Search results for: Laboratory of Rheology Transport
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4299

Search results for: Laboratory of Rheology Transport

669 CFD Modeling of Stripper Ash Cooler of Circulating Fluidized Bed

Authors: Ravi Inder Singh

Abstract:

Due to high heat transfer rate, high carbon utilizing efficiency, fuel flexibilities and other advantages numerous circulating fluidized bed boilers have grown up in India in last decade. Many companies like BHEL, ISGEC, Thermax, Cethar Limited, Enmas GB Power Systems Projects Limited are making CFBC and installing the units throughout the India. Due to complexity many problems exists in CFBC units and only few have been reported. Agglomeration i.e clinker formation in riser, loop seal leg and stripper ash coolers is one of problem industry is facing. Proper documentation is rarely found in the literature. Circulating fluidized bed (CFB) boiler bottom ash contains large amounts of physical heat. While the boiler combusts the low-calorie fuel, the ash content is normally more than 40% and the physical heat loss is approximately 3% if the bottom ash is discharged without cooling. In addition, the red-hot bottom ash is bad for mechanized handling and transportation, as the upper limit temperature of the ash handling machinery is 200 °C. Therefore, a bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to have the ash easily handled and transported. As a key auxiliary device of CFB boilers, the BAC has a direct influence on the secure and economic operation of the boiler. There are many kinds of BACs equipped for large-scale CFB boilers with the continuous development and improvement of the CFB boiler. These ash coolers are water cooled ash cooling screw, rolling-cylinder ash cooler (RAC), fluidized bed ash cooler (FBAC).In this study prototype of a novel stripper ash cooler is studied. The Circulating Fluidized bed Ash Coolers (CFBAC) combined the major technical features of spouted bed and bubbling bed, and could achieve the selective discharge on the bottom ash. The novel stripper ash cooler is bubbling bed and it is visible cold test rig. The reason for choosing cold test is that high temperature is difficult to maintain and create in laboratory level. The aim of study to know the flow pattern inside the stripper ash cooler. The cold rig prototype is similar to stripper ash cooler used industry and it was made after scaling down to some parameter. The performance of a fluidized bed ash cooler is studied using a cold experiment bench. The air flow rate, particle size of the solids and air distributor type are considered to be the key parameters of the operation of a fluidized bed ash cooler (FBAC) are studied in this.

Keywords: CFD, Eulerian-Eulerian, Eulerian-Lagraingian model, parallel simulations

Procedia PDF Downloads 508
668 Petrology and Petrochemistry of Basement Rocks in Ila Orangun Area, Southwestern Nigeria

Authors: Jayeola A. O., Ayodele O. S., Olususi J. I.

Abstract:

From field studies, six (6) lithological units were identified to be common around the study area, which includes quartzites, granites, granite gneiss, porphyritic granites, amphibolite and pegmatites. Petrographical analysis was done to establish the major mineral assemblages and accessory minerals present in selected rock samples, which represents the major rock types in the area. For the purpose of this study, twenty (20) pulverized rock samples were taken to the laboratory for geochemical analysis with their results used in the classification, as well as suggest the geochemical attributes of the rocks. Results from petrographical studies of the rocks under both plane and cross polarized lights revealed the major minerals identified under thin sections to include quartz, feldspar, biotite, hornblende, plagioclase and muscovite with opaque other accessory minerals, which include actinolite, spinel and myrmekite. Geochemical results obtained and interpreted using various geochemical plots or discrimination plots all classified the rocks in the area as belonging to both the peralkaline metaluminous and peraluminous types. Results for the major oxides ratios produced for Na₂O/K₂O, Al₂O₃/Na₂O + CaO + K₂O and Na₂O + CaO + K₂O/Al₂O₃ show the excess of alumina, Al₂O₃ over the alkaline Na₂O +CaO +K₂O thus suggesting peraluminous rocks. While the excess of the alkali over the alumina suggests the peralkaline metaluminous rock type. The results of correlation coefficient show a perfect strong positive correlation, which shows that they are of same geogenic sources, while negative correlation coefficient values indicate a perfect weak negative correlation, suggesting that they are of heterogeneous geogenic sources. From factor analysis, five component groups were identified as Group 1 consists of Ag-Cr-Ni elemental associations suggesting Ag, Cr, and Ni mineralization, predicting the possibility of sulphide mineralization. in the study area. Group ll and lll consist of As-Ni-Hg-Fe-Sn-Co-Pb-Hg element association, which are pathfinder elements to the mineralization of gold. Group 1V and V consist of Cd-Cu-Ag-Co-Zn, which concentrations are significant to elemental associations and mineralization. In conclusion, from the potassium radiometric anomaly map produced, the eastern section (northeastern and southeastern) is observed to be the hot spot and mineralization zone for the study area.

Keywords: petrography, Ila Orangun, petrochemistry, pegmatites, peraluminous

Procedia PDF Downloads 60
667 Vulnerability of the Rural Self-Constructed Housing with Social Programs and His Economic Impact in the South-East of Mexico

Authors: Castillo-Acevedo J, Mena-Rivero R, Silva-Poot H

Abstract:

In Mexico, as largely of the developing countries, the rural housing is a study object, since the diversity of constructive idiosyncrasies for locality, involves various factors that make it vulnerable; an important aspect of study is the progressive deterioration that is seen in the rural housing. Various social programs, contribute financial resources in the field of housing to provide support for families living in rural areas, however, they do not provide a coordination with the self-construction that is usually the way in which is built in these areas. The present study, exposes the physical situation and an economic assessment that presents the rural self-constructed housing in three rural communities in the south of the state of Quintana Roo, Mexico, which were built with funding from federal social programs. The information compilation was carried out in a period of seven months in which there was used the intentional sampling of typical cases, where the object study was the housing constructed with supports of the program “Rural Housing” between the year 2009 and 2014. Instruments were used as the interview, ballot papers of observation, ballot papers of technical verification and various measuring equipment laboratory for the classification of pathologies; for the determination of some pathologies constructive Mexican standards were applied how NMX-C-192-ONNCCE, NMX-C-111-ONNCCE, NMX-C-404-ONNCCE and finally used the software of Opus CMS ® with the help of tables of the National Consumer Price Index (CPI) for update of costs and wages according to the line of being applied in Mexico, were used for an economic valuation. The results show 11 different constructive pathologies and exposes greater presence with the 22.50% to the segregation of the concrete; the economic assessment shows that 80% of self-constructed housing, exceed the cost of construction it would have compared to a similar dwelling built by a construction company; It is also exposed to the 46.10% of the universe of study represent economic losses in materials to the social activities by houses not built. The system of self-construction used by the social programs, affect to some extent the program objectives applied in underserved areas, as implicit and additional costs affect the economic capacity of beneficiaries who invest time and effort in an activity that are not specialists, which this research provides foundations for sustainable alternatives or possibly eliminate the practice of self-construction of implemented social programs in marginalized rural communities in the south of state of Quintana Roo, Mexico.

Keywords: economic valuation, pathologies constructive, rural housing, social programs

Procedia PDF Downloads 531
666 Dinoflagellate Thecal Plates as a Green Cellulose Source

Authors: Alvin Chun Man Kwok, Wai Sun Chan, Wei Yuan, Joseph Tin Yum Wong

Abstract:

Cellulose, the most abundant biopolymer, is the major constituent of plant and dinoflagellate cell walls. Thecate dinoflagellates, in particular, are renowned for their remarkable capacity to synthesize intricate cellulosic thecal plates (CTPs). Unlike the extracellular two-dimensional structure of plant cell walls, these CTPs are three-dimensional and reside within the cellular structure itself. The deposition of CTPs occurs with remarkable precision, and their arrangement serves as crucial taxonomic markers. It is noteworthy that these plates possess the hardness of wood, despite the absence of lignin. Partial and prolonged hydrolysis of CTPs results in the formation of uniform long bundles and lowdimensional, modular crystalline whiskers. This observation aligns with the consistent nanomechanical properties, suggesting a CTPboard structure. The unique composition and structural characteristics of CTPs distinguish them from other cellulose-based materials in the natural world. Spectroscopic studies using Raman and FTIR methods indicate a clear low crystallinity index, with the OH shift becoming more distinct following SDS treatment. Birefringence imaging confirms the highly organized structure of CTPs, demonstrating varying degrees of anisotropy in different regions, including both seaward and cytosolic passages. The knockdown of a cellulose synthase enzyme in dinoflagellates resulted in severe malformation of CTPs and hindered the life-cycle transition. Unlike certain other microalgal groups, these unique circum-spherical depositions of CTPs were not pre-fabricated and transported "to site," but synthesized within alveolar sacs at the specific site. Our research is particularly focused on unraveling the mechanisms underlying the biodeposition of CTPs and exploring their potential biotechnological applications. Understanding the processes involved in CTP formation can pave the way for harnessing their unique properties for various practical applications. Dinoflagellates play a crucial role as major agents of algal blooms and are also known for producing anti-greenhouse sulfur compounds such as DMS/DMSP, highlighting the significance of CTPs as a carbon-neutral source of cellulose. Grant acknowledgement: Research in the laboratory are supported by GRF16104523 from Research Grant Council to JTYW.

Keywords: cellulosic thecal plates, dinoflagellates, cellulose, cell wall

Procedia PDF Downloads 95
665 Constitutive Flo1p Expression on Strains Bearing Deletions in Genes Involved in Cell Wall Biogenesis

Authors: Lethukuthula Ngobese, Abin Gupthar, Patrick Govender

Abstract:

The ability of yeast cell wall-derived mannoproteins (glycoproteins) to positively contribute to oenological properties has been a key factor that stimulates research initiatives into these industrially important glycoproteins. In addition, and from a fundamental research perspective, yeast cell wall glycoproteins are involved in a wide range of biological interactions. To date, and to the best of our knowledge, our understanding of the fine molecular structure of these mannoproteins is fairly limited. Generally, the amino acid sequences of their protein moieties have been established from structural and functional analysis of the genomic sequence of these yeasts whilst far less information is available on the glycosyl moieties of these mannoproteins. A novel strategy was devised in this study that entails the genetic engineering of yeast strains that over-express and release cell wall-associated glycoproteins into the liquid growth medium. To this end, the Flo1p mannoprotein was overexpressed in Saccharomyces cerevisiae laboratory strains bearing a specific deletion in KNR4 and GPI7 genes involved in cell wall biosynthesis that have been previously shown to extracellularly hyper-secrete cell wall-associated glycoproteins. A polymerase chain reaction (PCR) -based cloning strategy was employed to generate transgenic yeast strains in which the native cell wall FLO1 glycoprotein-encoding gene is brought under transcriptional control of the constitutive PGK1 promoter. The modified Helm’s flocculation assay was employed to assess flocculation intensities of a Flo1p over-expressing wild type and deletion mutant as an indirect measure of their abilities to release the desired mannoprotein. The flocculation intensities of the transformed strains were assessed and all the strains showed similar intensities (>98% flocculation). To assess if mannoproteins were released into the growth medium, the supernatant of each strain was subjected to the BCA protein assay and the transformed Δknr4 strain showed a considerable increase in protein levels. This study has the potential to produce mannoproteins in sufficient quantities that may be employed in future investigations to understand their molecular structures and mechanisms of interaction to the benefit of both fundamental and industrial applications.

Keywords: glycoproteins, genetic engineering, flocculation, over-expression

Procedia PDF Downloads 415
664 Physiological Indicators and Stress Index of Scavenging Chickens at Lafarge and Dangote Cement Factory Areas of Ogun State

Authors: Oluwadele Joshua Femi, Akinlabi Ebenezer Yemi, Onaopemipo Adeitan, Kazeem Bello, Anthony Ekeocha, Miraim Tawose

Abstract:

This study was carried out to determine the physiological and stress index of scavenging chickens in LAFARGE (Ewekoro) and Dangote (Ibese) Cement Factories Area of Ogun State. One hundred adult scavenging chickens comprising of 25 chickens from LAFARGE, Dangote and respective adjourning communities (Imasayi and Wasimi) were used. Experimental birds were caught at night on their perch and kept in cages till the next morning. Data were collected on rectal temperature, pulse rate, and respiratory rate of the birds. Also, 5ml blood was collected through the wing vein of the chickens in each location using a sterilized needle and syringe and transported to laboratory for analysis. Significant (P<0.05) highest pulse rate (215.64 beat/minute) and respiratory rate (19.90 breaths/minute) were recorded among scavenging chickens at LAFARGE (Ewekoro) Area and the least (198.61 beat/minute and 16.93 breaths/minute, respectively) at Imasayi. There was no significant (P>0.05) difference in the rectal temperature of the birds in the study area. Significant (P<0.05) differences were also recorded in the Packed Cell Volume (PCV), Hemoglobin (Hb), White Blood Cell (WBC), Monocyte, and Glucose level of the chickens in study area with the highest (P<0.05) Packed Cell Volume (28.06%) and Haemoglobin (4.01g/dl) recorded in Ibese and the least Packed Cell Volume (22.00%) and Haemoglobin (288g/dl) in Imasayi. Highest (P<0.05) Monocyte (4.28%) and glucose (256.53g/dl) were recorded among scavenging chickens at Dangote (Ibese) while the least Monocyte (0.00%) and Glucose (194.53g/dl) was recorded among chickens at Wasimi. Highest (P<0.05) White Blood Cell (6488.89×103µl) was recorded among chickens at Ewekoro and the lowest value in Ibese (4388.44×103µl). There was no significant (P>0.05) difference in the Heterophyl, Lymphocyte, Basophyl and Heterophyl/Lymphocyte ratio of the chickens in the study Area. The study concluded that chickens reared at LAFARGE (Ewekoro) were stressed and had comprised welfare and health status compared to Dangote (Ibese) cement area and other agrarian communities. Effective environmental mitigation programme should be put in place to enhance the welfare of the scavenging chickens in LAFARGE Cement Factory Area.

Keywords: blood, chicken, poisonous substances, pack cell volume, communities

Procedia PDF Downloads 83
663 The Role of Nickel on the High-Temperature Corrosion of Modell Alloys (Stainless Steels) before and after Breakaway Corrosion at 600°C: A Microstructural Investigation

Authors: Imran Hanif, Amanda Persdotter, Sedigheh Bigdeli, Jesper Liske, Torbjorn Jonsson

Abstract:

Renewable fuels such as biomass/waste for power production is an attractive alternative to fossil fuels in order to achieve a CO₂ -neutral power generation. However, the combustion results in the release of corrosive species. This puts high demands on the corrosion resistance of the alloys used in the boiler. Stainless steels containing nickel and/or nickel containing coatings are regarded as suitable corrosion resistance material especially in the superheater regions. However, the corrosive environment in the boiler caused by the presence of water vapour and reactive alkali very rapidly breaks down the primary protection, i.e., the Cr-rich oxide scale formed on stainless steels. The lifetime of the components, therefore, relies on the properties of the oxide scale formed after breakaway, i.e., the secondary protection. The aim of the current study is to investigate the role of varying nickel content (0–82%) on the high-temperature corrosion of model alloys with 18% Cr (Fe in balance) in the laboratory mimicking industrial conditions at 600°C. The influence of nickel is investigated on both the primary protection and especially the secondary protection, i.e., the scale formed after breakaway, during the oxidation/corrosion process in the dry O₂ (primary protection) and more aggressive environment such as H₂O, K₂CO₃ and KCl (secondary protection). All investigated alloys experience a very rapid loss of the primary protection, i.e., the Cr-rich (Cr, Fe)₂O₃, and the formation of secondary protection in the aggressive environments. The microstructural investigation showed that secondary protection of all alloys has a very similar microstructure in all more aggressive environments consisting of an outward growing iron oxide and inward growing spinel-oxide (Fe, Cr, Ni)₃O₄. The oxidation kinetics revealed that it is possible to influence the protectiveness of the scale formed after breakaway (secondary protection) through the amount of nickel in the alloy. The difference in oxidation kinetics of the secondary protection is linked to the microstructure and chemical composition of the complex spinel-oxide. The detailed microstructural investigations were carried out using the extensive analytical techniques such as electron back scattered diffraction (EBSD), energy dispersive X-rays spectroscopy (EDS) via the scanning and transmission electron microscopy techniques and results are compared with the thermodynamic calculations using the Thermo-Calc software.

Keywords: breakaway corrosion, EBSD, high-temperature oxidation, SEM, TEM

Procedia PDF Downloads 138
662 Geographic Variation in the Baseline Susceptibility of Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) Field Populations to Bacillus thuringiensis Cry Toxins for Resistance Monitoring

Authors: Muhammad Arshad, M. Sufian, Muhammad D. Gogi, A. Aslam

Abstract:

The transgenic cotton expressing Bacillus thuringiensis (Bt) provides an effective control of Helicoverpa armigera, a most damaging pest of the cotton crop. However, Bt cotton may not be the optimal solution owing to the selection pressure of Cry toxins. As Bt cotton express the insecticidal proteins throughout the growing seasons, there are the chances of resistance development in the target pests. A regular monitoring and surveillance of target pest’s baseline susceptibility to Bt Cry toxins is crucial for early detection of any resistance development. The present study was conducted to monitor the changes in the baseline susceptibility of the field population of H. armigera to Bt Cry1Ac toxin. The field-collected larval populations were maintained in the laboratory on artificial diet and F1 generation larvae were used for diet incorporated diagnostic studies. The LC₅₀ and MIC₅₀ were calculated to measure the level of resistance of population as a ratio over susceptible population. The monitoring results indicated a significant difference in the susceptibility (LC₅₀) of H. armigera for first, second, third and fourth instar larval populations sampled from different cotton growing areas over the study period 2016-17. The variations in susceptibility among the tested insects depended on the age of the insect and susceptibility decreased with the age of larvae. The overall results show that the average resistant ratio (RR) of all field-collected populations (FSD, SWL, MLT, BWP and DGK) exposed to Bt toxin Cry1Ac ranged from 3.381-fold to 7.381-fold for 1st instar, 2.370-fold to 3.739-fold for 2nd instar, 1.115-fold to 1.762-fold for 3rd instar and 1.141-fold to 2.504-fold for 4th instar, depicting maximum RR from MLT population, whereas minimum RR for FSD and SWL population. The results regarding moult inhibitory concentration of H. armigera larvae (1-4th instars) exposed to different concentrations of Bt Cry1Ac toxin indicated that among all field populations, overall Multan (MLT) and Bahawalpur (BWP) populations showed higher MIC₅₀ values as compared to Faisalabad (FSD) and Sahiwal (SWL), whereas DG Khan (DGK) population showed an intermediate moult inhibitory concentrations. This information is important for the development of more effective resistance monitoring programs. The development of Bt Cry toxins baseline susceptibility data before the widespread commercial release of transgenic Bt cotton cultivars in Pakistan is important for the development of more effective resistance monitoring programs to identify the resistant H. armigera populations.

Keywords: Bt cotton, baseline, Cry1Ac toxins, H. armigera

Procedia PDF Downloads 139
661 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: erodible beds, finite element method, finite volume method, nonlinear elasticity, shallow water equations, stresses in soil

Procedia PDF Downloads 128
660 Patterns of Eosinophilia in Cardiac Patients and its Association with Endomyocardial Disease Presenting to Tertiary Care Hospital in Peshawar

Authors: Rashid Azeem

Abstract:

Introduction: Eosinophilia, which can be categorized as mild, moderate, and severe form on the basis of increasing eosinophil counts, might be responsible for a wide range of cardiac manifestations, varying from a simple myocarditis to a severe state like endomyocardial fibrosis. Eosinophils are involved in the pathogenesis of a variety of cardiovascular disorder like Loffler endocarditis, eosinophilic granulomatosis with polyangitis (EGPH), and hyper eosinophilic (HES). Among them HES carries and incidence rate b/w 48% and 75% and is the main causes of cardiac motility and mobility due to eosinophilia involvement. Aims and objectives: The aim of this study is to determine the frequency of eosinophilia in cardiac patients and to ascertain the evidence of endomyocardial diseases in eosinophilic patients in a cardiology institution Material and Methods: This cross sectional analytical study was conducted in hematology Department of Peshawar institute of Cardiology after approval from hospital ethical and research committee. All 70 patients were subjected to detailed history and clinical examination. Investigation like CBC, Chest X-ray, ECG, Echo, Angiography findings were used to monitor patient’s clinical status. Data is analyzed using SPSS version 25 and MS Excel. Results: Out of 70 patients in our study, a total of 66 patients(94 %) shows evidence of cardiac manifestations. In our study, we have observed a number of abnormal ECG patterns in cardiac patients presenting with eosinophilia, like T wave changes, loss of R wave, sinus bradycardia with LVH strain, and ST wave abnormality. abnormal echocardiographic findings were observed in our patients, like valvular abnormalities (in 45.7%), RWMA abnormalities (in 2.8%), isolated ventricular dysfunction (in 21.4%), and in 10% patients, normal echocardiography. We further noted abnormal coronary angiography findings in cardiac patients with eosinophilia ranging from single vessel to multi vessel occlusions. Conclusions: Eosinophils are involved in the pathogenesis of a variety of cardiovascular disorders which can be detected by various diagnostic means, and the severity of the disease increases with time and with increasing eosinophil count ranging from simple myocarditis to a fatal condition like endomyocardial fibrosis. Thus, increased eosinophilic count as a laboratory parameter in cardiac patients may be a sign of endomyocardial damage which will further help cardiologist to intervene more aggressively then routine approach to a cardiac patient.

Keywords: eosinophilia, endomyocardial fibrosis, cardiac, hypereosinophilic syndrome

Procedia PDF Downloads 63
659 Arc Interruption Design for DC High Current/Low SC Fuses via Simulation

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This report summarizes a simulation-based approach to estimate the current interruption behavior of a fuse element utilized in a DC network protecting battery banks under different stresses. Due to internal resistance of the battries, the short circuit current in very close to the nominal current, and it makes the fuse designation tricky. The base configuration considered in this report consists of five fuse units in parallel. The simulations are performed using a multi-physics software package, COMSOL® 5.6, and the necessary material parameters have been calculated using two other software packages.The first phase of the simulation starts with the heating of the fuse elements resulted from the current flow through the fusing element. In this phase, the heat transfer between the metallic strip and the adjacent materials results in melting and evaporation of the filler and housing before the aluminum strip is evaporated and the current flow in the evaporated strip is cut-off, or an arc is eventually initiated. The initiated arc starts to expand, so the entire metallic strip is ablated, and a long arc of around 20 mm is created within the first 3 milliseconds after arc initiation (v_elongation = 6.6 m/s. The final stage of the simulation is related to the arc simulation and its interaction with the external circuitry. Because of the strong ablation of the filler material and venting of the arc caused by the melting and evaporation of the filler and housing before an arc initiates, the arc is assumed to burn in almost pure ablated material. To be able to precisely model this arc, one more step related to the derivation of the transport coefficients of the plasma in ablated urethane was necessary. The results indicate that an arc current interruption, in this case, will not be achieved within the first tens of milliseconds. In a further study, considering two series elements, the arc was interrupted within few milliseconds. A very important aspect in this context is the potential impact of many broken strips parallel to the one where the arc occurs. The generated arcing voltage is also applied to the other broken strips connected in parallel with arcing path. As the gap between the other strips is very small, a large voltage of a few hundred volts generated during the current interruption may eventually lead to a breakdown of another gap. As two arcs in parallel are not stable, one of the arcs will extinguish, and the total current will be carried by one single arc again. This process may be repeated several times if the generated voltage is very large. The ultimate result would be that the current interruption may be delayed.

Keywords: DC network, high current / low SC fuses, FEM simulation, paralle fuses

Procedia PDF Downloads 63
658 A Close Study on the Nitrate Fertilizer Use and Environmental Pollution for Human Health in Iran

Authors: Saeed Rezaeian, M. Rezaee Boroon

Abstract:

Nitrogen accumulates in soils during the process of fertilizer addition to promote the plant growth. When the organic matter decomposes, the form of available nitrogen produced is in the form of nitrate, which is highly mobile. The most significant health effect of nitrate ingestion is methemoglobinemia in infants under six months of age (blue baby syndrome). The mobile nutrients, like nitrate nitrogen, are not stored in the soil as the available forms for the long periods and in large amounts. It depends on the needs for the crops such as vegetables. On the other hand, the vegetables will compete actively for nitrate nitrogen as a mobile nutrient and water. The mobile nutrients must be shared. The fewer the plants, the larger this share is for each plant. Also, this nitrate nitrogen is poisonous for the people who use these vegetables. Nitrate is converted to nitrite by the existing bacteria in the stomach and the Gastro-Intestinal (GI) tract. When nitrite is entered into the blood cells, it converts the hemoglobin to methemoglobin, which causes the anoxemia and cyanosis. The increasing use of pesticides and chemical fertilizers, especially the fertilizers with nitrates compounds, which have been common for the increased production of agricultural crops, has caused the nitrate pollution in the (soil, water, and environment). They have caused a lot of damage to humans and animals. In this research, the nitrate accumulation in different kind of vegetables such as; green pepper, tomatoes, egg plants, watermelon, cucumber, and red pepper were observed in the suburbs of Mashhad, Neisabour, and Sabzevar cities. In some of these cities, the information forms of agronomical practices collected were such as; different vegetable crops fertilizer recommendations, varieties, pesticides, irrigation schedules, etc., which were filled out by some of our colleagues in the research areas mentioned above. Analysis of the samples was sent to the soil and water laboratory in our department in Mashhad. The final results from the chemical analysis of samples showed that the mean levels of nitrates from the samples of the fruit crops in the mentioned cities above were all lower than the critical levels. These fruit crop samples were in the order of: 35.91, 8.47, 24.81, 6.03, 46.43, 2.06 mg/kg dry matter, for the following crops such as; tomato, cucumber, eggplant, watermelon, green pepper, and red pepper. Even though, this study was conducted with limited samples and by considering the mean levels, the use of these crops from the nutritional point of view will not cause the poisoning of humans.

Keywords: environmental pollution, human health, nitrate accumulations, nitrate fertilizers

Procedia PDF Downloads 248
657 Manufacturing and Calibration of Material Standards for Optical Microscopy in Industrial Environments

Authors: Alberto Mínguez-Martínez, Jesús De Vicente Y Oliva

Abstract:

It seems that we live in a world in which the trend in industrial environments is the miniaturization of systems and materials and the fabrication of parts at the micro-and nano-scale. The problem arises when manufacturers want to study the quality of their production. This characteristic is becoming crucial due to the evolution of the industry and the development of Industry 4.0. As Industry 4.0 is based on digital models of production and processes, having accurate measurements becomes capital. At this point, the metrology field plays an important role as it is a powerful tool to ensure more stable production to reduce scrap and the cost of non-conformities. The most extended measuring instruments that allow us to carry out accurate measurements at these scales are optical microscopes, whether they are traditional, confocal, focus variation microscopes, profile projectors, or any other similar measurement system. However, the accuracy of measurements is connected to the traceability of them to the SI unit of length (the meter). The fact of providing adequate traceability to 2D and 3D dimensional measurements at micro-and nano-scale in industrial environments is a problem that is being studied, and it does not have a unique answer. In addition, if commercial material standards for micro-and nano-scale are considered, we can find that there are two main problems. On the one hand, those material standards that could be considered complete and very interesting do not give traceability of dimensional measurements and, on the other hand, their calibration is very expensive. This situation implies that these kinds of standards will not succeed in industrial environments and, as a result, they will work in the absence of traceability. To solve this problem in industrial environments, it becomes necessary to have material standards that are easy to use, agile, adaptive to different forms, cheap to manufacture and, of course, traceable to the definition of meter with simple methods. By using these ‘customized standards’, it would be possible to adapt and design measuring procedures for each application and manufacturers will work with some traceability. It is important to note that, despite the fact that this traceability is clearly incomplete, this situation is preferable to working in the absence of it. Recently, it has been demonstrated the versatility and the utility of using laser technology and other AM technologies to manufacture customized material standards. In this paper, the authors propose to manufacture a customized material standard using an ultraviolet laser system and a method to calibrate it. To conclude, the results of the calibration carried out in an accredited dimensional metrology laboratory are presented.

Keywords: industrial environment, material standards, optical measuring instrument, traceability

Procedia PDF Downloads 121
656 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer

Abstract:

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

Keywords: power system, stability, oscillations, power system stabilizer, model reference adaptive control

Procedia PDF Downloads 136
655 Direct Phoenix Identification and Antimicrobial Susceptibility Testing from Positive Blood Culture Broths

Authors: Waad Al Saleemi, Badriya Al Adawi, Zaaima Al Jabri, Sahim Al Ghafri, Jalila Al Hadhramia

Abstract:

Objectives: Using standard lab methods, a positive blood culture requires a minimum of two days (two occasions of overnight incubation) to obtain a final identification (ID) and antimicrobial susceptibility results (AST) report. In this study, we aimed to evaluate the accuracy and precision of identification and antimicrobial susceptibility testing of an alternative method (direct method) that will reduce the turnaround time by 24 hours. This method involves the direct inoculation of positive blood culture broths into the Phoenix system using serum separation tubes (SST). Method: This prospective study included monomicrobial-positive blood cultures obtained from January 2022 to May 2023 in SQUH. Blood cultures containing a mixture of organisms, fungi, or anaerobic organisms were excluded from this study. The result of the new “direct method” under study was compared with the current “standard method” used in the lab. The accuracy and precision were evaluated for the ID and AST using Clinical and Laboratory Standards Institute (CLSI) recommendations. The categorical agreement, essential agreement, and the rates of very major errors (VME), major errors (ME), and minor errors (MIE) for both gram-negative and gram-positive bacteria were calculated. Passing criteria were set according to CLSI. Result: The results of ID and AST were available for a total of 158 isolates. Of 77 isolates of gram-negative bacteria, 71 (92%) were correctly identified at the species level. Of 70 isolates of gram-positive bacteria, 47(67%) isolates were correctly identified. For gram-negative bacteria, the essential agreement of the direct method was ≥92% when compared to the standard method, while the categorical agreement was ≥91% for all tested antibiotics. The precision of ID and AST were noted to be 100% for all tested isolates. For gram-positive bacteria, the essential agreement was >93%, while the categorical agreement was >92% for all tested antibiotics except moxifloxacin. Many antibiotics were noted to have an unacceptable higher rate of very major errors including penicillin, cotrimoxazole, clindamycin, ciprofloxacin, and moxifloxacin. However, no error was observed in the results of vancomycin, linezolid, and daptomycin. Conclusion: The direct method of ID and AST for positive blood cultures using SST is reliable for gram negative bacteria. It will significantly decrease the turnaround time and will facilitate antimicrobial stewardship.

Keywords: bloodstream infection, oman, direct ast, blood culture, rapid identification, antimicrobial susceptibility, phoenix, direct inoculation

Procedia PDF Downloads 60
654 Artificial Membrane Comparison for Skin Permeation in Skin PAMPA

Authors: Aurea C. L. Lacerda, Paulo R. H. Moreno, Bruna M. P. Vianna, Cristina H. R. Serra, Airton Martin, André R. Baby, Vladi O. Consiglieri, Telma M. Kaneko

Abstract:

The modified Franz cell is the most widely used model for in vitro permeation studies, however it still presents some disadvantages. Thus, some alternative methods have been developed such as Skin PAMPA, which is a bio- artificial membrane that has been applied for skin penetration estimation of xenobiotics based on HT permeability model consisting. Skin PAMPA greatest advantage is to carry out more tests, in a fast and inexpensive way. The membrane system mimics the stratum corneum characteristics, which is the primary skin barrier. The barrier properties are given by corneocytes embedded in a multilamellar lipid matrix. This layer is the main penetration route through the paracellular permeation pathway and it consists of a mixture of cholesterol, ceramides, and fatty acids as the dominant components. However, there is no consensus on the membrane composition. The objective of this work was to compare the performance among different bio-artificial membranes for studying the permeation in skin PAMPA system. Material and methods: In order to mimetize the lipid composition`s present in the human stratum corneum six membranes were developed. The membrane composition was equimolar mixture of cholesterol, ceramides 1-O-C18:1, C22, and C20, plus fatty acids C20 and C24. The membrane integrity assay was based on the transport of Brilliant Cresyl Blue, which has a low permeability; and Lucifer Yellow with very poor permeability and should effectively be completely rejected. The membrane characterization was performed using Confocal Laser Raman Spectroscopy, using stabilized laser at 785 nm with 10 second integration time and 2 accumulations. The membrane behaviour results on the PAMPA system were statistically evaluated and all of the compositions have shown integrity and permeability. The confocal Raman spectra were obtained in the region of 800-1200 cm-1 that is associated with the C-C stretches of the carbon scaffold from the stratum corneum lipids showed similar pattern for all the membranes. The ceramides, long chain fatty acids and cholesterol in equimolar ratio permitted to obtain lipid mixtures with self-organization capability, similar to that occurring into the stratum corneum. Conclusion: The artificial biological membranes studied for Skin PAMPA showed to be similar and with comparable properties to the stratum corneum.

Keywords: bio-artificial membranes, comparison, confocal Raman, skin PAMPA

Procedia PDF Downloads 506
653 Experimental Research of High Pressure Jet Interaction with Supersonic Crossflow

Authors: Bartosz Olszanski, Zbigniew Nosal, Jacek Rokicki

Abstract:

An experimental study of cold-jet (nitrogen) reaction control jet system has been carried out to investigate the flow control efficiency for low to moderate jet pressure ratios (total jet pressure p0jet over free stream static pressure in the wind tunnel p∞) and different angles of attack for infinite Mach number equal to 2. An investigation of jet influence was conducted on a flat plate geometry placed in the test section of intermittent supersonic wind tunnel of Department of Aerodynamics, WUT. Various convergent jet nozzle geometries to obtain different jet momentum ratios were tested on the same test model geometry. Surface static pressure measurements, Schlieren flow visualizations (using continuous and photoflash light source), load cell measurements gave insight into the supersonic crossflow interaction for different jet pressure and jet momentum ratios and their influence on the efficiency of side jet control as described by the amplification factor (actual to theoretical net force generated by the control nozzle). Moreover, the quasi-steady numerical simulations of flow through the same wind tunnel geometry (convergent-divergent nozzle plus test section) were performed using ANSYS Fluent basing on Reynolds-Averaged Navier-Stokes (RANS) solver incorporated with k-ω Shear Stress Transport (SST) turbulence model to assess the possible spurious influence of test section walls over the jet exit near field area of interest. The strong bow shock, barrel shock, and Mach disk as well as lambda separation region in front of nozzle were observed as images taken by high-speed camera examine the interaction of the jet and the free stream. In addition, the development of large-scale vortex structures (counter-rotating vortex pair) was detected. The history of complex static pressure pattern on the plate was recorded and compared to the force measurement data as well as numerical simulation data. The analysis of the obtained results, especially in the wake of the jet showed important features of the interaction mechanisms between the lateral jet and the flow field.

Keywords: flow visualization techniques, pressure measurements, reaction control jet, supersonic cross flow

Procedia PDF Downloads 294
652 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 48
651 Immuno-Modulatory Role of Weeds in Feeds of Cyprinus Carpio

Authors: Vipin Kumar Verma, Neeta Sehgal, Om Prakash

Abstract:

Cyprinus carpio has a wide spread occurrence in the lakes and rivers of Europe and Asia. Heavy losses in natural environment due to anthropogenic activities, including pollution as well as pathogenic diseases have landed this fish in IUCN red list of vulnerable species. The significance of a suitable diet in preserving the health status of fish is widely recognized. In present study, artificial feed supplemented with leaves of two weed plants, Eichhornia crassipes and Ricinus communis were evaluated for their role on the fish immune system. To achieve this objective fish were acclimatized to laboratory conditions (25 ± 1 °C; 12 L: 12D) for 10 days prior to start of experiment and divided into 4 groups: non-challenged (negative control= A), challenged [positive control (B) and experimental (C & D)]. Group A, B were fed with non-supplemented feed while group C & D were fed with feed supplemented with 5% Eichhornia crassipes and 5% Ricinus communis respectively. Supplemented feeds were evaluated for their effect on growth, health, immune system and disease resistance in fish when challenged with Vibrio harveyi. Fingerlings of C. carpio (weight, 2.0±0.5 g) were exposed with fresh overnight culture of V. harveyi through bath immunization (concentration 2 Χ 105) for 2 hours on 10 days interval for 40 days. The growth was monitored through increase in their relative weight. The rate of mortality due to bacterial infection as well as due to effect of feed was recorded accordingly. Immune response of fish was analyzed through differential leucocyte count, percentage phagocytosis and phagocytic index. The effect of V. harveyi on fish organs were examined through histo-pathological examination of internal organs like spleen, liver and kidney. The change in the immune response was also observed through gene expression analysis. The antioxidant potential of plant extracts was measured through DPPH and FRAP assay and amount of total phenols and flavonoids were calculates through biochemical analysis. The chemical composition of plant’s methanol extracts was determined by GC-MS analysis, which showed presence of various secondary metabolites and other compounds. Investigation revealed immuno-modulatory effect of plants, when supplemented with the artificial feed of fish.

Keywords: immuno-modulation, gc-ms, Cyprinus carpio, Eichhornia crassipes, Ricinus communis

Procedia PDF Downloads 490
650 The Importance of Clinical Pharmacy and Computer Aided Drug Design

Authors: Mario Hanna Louis Hanna

Abstract:

The use of CAD (pc Aided layout) generation is ubiquitous inside the structure, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of structure faculties in Nigeria as an important part of the training module. This newsletter examines the moral troubles involved in implementing CAD (pc Aided layout) content into the architectural training curriculum. Using current literature, this study begins with the advantages of integrating CAD into architectural education and the responsibilities of various stakeholders in the implementation process. It also examines issues related to the terrible use of records generation and the perceived bad effect of CAD use on design creativity. The use of a survey technique, information from the architecture department of Chukwuemeka Odumegwu Ojukwu Uli college changed into accumulated to serve as a case observe on how the problems raised have been being addressed. The object draws conclusions on what guarantees a hit moral implementation. Tens of millions of human beings around the sector suffer from hepatitis C, one of the international's deadliest sicknesses. Interferon (IFN) is a remedy alternative for patients with hepatitis C, but these treatments have their aspect outcomes. Our research targeted growing an oral small molecule drug that goals hepatitis C virus (HCV) proteins and has fewer facet effects. Our contemporary study targets to broaden a drug primarily based on a small molecule antiviral drug precise for the hepatitis C virus (HCV). Drug improvement and the use of laboratory experiments isn't always best high-priced, however also time-eating to behavior those experiments. instead, on this in silicon have a look at, we used computational strategies to recommend a particular antiviral drug for the protein domain names of discovered in the hepatitis C virus. This examines used homology modeling and abs initio modeling to generate the 3-D shape of the proteins, then figuring out pockets within the proteins. Proper lagans for pocket pills were advanced the usage of the de novo drug design method. Pocket geometry is taken into consideration while designing ligands. A few of the various lagans generated, a different for each of the HCV protein domains has been proposed.

Keywords: drug design, anti-viral drug, in-silicon drug design, Hepatitis C virus (HCV) CAD (Computer Aided Design), CAD education, education improvement, small-size contractor automatic pharmacy, PLC, control system, management system, communication.

Procedia PDF Downloads 25
649 Experimental Analysis of Supersonic Combustion Induced by Shock Wave at the Combustion Chamber of the 14-X Scramjet Model

Authors: Ronaldo de Lima Cardoso, Thiago V. C. Marcos, Felipe J. da Costa, Antonio C. da Oliveira, Paulo G. P. Toro

Abstract:

The 14-X is a strategic project of the Brazil Air Force Command to develop a technological demonstrator of a hypersonic air-breathing propulsion system based on supersonic combustion programmed to flight in the Earth's atmosphere at 30 km of altitude and Mach number 10. The 14-X is under development at the Laboratory of Aerothermodynamics and Hypersonic Prof. Henry T. Nagamatsu of the Institute of Advanced Studies. The program began in 2007 and was planned to have three stages: development of the wave rider configuration, development of the scramjet configuration and finally the ground tests in the hypersonic shock tunnel T3. The install configuration of the model based in the scramjet of the 14-X in the test section of the hypersonic shock tunnel was made to proportionate and test the flight conditions in the inlet of the combustion chamber. Experimental studies with hypersonic shock tunnel require special techniques to data acquisition. To measure the pressure along the experimental model geometry tested we used 30 pressure transducers model 122A22 of PCB®. The piezoeletronic crystals of a piezoelectric transducer pressure when to suffer pressure variation produces electric current (PCB® PIEZOTRONIC, 2016). The reading of the signal of the pressure transducers was made by oscilloscope. After the studies had begun we observed that the pressure inside in the combustion chamber was lower than expected. One solution to improve the pressure inside the combustion chamber was install an obstacle to providing high temperature and pressure. To confirm if the combustion occurs was selected the spectroscopy emission technique. The region analyzed for the spectroscopy emission system is the edge of the obstacle installed inside the combustion chamber. The emission spectroscopy technique was used to observe the emission of the OH*, confirming or not the combustion of the mixture between atmospheric air in supersonic speed and the hydrogen fuel inside of the combustion chamber of the model. This paper shows the results of experimental studies of the supersonic combustion induced by shock wave performed at the Hypersonic Shock Tunnel T3 using the scramjet 14-X model. Also, this paper provides important data about the combustion studies using the model based on the engine of 14-X (second stage of the 14-X Program). Informing the possibility of necessaries corrections to be made in the next stages of the program or in other models to experimental study.

Keywords: 14-X, experimental study, ground tests, scramjet, supersonic combustion

Procedia PDF Downloads 387
648 Impact of an Eight-Week High-Intensity Interval Training with Sodium Nitrite Supplementation on TNF-α, MURF1, and PI3K in Type 2 Diabetic Rats

Authors: Samane Eftekhari Ranjbar

Abstract:

Diabetes mellitus, a metabolic disorder characterized by elevated blood glucose levels, ranks among the leading causes of adult mortality. This study investigates the impact of an eight-week high-intensity interval training (HIIT) program combined with sodium nitrite supplementation on TNF- α, MURF1, and PI3K in a type 2 diabetes rodent model. Elevated TNF-α levels have been associated with insulin resistance, while MURF1 and PI3K play roles in muscle atrophy and insulin signaling pathways, respectively. In this experimental study, 15 eight-week-old rats from the Sara Laboratory Center in Tabriz were assigned to one of five groups: healthy control, diabetic control, diabetic with sodium nitrite supplementation, diabetic with eight weeks of intermittent exercise, and diabetic with eight weeks of interval training plus sodium nitrite supplementation. The HIIT protocol was designed to span eight weeks, with five weekly sessions at specified intensities and durations. Sodium nitrite, known for its vasodilatory and cytoprotective properties, was administered via injection. The findings revealed that the HIIT program and sodium nitrite supplementation influenced the examined biomarkers. ANOVA test outcomes indicated statistically significant differences in TNF- α (P=0.001), MURF1 (P=0.001), and PI3K (P=0.001) concentrations among the various groups. The healthy control group exhibited substantially decreased TNF- α, and MURF1 levels, as well as elevated PI3K levels compared to the diabetic control group. The exercise group, in conjunction with sodium nitrite supplementation, demonstrated a significant rise in PI3K levels (P=0.001) and a decline in TNF- α levels (P=0.018) relative to the diabetic control group. These results suggest that the combined intervention may help improve insulin sensitivity and reduce inflammation. However, MURF1 levels, which are related to muscle atrophy, showed no significant difference (P=0.24). In conclusion, in type 2 diabetic rats, an eight-week high-intensity interval training program with sodium nitrite supplementation does not affect MURF1 levels but does influence PI3K and TNF- α levels. This combination may hold potential for improving insulin sensitivity and reducing inflammation in type 2 diabetes patients, warranting further investigation and potential translation to human clinical trials.

Keywords: high-intensity interval training, sodium nitrate supplementation, type 2 diabetes, tumor necrosis factor-alpha, phosphatidylinositol-3-kinase, muscle RING-finger protein-1

Procedia PDF Downloads 84
647 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 214
646 Organized Crime-A Social Challenge for Kosovo towards European Union Integration

Authors: Samedin Mehmeti

Abstract:

Very tens political and economic situation, in particular armed conflicts that followed at the time of the destruction of the former Yugoslavia, influenced migrations and displacement of population. Especially setting international sanctions and embargo influenced the creation of organized criminal groups. A lot of members of the former Yugoslav security apparatus in collaboration with ordinary criminal groups engaged in: smuggling of goods, petroleum and arms, sale and transport of drugs, payable murder, damage to public property, kidnappings, extortion, racketeering, etc. This tradition of criminality, of course in other forms and with other methods, has continued after conflicts and continues with a high intensity even in nowadays. One of the most delicate problems of organized crime activity is the impact on the economic sphere, where organized crime opposes and severely damages national security and economy to criminalize it in certain sectors and directions. Organized crime groups including who find Kosovo as a place to develop their criminal activities are characterized by: loyalty of many people especially through family connections and kinship in carrying out criminal activities and the existence of powerful hierarchy of leadership which in many cases include the corrupt officials of state apparatus. Groups have clear hierarchy and flexible structure of command, each member within the criminal group knows his duties concrete. According to statistics presented in police reports its notable that Kosovo has a large number of cases of organized crime, cultivation, trafficking and possession of narcotics. As already is very well known that one of the primary conditions that must be fulfilled on track toward integration in the European Union is precisely to prevent and combat organized crime. Kosovo has serious problems with prosecutorial and judicial system. But the misuse of public funds, even those coming directly from EU budget or the budget of the European Union member states, have a negative impact on this process. The economic crisis that has gripped some of the EU countries has led to the creation of an environment in which there are far fewer resources and opportunities to invest in preventing and combating organized crime within member states. This automatically reduces the level of financial support for other countries in the fight against organized crime. Kosovo as a poor country, now has less likely benefiting from the support tools that will be eventually offered by Europe set of in this area.

Keywords: police, european integration, organized crime, narcotics

Procedia PDF Downloads 438
645 Kinetic Modelling of Fermented Probiotic Beverage from Enzymatically Extracted Annona Muricata Fruit

Authors: Calister Wingang Makebe, Wilson Ambindei Agwanande, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1 as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated, and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 77
644 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy

Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.

Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA

Procedia PDF Downloads 100
643 Estimation of Antiurolithiatic Activity of a Biochemical Medicine, Magnesia phosphorica, in Ethylene Glycol-Induced Nephrolithiasis in Wistar Rats by Urine Analysis, Biochemical, Histopathological, and Electron Microscopic Studies

Authors: Priti S. Tidke, Chandragouda R. Patil

Abstract:

The present study was designed to investigate the effect of Magnesia phosphorica, a biochemical medicine on urine screeing, biochemical, histopathological, and electron microscopic images in ethylene glycol induced nepholithiasis in rats.Male Wistar albino rats were divided into six groups and were orally administered saline once daily (IR-sham and IR-control) or Magnesia phosphorica 100 mg/kg twice daily for 24 days.The effect of various dilutions of biochemical Mag phos3x, 6x, 30x was determined on urine output by comparing the urine volume collected by keeping individual animals in metabolic cages. Calcium oxalate urolithiasis and hyperoxaluria in male Wistar rats was induced by oral administration of 0.75% Ethylene glycol p.o. daily for 24 days. Simultaneous administration of biochemical 3x, 6x, 30xMag phos (100mg/kg p.o. twice a day) along with ethylene glycol significantly decreased calcium oxalate, urea, creatinine, Calcium, Magnesium, Chloride, Phosphorus, Albumin, Alkaline Phosphatase content in urine compared with vehicle-treated control group.After the completion of treatment period animals were sacrificed, kidneys were removed and subjected to microscopic examination for possible stone formation. Histological estimation of kidney treated with biochemical Mag phos (3x, 6x, 30xMag phos 100 mg/kg, p.o.) along with ethylene glycol inhibited the growth of calculi and reduced the number of stones in kidney compared with control group. Biochemical Mag phos of 3x dilution and its crude equivalent also showed potent diuretic and antiurolithiatic activity in ethylene glycol induced urolithiasis. A significant decrease in the weight of stones was observed after treatment in animals which received biochemical Mag phos of 3x dilution and its crude equivalent in comparison with control groups. From this study, it can be proposed that the 3x dilution of biochemical Mag phos exhibits a significant inhibitory effect on crystal growth, with the improvement of kidney function and substantiates claims on the biological activity of twelve tissue remedies which can be proved scientifically through laboratory animal studies.

Keywords: Mag phos, Magnesia phosphorica, ciochemic medicine, urolithiasis, kidney stone, ethylene glycol

Procedia PDF Downloads 424
642 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect

Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn

Abstract:

In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.

Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand

Procedia PDF Downloads 115
641 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation

Authors: Marouen Dghim, Mohsen Ferchichi

Abstract:

The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.

Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex

Procedia PDF Downloads 435
640 Determination of Identification and Antibiotic Resistance Rates of Serratia marcescens and Providencia Spp. from Various Clinical Specimens by Using Both the Conventional and Automated (VITEK2) Methods

Authors: Recep Keşli, Gülşah Aşık, Cengiz Demir, Onur Türkyılmaz

Abstract:

Objective: Serratia species are identified as aerobic, motile Gram negative rods. The species Serratia marcescens (S. marcescens) causes both opportunistic and nosocomial infections. The genus Providencia is Gram-negative bacilli and includes urease-producing that is responsible for a wide range of human infections. Although most Providencia infections involve the urinary tract, they are also associated with gastroenteritis, wound infections, and bacteremia. The aim of this study was evaluate the antimicrobial resistance rates of S. marcescens and Providencia spp. strains which had been isolated from various clinical materials obtained from different patients who belongs to intensive care units (ICU) and inpatient clinics. Methods: A total of 35 S. marcescens and Providencia spp. strains isolated from various clinical samples admitted to Medical Microbiology Laboratory, ANS Research and Practice Hospital, Afyon Kocatepe University between October 2013 and September 2015 were included in the study. Identification of the bacteria was determined by conventional methods and VITEK 2 system (bio-Merieux, Marcy l’etoile, France) was used additionally. Antibacterial resistance tests were performed by using Kirby Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: The distribution of clinical samples were as follows: upper and lower respiratory tract samples 26, 74.2 % wound specimen 6, 17.1 % blood cultures 3, 8.5%. Of the 35 S. marcescens and Providencia spp. strains; 28, 80% were isolated from clinical samples sent from ICU. The resistance rates of S. marcescens strains against trimethoprim-sulfamethoxazole, piperacillin-tazobactam, imipenem, gentamicin, ciprofloxacin, ceftazidime, cefepime and amikacin were found to be 8.5 %, 22.8 %, 11.4 %, 2.8 %, 17.1 %, 40 %, 28.5 % and 5.7 % respectively. Resistance rates of Providencia spp. strains against trimethoprim-sulfamethoxazole, piperacillin-tazobactam, imipenem, gentamicin, ciprofloxacin, ceftazidime, cefepime and amikacin were found to be 10.2 %, 33,3 %, 18.7 %, 8.7 %, 13.2 %, 38.6 %, 26.7%, and 11.8 % respectively. Conclusion: S. marcescens is usually resistant to ampicillin, amoxicillin, amoxicillin/clavulanate, ampicillin/sulbactam, cefuroxime, cephamycins, nitrofurantoin, and colistin. The most effective antibiotic on the total of S. marcescens strains was found to be gentamicin 2.8 %, of the totally tested strains the highest resistance rate found against to ceftazidime 40 %. The lowest and highest resistance rates were found against gentamiycin and ceftazidime with the rates of 8.7 % and 38.6 % for Providencia spp.

Keywords: Serratia marcescens, Providencia spp., antibiotic resistance, intensive care unit

Procedia PDF Downloads 243