers to implementation. They recommended modifications to the components of the intervention to ensure its acceptability and feasibility in the local setting. Data synthesis was carried out, and the intervention was designed. Conclusion: This study provides evidence of the potential applicability and acceptability of a culturally sensitive family intervention for families of individuals with schizophrenia in Oman. However, more work needs to be done to test the feasibility of the study and overcome the practical challenges.

Keywords: cultural-adaptation, family intervention, Oman, schizophrenia

Procedia PDF Downloads 129
484 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 281
483 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 135
482 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna

Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov

Abstract:

This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.

Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna

Procedia PDF Downloads 267
481 Ultrasound Assisted Alkaline Potassium Permanganate Pre-Treatment of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Lignocellulose is the largest reservoir of inexpensive, renewable source of carbon. It is composed of lignin, cellulose and hemicellulose. Cellulose and hemicellulose is composed of reducing sugars glucose, xylose and several other monosaccharides which can be metabolised by microorganisms to produce several value added products such as biofuels, enzymes, aminoacids etc. Enzymatic treatment of lignocellulose leads to the release of monosaccharides such as glucose and xylose. However, factors such as the presence of lignin, crystalline cellulose, acetyl groups, pectin etc. contributes to recalcitrance restricting the effective enzymatic hydrolysis of cellulose and hemicellulose. In order to overcome these problems, pre-treatment of lignocellulose is generally carried out which essentially facilitate better degradation of lignocellulose. A range of pre-treatment strategy is commonly employed based on its mode of action viz. physical, chemical, biological and physico-chemical. However, existing pretreatment strategies result in lower sugar yield and formation of inhibitory compounds. In order to overcome these problems, we proposes a novel pre-treatment, which utilises the superior oxidising capacity of alkaline potassium permanganate assisted by ultra-sonication to break the covalent bonds in spent coffee waste to remove recalcitrant compounds such as lignin. The pre-treatment was conducted for 30 minutes using 2% (w/v) potassium permanganate at room temperature with solid to liquid ratio of 1:10. The pre-treated spent coffee waste (SCW) was subjected to enzymatic hydrolysis using enzymes cellulase and hemicellulase. Shake flask experiments were conducted with a working volume of 50mL buffer containing 1% substrate. The results showed that the novel pre-treatment strategy yielded 7 g/L of reducing sugar as compared to 3.71 g/L obtained from biomass that had undergone dilute acid hydrolysis after 24 hours. From the results obtained it is fairly certain that ultrasonication assists the oxidation of recalcitrant components in lignocellulose by potassium permanganate. Enzyme hydrolysis studies suggest that ultrasound assisted alkaline potassium permanganate pre-treatment is far superior over treatment by dilute acid. Furthermore, SEM, XRD and FTIR were carried out to analyse the effect of the new pre-treatment strategy on structure and crystallinity of pre-treated spent coffee wastes. This novel one-step pre-treatment strategy was implemented under mild conditions and exhibited high efficiency in the enzymatic hydrolysis of spent coffee waste. Further study and scale up is in progress in order to realise future industrial applications.

Keywords: spent coffee waste, alkaline potassium permanganate, ultra-sonication, physical characterisation

Procedia PDF Downloads 331
480 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 204
479 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades

Authors: Chi Zhang, Hua-Peng Chen

Abstract:

With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.

Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.

Procedia PDF Downloads 397
478 Geographic Origin Determination of Greek Rice (Oryza Sativa L.) Using Stable Isotopic Ratio Analysis

Authors: Anna-Akrivi Thomatou, Anastasios Zotos, Eleni C. Mazarakioti, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas

Abstract:

It is well known that accurate determination of geographic origin to confront mislabeling and adulteration of foods is considered as a critical issue worldwide not only for the consumers, but also for producers and industries. Among agricultural products, rice (Oryza sativa L.) is the world’s third largest crop, providing food for more than half of the world’s population. Consequently, the quality and safety of rice products play an important role in people’s life and health. Despite the fact that rice is predominantly produced in Asian countries, rice cultivation in Greece is of significant importance, contributing to national agricultural sector income. More than 25,000 acres are cultivated in Greece, while rice exports to other countries consist the 0,5% of the global rice trade. Although several techniques are available in order to provide information about the geographical origin of rice, little data exist regarding the ability of these methodologies to discriminate rice production from Greece. Thus, the aim of this study is the comparative evaluation of stable isotope ratio methodology regarding its discriminative ability for geographical origin determination of rice samples produced in Greece compared to those from three other Asian countries namely Korea, China and Philippines. In total eighty (80) samples were collected from selected fields of Central Macedonia (Greece), during October of 2021. The light element (C, N, S) isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS) and the results obtained were analyzed using chemometric techniques, including principal components analysis (PCA). Results indicated that the 𝜹 15N and 𝜹 34S values of rice produced in Greece were more markedly influenced by geographical origin compared to the 𝜹 13C. In particular, 𝜹 34S values in rice originating from Greece was -1.98 ± 1.71 compared to 2.10 ± 1.87, 4.41 ± 0.88 and 9.02 ± 0.75 for Korea, China and Philippines respectively. Among stable isotope ratios studied, values of 𝜹 34S seem to be the more appropriate isotope marker to discriminate rice geographic origin between the studied areas. These results imply the significant capability of stable isotope ratio methodology for effective geographical origin discrimination of rice, providing a valuable insight into the control of improper or fraudulent labeling. Acknowledgement: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.

Keywords: geographical origin, authenticity, rice, isotope ratio mass spectrometry

Procedia PDF Downloads 72
477 Study of Lanthanoide Organic Frameworks Properties and Synthesis: Multicomponent Ligands

Authors: Ayla Roberta Galaco, Juliana Fonseca De Lima, Osvaldo Antonio Serra

Abstract:

Coordination polymers, also known as metal-organic frameworks (MOFs) or lanthanoide organic frameworks (LOFs) have been reported due of their promising applications in gas storage, separation, catalysis, luminescence, magnetism, drug delivery, and so on. As a type of organic–inorganic hybrid materials, the properties of coordination polymers could be chosen by deliberately selecting the organic and inorganic components. LOFs have received considerable attention because of their properties such as porosity, luminescence, and magnetism. Methods such as solvothermal synthesis are important as a strategy to control the structural and morphological properties as well as the composition of the target compounds. In this work the first solvothermal synthesis was employed to obtain the compound [Y0.4,Yb0.4,Er0.2(dmf)(for)(H2O)(tft)], by using terephthalic acid (tft) and oxalic acid, decomposed in formate (for), as ligands; Yttrium, Ytterbium and, Erbium as metal centers, in DMF and water for 4 days under 160 °C. The semi-rigid terephthalic acid (dicarboxylic) coordinates with Ln3+ ions and also is possible to form a polyfunctional bridge. On the other hand, oxalate anion has no high-energy vibrational groups, which benefits the excitation of Yb3+ in upconversion process. It was observed that the compounds with water molecules in the coordination sphere of the lanthanoide ions cause lower crystalline properties and change the structure of the LOF (1D, 2D, 3D). In the FTIR, the bands at 1589 and 1500 cm-1 correspond to the asymmetric stretching vibration of –COO. The band at 1383 cm-1 is assigned to the symmetric stretching vibration of –COO. Single crystal X-ray diffraction study reveals an infinite 3D coordination framework that crystalizes in space group P21/c. The other three products, [TR(chel)(ofd)0,5(H2O)2], where TR= Eu3+, Y3, and Yb3+/Er3+ were obtained by using 1, 2-phenylenedioxydiacetic acid (ofd) and chelidonic acid (chel) as organic ligands. Thermal analysis shows that the lanthanoide organic frameworks do not collapse at temperatures below 250 °C. By the polycrystalline X-ray diffraction patterns (PXRD) it was observed that the compounds with Eu3+, Y3+, and Yb3+/Er3+ ions are isostructural. From PXRD patterns, high crystallinity can be noticed for the complexes. The final products were characterized by single X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) is an effective method to investigate crystalline properties of synthesized materials. The solid crystal obtained in the synthesis show peaks at 2θ < 10°, indicating the MOF formation. The chemical composition of LOFs was also confirmed by EDS.

Keywords: isostructural, lanthanoids, lanthanoids organic frameworks (LOFs), metal organic frameworks (MOFs), thermogravimetry, X-Ray diffraction

Procedia PDF Downloads 239
476 Buddhist Cognitive Behavioral Therapy to Address Depression Among Elderly Population: Multi-cultural Model of Buddhist Based Cognitive Behavioral Therapy to Address Depression Among Elderly Population

Authors: Ashoke Priyadarshana Premananda

Abstract:

As per the suggestions of previously conducted research in Counseling Psychology, the necessity of forming culture- friendly approaches has been strongly emphasized by a number of scholars in the field. In response to that, Multicultural-model of Buddhist Based Cognitive Behavioral Therapy (MMBCBT) has been formed as a culture-friendly therapeutic approach to address psychological disturbances (depression) in late adulthood. Elderly population in the world is on the rise by leaps and bounds, and forming a culture-based therapeutic model which is blended with Buddhist teachings has been the major objective of the study. Buddhist teachings and cultural applications, which were mapped onto Cognitive Behavioral Therapy (CBT) in the West, ultimately resulted in MMBCBT. Therefore, MMBCBT is a blend of cultural therapeutic techniques and the essence of certain Buddhist teachings extracted from five crucial suttas, which include CBT principles. In the process of mapping, MeghiyaSutta, GirimānandaSutta, SallekhaSutta, DvedhāvitakkaSutta, and Vitakka- SaṇṭhānaSutta have been taken into consideration mainly because of their cognitive behavioral content. The practical components of Vitakka- Saṇṭhānasutta (Aññanimittapabbaṃ) and Sallekhasutta (SallekhaPariyāya and CittuppādaPariyāya) have been used in the model while mindfulness of breathing was also carried out with the participants. Basically, multi-cultural therapeutic approaches of MMBCBT aim at modifying behavior (behavioral modification), whereas the rest is centered to the cognitive restructuring process. Therefore, MMBCBT is endowed with Behavioral Therapy (BT) and Cognitive Therapy(CT). In order to find out the validation of MMBCBT as a newly formed approach, it was then followed by mixed research (quantitative and qualitative research) with a sample selected from the elderly population following the purposive sampling technique. 40 individuals were selected from three elderly homes as per the purposive sampling technique. Elderly people identified to be depressed via Geriatric Depression Scale underwent MMBCBT for two weeks continuously while action research was being conducted simultaneously. Additionally, a Focus Group interview was carried out to support the action research. As per the research findings, people who identified depressed prior to the exposure to MMBCBT were found to be showing positive changes after they were exposed to the model. “Paired Sample t test” showed that the Multicultural Model of Buddhist based Cognitive Behavioral Therapy reduced depression of elderly people (The mean value (x̄) of the sample (level of depression) before the model was 10.7 whereas the mean value after the model was 7.5.). Most importantly, MMBCBT has been found to be effectively used with people from all walks of life despite religious diversities.

Keywords: buddhist psychotherapy, cognitive behavioral therapy in buddhism, counseling in cultural context, gerontology, and buddhism

Procedia PDF Downloads 96
475 The Antimicrobial Activity of Marjoram Essential Oil Against Some Antibiotic Resistant Microbes Isolated from Hospitals

Authors: R. A. Abdel Rahman, A. E. Abdel Wahab, E. A. Goghneimy, H. F. Mohamed, E. M. Salama

Abstract:

Infectious diseases are a major cause of death worldwide. The treatment of infections continues to be problematic in modern time because of the severe side effects of some drugs and the growing resistance to antimicrobial agents. Hence, the search for newer, safer and more potent antimicrobials is a pressing need. Herbal medicines have received much attention as a source of new antibacterial drugs since they are considered time-tested and comparatively safe both for human use and the environment. In the present study, the antimicrobial activity of marjoram (Origanum majorana L.) essential oil on some gram positive and gram negative reference bacteria, as well as some hospital resistant microbes, was tested. Marjoram oil was extracted and the oil chemical constituents were identified using GC/MS analysis. Staphylococcus aureas ATCC 6923, Pseudomonus auregonosa ATCC 9027, Bacillus subtilis ATCC 6633, E. coli ATCC 8736 and two hospital resistant microbes isolates 16 and 21 were used. The two isolates were identified by biochemical tests and 16s rRNA as proteus spp. and Enterococcus facielus. The effect of different concentrations of essential oils on bacterial growth was tested using agar disk diffusion assay method to determine the minimum inhibitory concentrations and using micro dilution method to determine the minimum bactericidal concentrations. Marjoram oil was found to be effective against both reference and hospital resistance strains. Hospital strains were more resistant to marjoram oil than reference strains. P. auregonosa growth was completely inhibited at a low concentration of oil (4µl/ml). The other reference strains showed sensitivity to marjoram oil at concentrations ranged from 5 to 7µl/ml. The two hospital strains showed sensitivity at media containing 10 and 15µl/ml oil. The major components of oil were terpineol, cis-beta (23.5%), 1,6 – octadien –3-ol,3,7-dimethyl, 2 aminobenzoate (10.9%), alpha terpieol (8.6%) and linalool (6.3%). Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis were used to determine the difference between treated and untreated hospital strains. SEM results showed that treated cells were smaller in size than control cells. TEM data showed that cell lysis has occurred to treated cells. Treated cells have ruptured cell wall and appeared empty of cytoplasm compared to control cells which shown to be intact with normal volume of cytoplasm. The results indicated that marjoram oil has a positive antimicrobial effect on hospital resistance microbes. Natural crude extracts can be perfect resources for new antimicrobial drugs.

Keywords: antimicrobial activity, essential oil, hospital resistance microbes, marjoram

Procedia PDF Downloads 430
474 CLEAN Jakarta Waste Bank Project: Alternative Solution in Urban Solid Waste Management by Community Based Total Sanitation (CBTS) Approach

Authors: Mita Sirait

Abstract:

Everyday Jakarta produces 7,000 tons of solid waste and only about 5,200 tons delivered to landfill out of the city by 720 trucks, the rest are left yet manageable, as reported by Government of Clean Sector. CLEAN Jakarta Project is aimed at empowering community to achieve healthy environment for children and families in urban slum in Semper Barat and Penjaringan sub-district of North Jakarta that consisted of 20,584 people. The project applies Community Based Total Sanitation, an approach to empowering community to achieve total hygiene and sanitation behaviour by triggering activities. As regulated by Ministry of Health, it has 5 pillars: (1) open defecation free, (2) hand-washing with soaps, (3) drinking-water treatment, (4) solid-waste management and (5) waste-water management; and 3 strategic components: 1) demand creation, 2) supply creation and 3) enabling environment. Demand creation is generated by triggering community’s reaction to their daily sanitation habits by exposing them to their surrounding where they can see faeces, waste and other environmental pollutant to stimulate disgusting, embarrassing and responsibility sense. Triggered people then challenged to commit to improving their hygiene practice such as to stop littering and start waste separation. In order to support this commitment, and for supply creation component, the project initiated waste bank with community working group. It facilitated capacity-building trainings, waste bank system formulation and meetings with local authorities to solicit land permit and waste bank decree. As it is of a general banking system, waste bank has customer service, teller, manager, legal paper and provides saving book and money transaction. In 8 months, two waste banks have established with 148 customers, 17 million rupiah cash, and about 9 million of stored recyclables. Approximately 2.5 tons of 15-35 types of recyclable are managed in both waste banks per week. On enabling environment, the project has initiated sanitation working group in community and multi sectors government level, and advocated both parties. The former is expected to promote behaviour change and monitoring in the community, while the latter is expected to support sanitation with regulations, strategies, appraisal and awards; to coordinate partnering and networking, and to replicate best practices to other areas.

Keywords: urban community, waste management, Jakarta, community based total sanitation (CBTS)

Procedia PDF Downloads 280
473 The Composition of Biooil during Biomass Pyrolysis at Various Temperatures

Authors: Zoltan Sebestyen, Eszter Barta-Rajnai, Emma Jakab, Zsuzsanna Czegeny

Abstract:

Extraction of the energy content of lignocellulosic biomass is one of the possible pathways to reduce the greenhouse gas emission derived from the burning of the fossil fuels. The application of the bioenergy can mitigate the energy dependency of a country from the foreign natural gas and the petroleum. The diversity of the plant materials makes difficult the utilization of the raw biomass in power plants. This problem can be overcome by the application of thermochemical techniques. Pyrolysis is the thermal decomposition of the raw materials under inert atmosphere at high temperatures, which produces pyrolysis gas, biooil and charcoal. The energy content of these products can be exploited by further utilization. The differences in the chemical and physical properties of the raw biomass materials can be reduced by the use of torrefaction. Torrefaction is a promising mild thermal pretreatment method performed at temperatures between 200 and 300 °C in an inert atmosphere. The goal of the pretreatment from a chemical point of view is the removal of water and the acidic groups of hemicelluloses or the whole hemicellulose fraction with minor degradation of cellulose and lignin in the biomass. Thus, the stability of biomass against biodegradation increases, while its energy density increases. The volume of the raw materials decreases so the expenses of the transportation and the storage are reduced as well. Biooil is the major product during pyrolysis and an important by-product during torrefaction of biomass. The composition of biooil mostly depends on the quality of the raw materials and the applied temperature. In this work, thermoanalytical techniques have been used to study the qualitative and quantitative composition of the pyrolysis and torrefaction oils of a woody (black locust) and two herbaceous samples (rape straw and wheat straw). The biooil contains C5 and C6 anhydrosugar molecules, as well as aromatic compounds originating from hemicellulose, cellulose, and lignin, respectively. In this study, special emphasis was placed on the formation of the lignin monomeric products. The structure of the lignin fraction is different in the wood and in the herbaceous plants. According to the thermoanalytical studies the decomposition of lignin starts above 200 °C and ends at about 500 °C. The lignin monomers are present among the components of the torrefaction oil even at relatively low temperatures. We established that the concentration and the composition of the lignin products vary significantly with the applied temperature indicating that different decomposition mechanisms dominate at low and high temperatures. The evolutions of decomposition products as well as the thermal stability of the samples were measured by thermogravimetry/mass spectrometry (TG/MS). The differences in the structure of the lignin products of woody and herbaceous samples were characterized by the method of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). As a statistical method, principal component analysis (PCA) has been used to find correlation between the composition of lignin products of the biooil and the applied temperatures.

Keywords: pyrolysis, torrefaction, biooil, lignin

Procedia PDF Downloads 304
472 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 111
471 Reflections of Narrative Architecture in Transformational Representations on the Architectural Design Studio

Authors: M. Mortas, H. Asar, P. Dursun Cebi

Abstract:

The visionary works of architectural representation in the 21st century's present situation, are practiced through the methodologies which try to expose the intellectual and theoretical essences of futurologist positions that are revealed with this era's interactions. Expansions of conceptual and contextual inputs related to one architectural design representation, depend on its deepness of critical attitudes, its interactions with the concepts such as experience, meaning, affection, psychology, perception and aura, as well as its communication with spatial, cultural and environmental factors. The purpose of this research study is to be able to offer methodological application areas for the design dimensions of experiential practices into architectural design studios, by focusing on the architectural representative narrations of 'transformation,' 'metamorphosis,' 'morphogenesis,' 'in-betweenness', 'superposition' and 'intertwine’ in which they affect and are affected by the today’s spatiotemporal hybridizations of architecture. The narrative representations and the visual theory paradigms of the designers are chosen under the main title of 'transformation' for the investigation of these visionary and critical representations' dismantlings and decodings. Case studies of this research area are chosen from Neil Spiller, Bryan Cantley, Perry Kulper and Dan Slavinsky’s transformative, morphogenetic representations. The theoretical dismantlings and decodings which are obtained from these artists’ contemporary architectural representations are tried to utilize and practice in the structural design studios as alternative methodologies when to approach architectural design processes, for enriching, differentiating, diversifying and 'transforming' the applications of so far used design process precedents. The research aims to indicate architectural students about how they can reproduce, rethink and reimagine their own representative lexicons and so languages of their architectural imaginations, regarding the newly perceived tectonics of prosthetic, biotechnology, synchronicity, nanotechnology or machinery into various experiential design workshops. The methodology of this work can be thought as revealing the technical and theoretical tools, lexicons and meanings of contemporary-visionary architectural representations of our decade, with the essential contents and components of hermeneutics, etymology, existentialism, post-humanism, phenomenology and avant-gardism disciplines to re-give meanings the architectural visual theorists’ transformative representations of our decade. The value of this study may be to emerge the superposed and overlapped atmospheres of futurologist architectural representations for the students who need to rethink on the transcultural, deterritorialized and post-humanist critical theories to create and use the representative visual lexicons of themselves for their architectural soft machines and beings by criticizing the now, to be imaginative for the future of architecture.

Keywords: architectural design studio, visionary lexicon, narrative architecture, transformative representation

Procedia PDF Downloads 126
470 Effects of Temperature and the Use of Bacteriocins on Cross-Contamination from Animal Source Food Processing: A Mathematical Model

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cerdova

Abstract:

The contamination of food by microbial agents is a common problem in the industry, especially regarding the elaboration of animal source products. Incorrect manipulation of the machinery or on the raw materials can cause a decrease in production or an epidemiological outbreak due to intoxication. In order to improve food product quality, different methods have been used to reduce or, at least, to slow down the growth of the pathogens, especially deteriorated, infectious or toxigenic bacteria. These methods are usually carried out under low temperatures and short processing time (abiotic agents), along with the application of antibacterial substances, such as bacteriocins (biotic agents). This, in a controlled and efficient way that fulfills the purpose of bacterial control without damaging the final product. Therefore, the objective of the present study is to design a secondary mathematical model that allows the prediction of both the biotic and abiotic factor impact associated with animal source food processing. In order to accomplish this objective, the authors propose a three-dimensional differential equation model, whose components are: bacterial growth, release, production and artificial incorporation of bacteriocins and changes in pH levels of the medium. These three dimensions are constantly being influenced by the temperature of the medium. Secondly, this model adapts to an idealized situation of cross-contamination animal source food processing, with the study agents being both the animal product and the contact surface. Thirdly, the stochastic simulations and the parametric sensibility analysis are compared with referential data. The main results obtained from the analysis and simulations of the mathematical model were to discover that, although bacterial growth can be stopped in lower temperatures, even lower ones are needed to eradicate it. However, this can be not only expensive, but counterproductive as well in terms of the quality of the raw materials and, on the other hand, higher temperatures accelerate bacterial growth. In other aspects, the use and efficiency of bacteriocins are an effective alternative in the short and medium terms. Moreover, an indicator of bacterial growth is a low-level pH, since lots of deteriorating bacteria are lactic acids. Lastly, the processing times are a secondary agent of concern when the rest of the aforementioned agents are under control. Our main conclusion is that when acclimating a mathematical model within the context of the industrial process, it can generate new tools that predict bacterial contamination, the impact of bacterial inhibition, and processing method times. In addition, the mathematical modeling proposed logistic input of broad application, which can be replicated on non-meat food products, other pathogens or even on contamination by crossed contact of allergen foods.

Keywords: bacteriocins, cross-contamination, mathematical model, temperature

Procedia PDF Downloads 125
469 Flexible Programmable Circuit Board Electromagnetic 1-D Scanning Micro-Mirror Laser Rangefinder by Active Triangulation

Authors: Vixen Joshua Tan, Siyuan He

Abstract:

Scanners have been implemented within single point laser rangefinders, to determine the ranges within an environment by sweeping the laser spot across the surface of interest. The research motivation is to exploit a smaller and cheaper alternative scanning component for the emitting portion within current designs of laser rangefinders. This research implements an FPCB (Flexible Programmable Circuit Board) Electromagnetic 1-Dimensional scanning micro-mirror as a scanning component for laser rangefinding by means of triangulation. The prototype uses a laser module, micro-mirror, and receiver. The laser module is infrared (850 nm) with a power output of 4.5 mW. The receiver consists of a 50 mm convex lens and a 45mm 1-dimensional PSD (Position Sensitive Detector) placed at the focal length of the lens at 50 mm. The scanning component is an elliptical Micro-Mirror attached onto an FPCB Structure. The FPCB structure has two miniature magnets placed symmetrically underneath it on either side, which are then electromagnetically actuated by small solenoids, causing the FPCB to mechanically rotate about its torsion beams. The laser module projects a laser spot onto the micro-mirror surface, hence producing a scanning motion of the laser spot during the rotational actuation of the FPCB. The receiver is placed at a fixed distance from the micro-mirror scanner and is oriented to capture the scanning motion of the laser spot during operation. The elliptical aperture dimensions of the micro-mirror are 8mm by 5.5 mm. The micro-mirror is supported by an FPCB with two torsion beams with dimensions of 4mm by 0.5mm. The overall length of the FPCB is 23 mm. The voltage supplied to the solenoids is sinusoidal with an amplitude of 3.5 volts and 4.5 volts to achieve optical scanning angles of +/- 10 and +/- 17 degrees respectively. The operating scanning frequency during experiments was 5 Hz. For an optical angle of +/- 10 degrees, the prototype is capable of detecting objects within the ranges from 0.3-1.2 meters with an error of less than 15%. As for an optical angle of +/- 17 degrees the measuring range was from 0.3-0.7 meters with an error of 16% or less. Discrepancy between the experimental and actual data is possibly caused by misalignment of the components during experiments. Furthermore, the power of the laser spot collected by the receiver gradually decreased as the object was placed further from the sensor. A higher powered laser will be tested to potentially measure further distances more accurately. Moreover, a wide-angled lens will be used in future experiments when higher scanning angles are used. Modulation within the current and future higher powered lasers will be implemented to enable the operation of the laser rangefinder prototype without the use of safety goggles.

Keywords: FPCB electromagnetic 1-D scanning micro-mirror, laser rangefinder, position sensitive detector, PSD, triangulation

Procedia PDF Downloads 123
468 Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres

Authors: Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif

Abstract:

With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications.

Keywords: recycled carbon fibres, hybrid yarn, friction spinning, thermoplastic composite

Procedia PDF Downloads 244
467 Optical and Near-UV Spectroscopic Properties of Low-Redshift Jetted Quasars in the Main Sequence in the Main Sequence Context

Authors: Shimeles Terefe Mengistue, Ascensión Del Olmo, Paola Marziani, Mirjana Pović, María Angeles Martínez-Carballo, Jaime Perea, Isabel M. Árquez

Abstract:

Quasars have historically been classified into two distinct classes, radio-loud (RL) and radio-quiet (RQ), taking into account the presence and absence of relativistic radio jets, respectively. The absence of spectra with a high S/N ratio led to the impression that all quasars (QSOs) are spectroscopically similar. Although different attempts were made to unify these two classes, there is a long-standing open debate involving the possibility of a real physical dichotomy between RL and RQ quasars. In this work, we present new high S/N spectra of 11 extremely powerful jetted quasars with radio-to-optical flux density ratio > 1000 that concomitantly cover the low-ionization emission of Mgii𝜆2800 and Hbeta𝛽 as well as the Feii blends in the redshift range 0.35 < z < 1, observed at Calar Alto Observatory (Spain). This work aims to quantify broad emission line differences between RL and RQ quasars by using the four-dimensional eigenvector 1 (4DE1) parameter space and its main sequence (MS) and to check the effect of powerful radio ejection on the low ionization broad emission lines. Emission lines are analysed by making two complementary approaches, a multicomponent non-linear fitting to account for the individual components of the broad emission lines and by analysing the full profile of the lines through parameters such as total widths, centroid velocities at different fractional intensities, asymmetry, and kurtosis indices. It is found that broad emission lines show large reward asymmetry both in Hbeta𝛽 and Mgii2800A. The location of our RL sources in a UV plane looks similar to the optical one, with weak Feii UV emission and broad Mgii2800A. We supplement the 11 sources with large samples from previous work to gain some general inferences. The result shows, compared to RQ, our extreme RL quasars show larger median Hbeta full width at half maximum (FWHM), weaker Feii emission, larger 𝑀BH, lower 𝐿bol/𝐿Edd, and a restricted space occupation in the optical and UV MS planes. The differences are more elusive when the comparison is carried out by restricting the RQ population to the region of the MS occupied by RL quasars, albeit an unbiased comparison matching 𝑀BH and 𝐿bol/𝐿Edd suggests that the most powerful RL quasars show the highest redward asymmetries in Hbeta.

Keywords: galaxies, active, line, profiles, quasars, emission lines, supermassive black holes

Procedia PDF Downloads 48
466 Effective Service Provision and Multi-Agency Working in Service Providers for Children and Young People with Special Educational Needs and Disabilities: A Mixed Methods Systematic Review

Authors: Natalie Tyldesley-Marshall, Janette Parr, Anna Brown, Yen-Fu Chen, Amy Grove

Abstract:

It is widely recognised in policy and research that the provision of services for children and young people (CYP) with Special Educational Needs and Disabilities (SEND) is enhanced when health and social care, and education services collaborate and interact effectively. In the UK, there have been significant changes to policy and provisions which support and improve collaboration. However, professionals responsible for implementing these changes face multiple challenges, including a lack of specific implementation guidance or framework to illustrate how effective multi-agency working could or should work. This systematic review will identify the key components of effective multi-agency working in services for CYP with SEND; and the most effective forms of partnership working in this setting. The review highlights interventions that lead to service improvements; and the conditions in the local area that support and encourage success. A protocol was written and registered with PROSPERO registration: CRD42022352194. Searches were conducted on several health, care, education, and applied social science databases from the year 2012 onwards. Citation chaining has been undertaken, as well as broader grey literature searching to enrich the findings. Qualitative, quantitative, mixed methods studies and systematic reviews were included, assessed independently, and critically appraised or assessed for risk of bias using appropriate tools based on study design. Data were extracted in NVivo software and checked by a more experienced researcher. A convergent segregated approach to synthesis and integration was used in which the quantitative and qualitative data were synthesised independently and then integrated using a joint display integration matrix. Findings demonstrate the key ingredients for effective partnership working for services delivering SEND. Interventions deemed effective are described, and lessons learned across interventions are summarised. Results will be of interest to educators and health and social care professionals that provide services to those with SEND. These will also be used to develop policy recommendations for how UK healthcare, social care, and education services for CYP with SEND aged 0-25 can most effectively collaborate and achieve service improvement. The review will also identify any gaps in the literature to recommend areas for future research. Funding for this review was provided by the Department for Education.

Keywords: collaboration, joint commissioning, service delivery, service improvement

Procedia PDF Downloads 87
465 The Surgical Trainee Perception of the Operating Room Educational Environment

Authors: Neal Rupani

Abstract:

Background: A surgical trainee has limited learning opportunities in the operating room in order to gain an ever-increasing standard of surgical skill, competency, and proficiency. These opportunities continue to decline due to numerous factors such as the European Working Time Directive and increasing requirement for service provision. It is therefore imperative to obtain the highest educational value from each educational opportunity. A measure that has yet to be validated in England on surgical trainees called the Operating Room Educational Environment Measure (OREEM) has been developed to identify and evaluate each component of the educational environment with a view to steer future change in optimising educational events in theatre. Aims: The aims of the study are to assess the reliability of the OREEM within England and to evaluate the surgical trainee’s objective perspective of the current operating room educational environment within one region within England. Methods: Using a quantitative study approach, data was collected over one month from surgical trainees within Health Education Thames Valley (Oxford) using an online questionnaire consisting of demographic data, the OREEM, a global satisfaction score. Results: 140 surgical trainees were invited to the study, with an online response of 54 participants (response rate = 38.6%). The OREEM was shown to have good internal consistency (α = 0.906, variables = 40) and unidimensionality, along with all four of its subgroups. The mean OREEM score was 79.16%. The areas highlighted for improvement predominantly focused on improving learning opportunities (average subscale score = 72.9%) and conducting pre- and post-operative teaching (average score = 70.4%). The trainee perception is most satisfactory for the level of supervision and workload (average subscale score = 82.87%). There was no differences found between gender (U = 191.5, p = 0.535) or type of hospital (U = 258.0, p = 0.099), but the learning environment was favoured towards senior trainees (U = 223.5, p = 0.017). There was strong correlation between OREEM and the global satisfaction score (r = 0.755, p<0.001). Conclusions: The OREEM was shown to be reliable in measuring the educational environment in the operating room. This can be used to identify potentially modifiable components for improvement and as an audit tool to ensure high standards are being met. The current perception of the education environment in Health Education Thames Valley is satisfactory, and modifiable internal and external factors such as reducing service provision requirements, empowering trainees to plan lists, creating a team-working ethic between all personnel, and using tools that maximise learning from each operation have been identified to improve learning in the future. There is a favourable attitude to use of such improvement tools, especially for those currently dissatisfied.

Keywords: education environment, surgery, post-graduate education, OREEM

Procedia PDF Downloads 170
464 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 141
463 Motivation of Doctors and its Impact on the Quality of Working Life

Authors: E. V. Fakhrutdinova, K. R. Maksimova, P. B. Chursin

Abstract:

At the present stage of the society progress the health care is an integral part of both the economic system and social, while in the second case the medicine is a major component of a number of basic and necessary social programs. Since the foundation of the health system are highly qualified health professionals, it is logical proposition that increase of doctor`s professionalism improves the effectiveness of the system as a whole. Professionalism of the doctor is a collection of many components, essential role played by such personal-psychological factors as honesty, willingness and desire to help people, and motivation. A number of researchers consider motivation as an expression of basic human needs that have passed through the “filter” which is a worldview and values learned in the process of socialization by the individual, to commit certain actions designed to achieve the expected result. From this point of view a number of researchers propose the following classification of highly skilled employee’s needs: 1. the need for confirmation the competence (setting goals that meet the professionalism and receipt of positive emotions in their decision), 2. The need for independence (the ability to make their own choices in contentious situations arising in the process carry out specialist functions), 3. The need for ownership (in the case of health care workers, to the profession and accordingly, high in the eyes of the public status of the doctor). Nevertheless, it is important to understand that in a market economy a significant motivator for physicians (both legal and natural persons) is to maximize its own profits. In the case of health professionals duality motivational structure creates an additional contrast, as in the public mind the image of the ideal physician; usually a altruistically minded person thinking is not primarily about their own benefit, and to assist others. In this context, the question of the real motivation of health workers deserves special attention. The survey conducted by the American researcher Harrison Terni for the magazine "Med Tech" in 2010 revealed the opinion of more than 200 medical students starting courses, and the primary motivation in a profession choice is "desire to help people", only 15% said that they want become a doctor, "to earn a lot". From the point of view of most of the classical theories of motivation this trend can be called positive, as intangible incentives are more effective. However, it is likely that over time the opinion of the respondents may change in the direction of mercantile motives. Thus, it is logical to assume that well-designed system of motivation of doctor`s labor should be based on motivational foundations laid during training in higher education.

Keywords: motivation, quality of working life, health system, personal-psychological factors, motivational structure

Procedia PDF Downloads 341
462 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 151
461 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending

Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim

Abstract:

Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.

Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions

Procedia PDF Downloads 87
460 Modeling and Simulating Productivity Loss Due to Project Changes

Authors: Robert Pellerin, Michel Gamache, Remi Trudeau, Nathalie Perrier

Abstract:

The context of large engineering projects is particularly favorable to the appearance of engineering changes and contractual modifications. These elements are potential causes for claims. In this paper, we investigate one of the critical components of the claim management process: the calculation of the impacts of changes in terms of losses of productivity due to the need to accelerate some project activities. When project changes are initiated, delays can arise. Indeed, project activities are often executed in fast-tracking in an attempt to respect the completion date. But the acceleration of project execution and the resulting rework can entail important costs as well as induce productivity losses. In the past, numerous methods have been proposed to quantify the duration of delays, the gains achieved by project acceleration, and the loss of productivity. The calculation related to those changes can be divided into two categories: direct cost and indirect cost. The direct cost is easily quantifiable as opposed to indirect costs which are rarely taken into account during the calculation of the cost of an engineering change or contract modification despite several research projects have been made on this subject. However, proposed models have not been accepted by companies yet, nor they have been accepted in court. Those models require extensive data and are often seen as too specific to be used for all projects. These techniques are also ignoring the resource constraints and the interdependencies between the causes of delays and the delays themselves. To resolve this issue, this research proposes a simulation model that mimics how major engineering changes or contract modifications are handled in large construction projects. The model replicates the use of overtime in a reactive scheduling mode in order to simulate the loss of productivity present when a project change occurs. Multiple tests were conducted to compare the results of the proposed simulation model with statistical analysis conducted by other researchers. Different scenarios were also conducted in order to determine the impact the number of activities, the time of occurrence of the change, the availability of resources, and the type of project changes on productivity loss. Our results demonstrate that the number of activities in the project is a critical variable influencing the productivity of a project. When changes occur, the presence of a large number of activities leads to a much lower productivity loss than a small number of activities. The speed of reducing productivity for 30-job projects is about 25 percent faster than the reduction speed for 120-job projects. The moment of occurrence of a change also shows a significant impact on productivity. Indeed, the sooner the change occurs, the lower the productivity of the labor force. The availability of resources also impacts the productivity of a project when a change is implemented. There is a higher loss of productivity when the amount of resources is restricted.

Keywords: engineering changes, indirect costs overtime, productivity, scheduling, simulation

Procedia PDF Downloads 227
459 The Relationship between Anthropometric Obesity Indices and Insulin in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The number of indices developed for the evaluation of obesity both in adults and pediatric population is ever increasing. These indices are also used in cases with metabolic syndrome (MetS), mostly the ultimate form of morbid obesity. Aside from anthropometric measurements, formulas constituted using these parameters also find clinical use. These formulas can be listed as two groups; being weight-dependent and –independent. Some are extremely sophisticated equations and their clinical utility is questionable in routine clinical practice. The aim of this study is to compare presently available obesity indices and find the most practical one. Their associations with MetS components were also investigated to determine their capacities in differential diagnosis of morbid obesity with and without MetS. Children with normal body mass index (N-BMI) and morbid obesity were recruited for this study. Three groups were constituted. Age- and sex- dependent BMI percentiles for morbid obese (MO) children were above 99 according to World Health Organization tables. Of them, those with MetS findings were evaluated as MetS group. Children, whose values were between 85 and 15 were included in N-BMI group. The study protocol was approved by the Ethics Committee of the Institution. Parents filled out informed consent forms to participate in the study. Anthropometric measurements and blood pressure values were recorded. Body mass index, hip index (HI), conicity index (CI), triponderal mass index (TPMI), body adiposity index (BAI), body shape index (ABSI), body roundness index (BRI), abdominal volume index (AVI), waist-to-hip ratio (WHR) and waist circumference+hip circumference/2 ((WC+HC)/2) were the formulas examined within the scope of this study. Routine biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) were performed. Statistical package program SPSS was used for the evaluation of study data. p<0.05 was accepted as the statistical significance degree. Hip index did not differ among the groups. A statistically significant difference was noted between N-BMI and MetS groups in terms of ABSI. All the other indices were capable of making discrimination between N-BMI-MO, N-BMI- MetS and MO-MetS groups. No correlation was found between FBG and any obesity indices in any groups. The same was true for INS in N-BMI group. Insulin was correlated with BAI, TPMI, CI, BRI, AVI and (WC+HC)/2 in MO group without MetS findings. In MetS group, the only index, which was correlated with INS was (WC+HC)/2. These findings have pointed out that complicated formulas may not be required for the evaluation of the alterations among N-BMI and various obesity groups including MetS. The simple easily computable weight-independent index, (WC+HC)/2, was unique, because it was the only index, which exhibits a valuable association with INS in MetS group. It did not exhibit any correlation with other obesity indices showing associations with INS in MO group. It was concluded that (WC+HC)/2 was pretty valuable practicable index for the discrimination of MO children with and without MetS findings.

Keywords: children, insulin, metabolic syndrome, obesity indices

Procedia PDF Downloads 60