Search results for: bacterial foraging optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4360

Search results for: bacterial foraging optimization

730 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants

Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey

Abstract:

The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.

Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model

Procedia PDF Downloads 141
729 Optimization of Smart Beta Allocation by Momentum Exposure

Authors: J. B. Frisch, D. Evandiloff, P. Martin, N. Ouizille, F. Pires

Abstract:

Smart Beta strategies intend to be an asset management revolution with reference to classical cap-weighted indices. Indeed, these strategies allow a better control on portfolios risk factors and an optimized asset allocation by taking into account specific risks or wishes to generate alpha by outperforming indices called 'Beta'. Among many strategies independently used, this paper focuses on four of them: Minimum Variance Portfolio, Equal Risk Contribution Portfolio, Maximum Diversification Portfolio, and Equal-Weighted Portfolio. Their efficiency has been proven under constraints like momentum or market phenomenon, suggesting a reconsideration of cap-weighting.
 To further increase strategy return efficiency, it is proposed here to compare their strengths and weaknesses inside time intervals corresponding to specific identifiable market phases, in order to define adapted strategies depending on pre-specified situations. 
Results are presented as performance curves from different combinations compared to a benchmark. If a combination outperforms the applicable benchmark in well-defined actual market conditions, it will be preferred. It is mainly shown that such investment 'rules', based on both historical data and evolution of Smart Beta strategies, and implemented according to available specific market data, are providing very interesting optimal results with higher return performance and lower risk.
 Such combinations have not been fully exploited yet and justify present approach aimed at identifying relevant elements characterizing them.

Keywords: smart beta, minimum variance portfolio, equal risk contribution portfolio, maximum diversification portfolio, equal weighted portfolio, combinations

Procedia PDF Downloads 338
728 An Improved Total Variation Regularization Method for Denoising Magnetocardiography

Authors: Yanping Liao, Congcong He, Ruigang Zhao

Abstract:

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation

Procedia PDF Downloads 152
727 An Investigation of Tetraspanin Proteins’ Role in UPEC Infection

Authors: Fawzyah Albaldi

Abstract:

Urinary tract infections (UTIs) are the most prevalent of infectious diseases and > 80% are caused by uropathogenic E. coli (UPEC). Infection occurs following adhesion to urothelial plaques on bladder epithelial cells, whose major protein constituent are the uroplakins (UPs). Two of the four uroplakins (UPIa and UPIb) are members of the tetraspanin superfamily. The UPEC adhesin FimH is known to interact directly with UPIa. Tetraspanins are a diverse family of transmembrane proteins that generally act as “molecular organizers” by binding different proteins and lipids to form tetraspanin enriched microdomains (TEMs). Previous work by our group has shown that TEMs are involved in the adhesion of many pathogenic bacteria to human cells. Adhesion can be blocked by tetraspanin-derived synthetic peptides, suggesting that tetraspanins may be valuable drug targets. In this study, we investigate the role of tetraspanins in UPEC adherence to bladder epithelial cells. Human bladder cancer cell lines (T24, 5637, RT4), commonly used as in-vitro models to investigate UPEC infection, along with primary human bladder cells, were used in this project. The aim was to establish a model for UPEC adhesion/infection with the objective of evaluating the impact of tetraspanin-derived reagents on this process. Such reagents could reduce the progression of UTI, particularly in patients with indwelling catheters. Tetraspanin expression on the bladder cells was investigated by q-PCR and flow cytometry, with CD9 and CD81 generally highly expressed. Interestingly, despite these cell lines being used by other groups to investigate FimH antagonists, uroplakin proteins (UPIa, UPIb and UPIII) were poorly expressed at the cell surface, although some were present intracellularly. Attempts were made to differentiate the cell lines, to induce cell surface expression of these UPs, but these were largely unsuccessful. Pre-treatment of bladder epithelial cells with anti-CD9 monoclonal antibody significantly decreased UPEC infection, whilst anti-CD81 had no effects. A short (15aa) synthetic peptide corresponding to the large extracellular region (EC2) of CD9 also significantly reduced UPEC adherence. Furthermore, we demonstrated specific binding of that fluorescently tagged peptide to the cells. CD9 is known to associate with a number of heparan sulphate proteoglycans (HSPGs) that have also been implicated in bacterial adhesion. Here, we demonstrated that unfractionated heparin (UFH)and heparin analogs significantly inhibited UPEC adhesion to RT4 cells, as did pre-treatment of the cells with heparinases. Pre-treatment with chondroitin sulphate (CS) and chondroitinase also significantly decreased UPEC adherence to RT4 cells. This study may shed light on a common pathogenicity mechanism involving the organisation of HSPGs by tetraspanins. In summary, although we determined that the bladder cell lines were not suitable to investigate the role of uroplakins in UPEC adhesion, we demonstrated roles for CD9 and cell surface proteoglycans in this interaction. Agents that target these may be useful in treating/preventing UTIs.

Keywords: UTIs, tspan, uroplakins, CD9

Procedia PDF Downloads 102
726 Monitoring Air Pollution Effects on Children for Supporting Public Health Policy: Preliminary Results of MAPEC_LIFE Project

Authors: Elisabetta Ceretti, Silvia Bonizzoni, Alberto Bonetti, Milena Villarini, Marco Verani, Maria Antonella De Donno, Sara Bonetta, Umberto Gelatti

Abstract:

Introduction: Air pollution is a global problem. In 2013, the International Agency for Research on Cancer (IARC) classified air pollution and particulate matter as carcinogenic to human. The study of the health effects of air pollution in children is very important because they are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. Methods: The study was carried out on 6-8-year-old children living in five Italian towns in two different seasons. Two biomarkers of early biological effects, primary DNA damage detected with the comet assay and frequency of micronuclei, were investigated in buccal cells of children. Details of children diseases, socio-economic status, exposures to other pollutants and life-style were collected using a questionnaire administered to children’s parents. Child exposure to urban air pollution was assessed by analysing PM0.5 samples collected in the school areas for PAHs and nitro-PAHs concentration, lung toxicity and in vitro genotoxicity on bacterial and human cells. Data on the chemical features of the urban air during the study period were obtained from the Regional Agency for Environmental Protection. The project created also the opportunity to approach the issue of air pollution with the children, trying to raise their awareness on air quality, its health effects and some healthy behaviors by means of an educational intervention in the schools. Results: 1315 children were recruited for the study and participate in the first sampling campaign in the five towns. The second campaign, on the same children, is still ongoing. The preliminary results of the tests on buccal mucosa cells of children will be presented during the conference as well as the preliminary data about the chemical composition and the toxicity and genotoxicity features of PM0.5 samples. The educational package was tested on 250 children of the primary school and showed to be very useful, improving children knowledge about air pollution and its effects and stimulating their interest. Conclusions: The associations between levels of air pollutants, air mutagenicity and biomarkers of early effects will be investigated. A tentative model to calculate the global absolute risk of having early biological effects for air pollution and other variables together will be proposed and may be useful to support policy-making and community interventions to protect children from possible health effects of air pollutants.

Keywords: air pollution exposure, biomarkers of early effects, children, public health policy

Procedia PDF Downloads 328
725 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System

Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer

Abstract:

The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.

Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling

Procedia PDF Downloads 245
724 The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture

Authors: Zoran Herceg, Višnja Stulić, Anet Režek Jambrak, Tomislava Vukušić

Abstract:

Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation.

Keywords: electrical discharge plasma, escherichia coli MG 1655, inactivation, point-to-plate electrode configuration

Procedia PDF Downloads 430
723 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.

Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system

Procedia PDF Downloads 123
722 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs

Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou

Abstract:

We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.

Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties

Procedia PDF Downloads 435
721 Potency of Some Dietary Acidifiers on Productive Performance and Controlling Salmonella enteritidis in Broilers

Authors: Mohamed M. Zaki, Maha M. Hady

Abstract:

Salmonella spp. have been categorized as the world’s biggest threats to human health and poultry products are mostly incriminated sources. In Egypt, it was found that S. enteritidis and S. typhimurium are the most prevalent ones in poultry farms. It is recommended to eliminate salmonella from living bird by competing for salmonella contamination in feed in order to establish a healthy gut. The Feed acidifiers are the group of feed additives containing low-molecular-weight organic acids and/ or their salts which act as performance promoters by lowering the pH in the gut, optimizes digestion and inhibit bacterial growth. The inclusion of organic acid in pure form nonetheless effective in feed, yet, it is difficult to handle in feed mills as it is corrosive and produce more losses during pelleting process. The current study aimed at to evaluate the impact of incorporation of sodium diformate (SDF) and a commercial acidifier, CA (a mixture of butyric and propionic acids and their ammonium salts) at 0.4% dietary levels on broilers performance and the control S. enteritidis infection. Two hundreds and seventy unsexed cobb chickens were allotted in one of three treatments (90/ group) which were, the control (no acidifier, C- &C+), the 0.4% SDF (SDF- & SDF +) and the 0.4% CA (CA- & CA +) dietary levels for 35 days. Before the allocation of the groups, ten extra birds and a diet sample were bacteriologically examined to ensure negative contamination with salmonella. The birds were raised on deep-litter separated pens and had free access to feed and water all the time. The experimentally formulated diets were kept at 40C. After 24h access to the different dietary treatments, all the birds in the positive groups (n=15/ replicate) were inoculated intra-crop with 0.2 ml of 24 h broth culture of S. entertidis containing 1X 107 organisms while the negative-treated groups were inoculated with the same amount of the negative broth and second inoculation was done at 22 d of age. Colocal swabs were collected individually from all birds 2 h pre-inoculation to assure the absence of salmonella, then 1, 3, 5, 7, 21 days post-inoculation to recover salmonella. Performance parameter (body weight gain and feed efficiency) were calculated. Mortalities were recorded and reisolation of the salmonella was adopted to ensure it was the inoculated ones. The results revealed that the dietary acidification with sodium diformate significantly improved broilers performance and tends to produce heavier birds as compared to the negative control and CA groups. Moreover, the dietary inclusion of both acidifiers at level of 0.4% was able to eliminate mortalities completely at the relevant inoculation time. Regarding the shedding of S. enteritidius in positive groups, the SDF treatment resulted in significant (p<0.05) cessation of the shedding at 3 days post-inoculation compared to 7 days post-inoculation for the CA-group. In conclusion, sodium diformate at 0.4% dietary level in broiler diets has a valuable effect not only on broilers performance but also by eliminating S. enteritidis the main source of salmonella contamination in poultry farms which is feed.

Keywords: acidifier, broilers, Salmonalla spp, sodium diformate

Procedia PDF Downloads 284
720 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 110
719 Scheduling in a Single-Stage, Multi-Item Compatible Process Using Multiple Arc Network Model

Authors: Bokkasam Sasidhar, Ibrahim Aljasser

Abstract:

The problem of finding optimal schedules for each equipment in a production process is considered, which consists of a single stage of manufacturing and which can handle different types of products, where changeover for handling one type of product to the other type incurs certain costs. The machine capacity is determined by the upper limit for the quantity that can be processed for each of the products in a set up. The changeover costs increase with the number of set ups and hence to minimize the costs associated with the product changeover, the planning should be such that similar types of products should be processed successively so that the total number of changeovers and in turn the associated set up costs are minimized. The problem of cost minimization is equivalent to the problem of minimizing the number of set ups or equivalently maximizing the capacity utilization in between every set up or maximizing the total capacity utilization. Further, the production is usually planned against customers’ orders, and generally different customers’ orders are assigned one of the two priorities – “normal” or “priority” order. The problem of production planning in such a situation can be formulated into a Multiple Arc Network (MAN) model and can be solved sequentially using the algorithm for maximizing flow along a MAN and the algorithm for maximizing flow along a MAN with priority arcs. The model aims to provide optimal production schedule with an objective of maximizing capacity utilization, so that the customer-wise delivery schedules are fulfilled, keeping in view the customer priorities. Algorithms have been presented for solving the MAN formulation of the production planning with customer priorities. The application of the model is demonstrated through numerical examples.

Keywords: scheduling, maximal flow problem, multiple arc network model, optimization

Procedia PDF Downloads 401
718 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 122
717 Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses

Authors: Walid Tawfik

Abstract:

The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry.

Keywords: supercontinuum, ultrafast, SPIDER, ultra-broadband

Procedia PDF Downloads 222
716 Determining Factors for Successful Blended Learning in Higher Education: A Qualitative Study

Authors: Pia Wetzl

Abstract:

The learning process of students can be optimized by combining online teaching with face-to-face sessions. So-called blended learning offers extensive flexibility as well as contact opportunities with fellow students and teachers. Furthermore, learning can be individualized and self-regulated. The aim of this article is to investigate which factors are necessary for blended learning to be successful. Semi-structured interviews were conducted with students (N = 60) and lecturers (N = 21) from different disciplines at two German universities. The questions focused on the perception of online, face-to-face and blended learning courses. In addition, questions focused on possible optimization potential and obstacles to practical implementation. The results show that on-site presence is very important for blended learning to be successful. If students do not get to know each other on-site, there is a risk of loneliness during the self-learning phases. This has a negative impact on motivation. From the perspective of the lecturers, the willingness of the students to participate in the sessions on-site is low. Especially when there is no obligation to attend, group work is difficult to implement because the number of students attending is too low. Lecturers would like to see more opportunities from the university and its administration to enforce attendance. In their view, this is the only way to ensure the success of blended learning. In addition, they see the conception of blended learning courses as requiring a great deal of time, which they are not always willing to invest. More incentives are necessary to keep the lecturers motivated to develop engaging teaching material. The study identifies factors that can help teachers conceptualize blended learning. It also provides specific implementation advice and identifies potential impacts. This catalogue has great value for the future-oriented development of courses at universities. Future studies could test its practical use.

Keywords: blended learning, higher education, teachers, student learning, qualitative research

Procedia PDF Downloads 68
715 3D Geomechanical Model the Best Solution of the 21st Century for Perforation's Problems

Authors: Luis Guiliana, Andrea Osorio

Abstract:

The lack of comprehension of the reservoir geomechanics conditions may cause operational problems that cost to the industry billions of dollars per year. The drilling operations at the Ceuta Field, Area 2 South, Maracaibo Lake, have been very expensive due to problems associated with drilling. The principal objective of this investigation is to develop a 3D geomechanical model in this area, in order to optimize the future drillings in the field. For this purpose, a 1D geomechanical model was built at first instance, following the workflow of the MEM (Mechanical Earth Model), this consists of the following steps: 1) Data auditing, 2) Analysis of drilling events and structural model, 3) Mechanical stratigraphy, 4) Overburden stress, 5) Pore pressure, 6) Rock mechanical properties, 7) Horizontal stresses, 8) Direction of the horizontal stresses, 9) Wellbore stability. The 3D MEM was developed through the geostatistic model of the Eocene C-SUP VLG-3676 reservoir and the 1D MEM. With this data the geomechanical grid was embedded. The analysis of the results threw, that the problems occurred in the wells that were examined were mainly due to wellbore stability issues. It was determined that the stress field change as the stratigraphic column deepens, it is normal to strike-slip at the Middle Miocene and Lower Miocene, and strike-slipe to reverse at the Eocene. In agreement to this, at the level of the Eocene, the most advantageous direction to drill is parallel to the maximum horizontal stress (157º). The 3D MEM allowed having a tridimensional visualization of the rock mechanical properties, stresses and operational windows (mud weight and pressures) variations. This will facilitate the optimization of the future drillings in the area, including those zones without any geomechanics information.

Keywords: geomechanics, MEM, drilling, stress

Procedia PDF Downloads 272
714 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product

Authors: Devendra Sillu, Shekhar Agnihotri

Abstract:

The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.

Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery

Procedia PDF Downloads 131
713 Trading off Accuracy for Speed in Powerdrill

Authors: Filip Buruiana, Alexander Hall, Reimar Hofmann, Thomas Hofmann, Silviu Ganceanu, Alexandru Tudorica

Abstract:

In-memory column-stores make interactive analysis feasible for many big data scenarios. PowerDrill is a system used internally at Google for exploration in logs data. Even though it is a highly parallelized column-store and uses in memory caching, interactive response times cannot be achieved for all datasets (note that it is common to analyze data with 50 billion records in PowerDrill). In this paper, we investigate two orthogonal approaches to optimize performance at the expense of an acceptable loss of accuracy. Both approaches can be implemented as outer wrappers around existing database engines and so they should be easily applicable to other systems. For the first optimization we show that memory is the limiting factor in executing queries at speed and therefore explore possibilities to improve memory efficiency. We adapt some of the theory behind data sketches to reduce the size of particularly expensive fields in our largest tables by a factor of 4.5 when compared to a standard compression algorithm. This saves 37% of the overall memory in PowerDrill and introduces a 0.4% relative error in the 90th percentile for results of queries with the expensive fields. We additionally evaluate the effects of using sampling on accuracy and propose a simple heuristic for annotating individual result-values as accurate (or not). Based on measurements of user behavior in our real production system, we show that these estimates are essential for interpreting intermediate results before final results are available. For a large set of queries this effectively brings down the 95th latency percentile from 30 to 4 seconds.

Keywords: big data, in-memory column-store, high-performance SQL queries, approximate SQL queries

Procedia PDF Downloads 259
712 Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material

Authors: Anil Bhandari, Imran Khan Pathan, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit

Abstract:

The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.

Keywords: embelin, gallic acid, Vidangadi Churna, colon targeted drug delivery

Procedia PDF Downloads 359
711 Antimicrobial Efficacy of Some Antibiotics Combinations Tested against Some Molecular Characterized Multiresistant Staphylococcus Clinical Isolates, in Egypt

Authors: Nourhan Hussein Fanaki, Hoda Mohamed Gamal El-Din Omar, Nihal Kadry Moussa, Eva Adel Edward Farid

Abstract:

The resistance of staphylococci to various antibiotics has become a major concern for health care professionals. The efficacy of the combinations of selected glycopeptides (vancomycin and teicoplanin) with gentamicin or rifampicin, as well as that of gentamicin/rifampicin combination, was studied against selected pathogenic staphylococcus isolated from Egypt. The molecular distribution of genes conferring resistance to these four antibiotics was detected among tested clinical isolates. Antibiotic combinations were studied using the checkerboard technique and the time-kill assay (in both the stationary and log phases). Induction of resistance to glycopeptides in staphylococci was tried in the absence and presence of diclofenac sodium as inducer. Transmission electron microscopy was used to study the effect of glycopeptides on the ultrastructure of the cell wall of staphylococci. Attempts were made to cure gentamicin resistance plasmids and to study the transfer of these plasmids by conjugation. Trials for the transformation of the successfully isolated gentamicin resistance plasmid to competent cells were carried out. The detection of genes conferring resistance to the tested antibiotics was performed using the polymerase chain reaction. The studied antibiotic combinations proved their efficacy, especially when tested during the log phase. Induction of resistance to glycopeptides in staphylococci was more promising in presence of diclofenac sodium, compared to its absence. Transmission electron microscopy revealed the thickening of bacterial cell wall in staphylococcus clinical isolates due to the presence of tested glycopeptides. Curing of gentamicin resistance plasmids was only successful in 2 out of 9 tested isolates, with a curing rate of 1 percent for each. Both isolates, when used as donors in conjugation experiments, yielded promising conjugation frequencies ranging between 5.4 X 10-2 and 7.48 X 10-2 colony forming unit/donor cells. Plasmid isolation was only successful in one out of the two tested isolates. However, low transformation efficiency (59.7 transformants/microgram plasmid DNA) of such plasmids was obtained. Negative regulators of autolysis, such as arlR, lytR and lrgB, as well as cell-wall associated genes, such as pbp4 and/or pbp2, were detected in staphylococcus isolates with reduced susceptibility to the tested glycopeptides. Concerning rifampicin resistance genes, rpoBstaph was detected in 75 percent of the tested staphylococcus isolates. It could be concluded that in vitro studies emphasized the usefulness of the combination of vancomycin or teicoplanin with gentamicin or rifampicin, as well as that of gentamicin with rifampicin, against staphylococci showing varying resistance patterns. However, further in vivo studies are required to ensure the safety and efficacy of such combinations. Diclofenac sodium can act as an inducer of resistance to glycopeptides in staphylococci. Cell-wall thickness is a major contributor to such resistance among them. Gentamicin resistance in these strains could be chromosomally or plasmid mediated. Multiple mutations in the rpoB gene could mediate staphylococcus resistance to rifampicin.

Keywords: glycopeptides, combinations, induction, diclofenac, transmission electron microscopy, polymerase chain reaction

Procedia PDF Downloads 291
710 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 336
709 The Importance of Visual Communication in Artificial Intelligence

Authors: Manjitsingh Rajput

Abstract:

Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.

Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.

Procedia PDF Downloads 94
708 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 150
707 Aerodynamic Modeling Using Flight Data at High Angle of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.

Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling

Procedia PDF Downloads 443
706 Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters

Authors: Komal Kumar, Sreedevi Upadhyayula

Abstract:

In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst.

Keywords: biomass conversion, 5-HMF, Ionic liquid, HMF ester

Procedia PDF Downloads 250
705 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem

Authors: Bidzina Matsaberidze

Abstract:

It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.

Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions

Procedia PDF Downloads 92
704 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment

Procedia PDF Downloads 364
703 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 249
702 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment

Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu

Abstract:

Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.

Keywords: circular construction, construction and demolition waste, life cycle assessment, material recycling

Procedia PDF Downloads 79
701 Intelligent Control of Bioprocesses: A Software Application

Authors: Mihai Caramihai, Dan Vasilescu

Abstract:

The main research objective of the experimental bioprocess analyzed in this paper was to obtain large biomass quantities. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The reactor was equipped with pH, temperature, dissolved oxygen, and agitation controllers. The operating parameters were 37 oC, 1.2 atm, 250 rpm and air flow rate of 15 L/min. The main objective of this paper is to present a case study to demonstrate that intelligent control, describing the complexity of the biological process in a qualitative and subjective manner as perceived by human operator, is an efficient control strategy for this kind of bioprocesses. In order to simulate the bioprocess evolution, an intelligent control structure, based on fuzzy logic has been designed. The specific objective is to present a fuzzy control approach, based on human expert’ rules vs. a modeling approach of the cells growth based on bioprocess experimental data. The kinetic modeling may represent only a small number of bioprocesses for overall biosystem behavior while fuzzy control system (FCS) can manipulate incomplete and uncertain information about the process assuring high control performance and provides an alternative solution to non-linear control as it is closer to the real world. Due to the high degree of non-linearity and time variance of bioprocesses, the need of control mechanism arises. BIOSIM, an original developed software package, implements such a control structure. The simulation study has showed that the fuzzy technique is quite appropriate for this non-linear, time-varying system vs. the classical control method based on a priori model.

Keywords: intelligent, control, fuzzy model, bioprocess optimization

Procedia PDF Downloads 325