Search results for: bacterial leakage model
14465 Uni-Mode Uniqueness Conditions for Candecomp/Parafac of N-Way Arrays with Linearly Dependent Loadings
Authors: Ling Zhang, Weikai Li
Abstract:
Recently three sufficient conditions for the three-way Candecomp/Parafac (CP) model which ensure uniqueness in one of the three modes(“uni-mode uniqueness”) are given. In this paper, we generalize these uniqueness conditions to n ≤ 3 and give a sufficient conditions for the n-way Candecomp/Parafac (CP) model, which ensure uniqueness in one of the n modes.Keywords: uni-mode uniqueness, candecomp/parafac, n-way arrays, decomposition, tensor
Procedia PDF Downloads 34414464 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 11814463 A Multicriteria Model for Sustainable Management in Agriculture
Authors: Basil Manos, Thomas Bournaris, Christina Moulogianni
Abstract:
The European agricultural policy supports all member states to apply agricultural development plans for the development of their agricultural sectors. A specific measure of the agricultural development plans refers to young people in order to enter into the agricultural sector. This measure helps the participating young farmers in achieving maximum efficiency, using methods and environmentally friendly practices, by altering their farm plans. This study applies a Multicriteria Mathematical Programming (MCDA) model for the young farmers to find farm plans that achieve the maximum gross margin and the minimum environmental impacts (less use of fertilizers and irrigation water). The analysis was made in the region of Central Macedonia, Greece, among young farmers who have participated in the “Setting up Young Farmers” measure during 2007-2010. The analysis includes the implementation of the MCDA model for the farm plans optimization and the comparison of selected environmental indicators with those of the existent situation.Keywords: multicriteria, optimum farm plans, environmental impacts, sustainable management
Procedia PDF Downloads 34014462 Identification and Characterisation of Oil Sludge Degrading Bacteria Isolated from Compost
Authors: O. Ubani, H. I. Atagana, M. S. Thantsha, R. Adeleke
Abstract:
The oil sludge components (polycyclic aromatic hydrocarbons, PAHs) have been found to be cytotoxic, mutagenic and potentially carcinogenic and microorganisms such as bacteria and fungi can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading potentials from the co-composting of oil sludge and different animal manure. These bacteria were isolated on the mineral base medium and mineral salt agar plates as a growth control. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rDNA gene with specific primers (16S-P1 PCR and 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the gene bank database. The phylogenetical analyses of the isolates showed that they belong to 3 different clades namely Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus species. The results showed that Bacillus species were more dominant in all treated compost piles. Based on their characteristics these bacterial isolates have high potential to utilise PAHs of different molecular weights as carbon and energy sources. These identified bacteria are of special significance in their capacity to emulsify the PAHs and their ability to utilize them. Thus, they could be potentially useful for bioremediation of oil sludge and composting processes.Keywords: bioaugmentation, biodegradation, bioremediation, composting, oil sludge, PAHs, animal manures
Procedia PDF Downloads 25314461 Grid Architecture Model for Smart Grid
Authors: Nick Farid, Roghoyeh Salmeh
Abstract:
The planning and operation of the power grid is becoming much more complex because of the introduction of renewable energy resources, the digitalization of the electricity industry, as well as the coupling of efficiency and greener energy trends. These changes, along with new trends, make interactions between grid users and the other stakeholders more complex. This paper focuses on the main “physical” and “logical” interactions between grid users and the grid stakeholders, both from power system equipment and information management standpoints, and proposes a new interoperability model for Smart Grids.Keywords: user interface, interoperability layers, grid architecture framework, smart grid
Procedia PDF Downloads 9514460 Research on the Environmental Assessment Index of Brownfield Redevelopment in Taiwan: A Case Study on Formosa Chemicals and Fibre Corporation, Changhua Branch
Authors: Min-Chih Yang, Shih-Jen Feng, Bo-Tsang Li
Abstract:
The concept of “Brownfield” has been developed for nearly 35 years since it was put forward in 《Comprehensive Environmental Response, Compensation, and Liability Act, CERCLA》of USA in 1980 for solving the problem of soil contamination of those old industrial lands, and later, many countries have put forward relevant policies and researches continuously. But the related concept in Taiwan, a country has developed its industry for 60 years, is still in its infancy. This leads to the slow development of Brownfield related research and policy in Taiwan. When it comes to build the foundation of Brownfield development, we have to depend on the related experience and research of other countries. They are four aspects about Brownfield: 1. Contaminated Land; 2. Derelict Land; 3. Vacant Land; 4. Previously Development Land. This study will focus on and deeply investigate the Vacant land and contaminated land. The subject of this study is Formosa Chemicals & Fibre Corporation, Changhua branch in Taiwan. It has been operating for nearly 50 years and contributing a lot to the local economy. But under the influence of the toxic waste and sewage which was drained regularly or occasionally out from the factory, the environment has been destroyed seriously. There are three factors of pollution: 1. environmental toxicants, carbon disulfide, released from producing processes and volatile gases which is hard to monitor; 2. Waste and exhaust gas leakage caused by outdated equipment; 3. the wastewater discharge has seriously damage the ecological environment of the Dadu river estuary. Because of all these bad influences, the factory has been closed nowadays and moved to other places to spare the opportunities for the contaminated lands to re-develop. So we collect information about related Brownfield management experience and policies in different countries as background information to investigate the current Taiwanese Brownfield redevelopment issues and built the environmental assessment framework for it. We hope that we can set the environmental assessment indexes for Formosa Chemicals & Fibre Corporation, Changhua branch according to the framework. By investigating the theory and environmental pollution factors, we will carry out deep analysis and expert questionnaire to set those indexes and prove a sample in Taiwan for Brownfield redevelopment and remediation in the future.Keywords: brownfield, industrial land, redevelopment, assessment index
Procedia PDF Downloads 40014459 A Cellular Automaton Model Examining the Effects of Oxygen, Hydrogen Ions, and Lactate on Early Tumour Growth
Authors: Maymona Al-Husari, Craig Murdoch, Steven Webb
Abstract:
Some tumors are known to exhibit an extracellular pH that is more acidic than the intracellular, creating a 'reversed pH gradient' across the cell membrane and this has been shown to affect their invasive and metastatic potential. Tumour hypoxia also plays an important role in tumour development and has been directly linked to both tumour morphology and aggressiveness. In this paper, we present a hybrid mathematical model of intracellular pH regulation that examines the effect of oxygen and pH on tumour growth and morphology. In particular, we investigate the impact of pH regulatory mechanisms on the cellular pH gradient and tumour morphology. Analysis of the model shows that: low activity of the Na+/H+ exchanger or a high rate of anaerobic glycolysis can give rise to a 'fingering' tumour morphology; and a high activity of the lactate/H+ symporter can result in a reversed transmembrane pH gradient across a large portion of the tumour mass. Also, the reversed pH gradient is spatially heterogenous within the tumour, with a normal pH gradient observed within an intermediate growth layer, that is the layer between the proliferative inner and outermost layer of the tumour.Keywords: acidic pH, cellular automaton, ebola, tumour growth
Procedia PDF Downloads 33114458 Antecedents and Consequences of Organizational Intelligence in an R and D Organization
Authors: Akriti Srivastava, Soumi Awasthy
Abstract:
One of the disciplines that provoked increased interest in the importance of intelligence is the management and organization development literature. Organization intelligence is a key enabling force underlying many vital activities and processes dominating organizational life. Hence, the factors which lead to organizational intelligence and the result which comes out of the whole procedure is important to be understood with the understanding of OI. The focus of this research was to uncover potential antecedents and consequences of organizational intelligence, thus a non-experimental explanatory survey research design was used. A non-experimental research design is in which the manipulation of variables and randomization of samples are not present. The data was collected with the help of the questionnaire from 321 scientists from different laboratories of an R & D organization. Out of which 304 data were found suitable for the analysis. There were 194 males (age, M= 35.03, SD=7.63) and 110 females (age, M= 34.34, SD=8.44). This study tested a conceptual model linking antecedent variables (leadership and organizational culture) to organizational intelligence, followed by organizational innovational capability and organizational performance. Structural equation modeling techniques were used to analyze the hypothesized model. But, before that, confirmatory factor analysis of organizational intelligence scale was done which resulted in an insignificant model. Then, exploratory factor analysis was done which gave six factors for organizational intelligence scale. This structure was used throughout the study. Following this, the final analysis revealed relatively good fit of data to the hypothesized model with certain modifications. Leadership and organizational culture emerged out as the significant antecedents of organizational intelligence. Organizational innovational capability and organizational performance came out to be the consequent factors of organizational intelligence. But organizational intelligence did not predict organizational performance via organizational innovational capability. With this, additional significant pathway emerged out between leadership and organizational performance. The model offers a fresh and comprehensive view of the organizational intelligence. In this study, prior studies in related literature were reviewed to offer a basic framework of organizational intelligence. The study proved to be beneficial for organizational intelligence scholarship, seeing its importance in the competitive environment.Keywords: leadership, organizational culture, organizational intelligence, organizational innovational capability
Procedia PDF Downloads 34414457 Recognition of Voice Commands of Mentor Robot in Noisy Environment Using Hidden Markov Model
Authors: Khenfer Koummich Fatma, Hendel Fatiha, Mesbahi Larbi
Abstract:
This paper presents an approach based on Hidden Markov Models (HMM: Hidden Markov Model) using HTK tools. The goal is to create a human-machine interface with a voice recognition system that allows the operator to teleoperate a mentor robot to execute specific tasks as rotate, raise, close, etc. This system should take into account different levels of environmental noise. This approach has been applied to isolated words representing the robot commands pronounced in two languages: French and Arabic. The obtained recognition rate is the same in both speeches, Arabic and French in the neutral words. However, there is a slight difference in favor of the Arabic speech when Gaussian white noise is added with a Signal to Noise Ratio (SNR) equals 30 dB, in this case; the Arabic speech recognition rate is 69%, and the French speech recognition rate is 80%. This can be explained by the ability of phonetic context of each speech when the noise is added.Keywords: Arabic speech recognition, Hidden Markov Model (HMM), HTK, noise, TIMIT, voice command
Procedia PDF Downloads 38814456 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 11714455 Modelling Patient Condition-Based Demand for Managing Hospital Inventory
Authors: Esha Saha, Pradip Kumar Ray
Abstract:
A hospital inventory comprises of a large number and great variety of items for the proper treatment and care of patients, such as pharmaceuticals, medical equipment, surgical items, etc. Improper management of these items, i.e. stockouts, may lead to delay in treatment or other fatal consequences, even death of the patient. So, generally the hospitals tend to overstock items to avoid the risk of stockout which leads to unnecessary investment of money, difficulty in storing, more expiration and wastage, etc. Thus, in such challenging environment, it is necessary for hospitals to follow an inventory policy considering the stochasticity of demand in a hospital. Statistical analysis captures the correlation of patient condition based on bed occupancy with the patient demand which changes stochastically. Due to the dependency on bed occupancy, the markov model is developed that helps to map the changes in demand of hospital inventory based on the changes in the patient condition represented by the movements of bed occupancy states (acute care state, rehabilitative state and long-care state) during the length-of-stay of patient in a hospital. An inventory policy is developed for a hospital based on the fulfillment of patient demand with the objective of minimizing the frequency and quantity of placement of orders of inventoried items. The analytical structure of the model based on probability calculation is provided to show the optimal inventory-related decisions. A case-study is illustrated in this paper for the development of hospital inventory model based on patient demand for multiple inpatient pharmaceutical items. A sensitivity analysis is conducted to investigate the impact of inventory-related parameters on the developed optimal inventory policy. Therefore, the developed model and solution approach may help the hospital managers and pharmacists in managing the hospital inventory in case of stochastic demand of inpatient pharmaceutical items.Keywords: bed occupancy, hospital inventory, markov model, patient condition, pharmaceutical items
Procedia PDF Downloads 32314454 Order Fulfilment Strategy in E-Commerce Warehouse Based on Simulation: Business Customers Case
Authors: Aurelija Burinskiene
Abstract:
This paper presents the study for an e-commerce warehouse. The study is aiming to improve order fulfillment activity by identifying the strategy presenting the best performance. A simulation model was proposed to reach the target of this research. This model enables various scenario tests in an e-commerce warehouse, allowing them to find out for the best order fulfillment strategy. By using simulation, model authors investigated customers’ orders representing on-line purchases for one month. Experiments were designed to evaluate various order picking methods applicable to the fulfillment of customers’ orders. The research uses cost components analysis and helps to identify the best possible order picking method improving the overall performance of e-commerce warehouse and fulfillment service to the customers. The results presented show that the application of order batching strategy is the most applicable because it brings distance savings of around 6.7 percentage. This result could be improved by taking an assortment clustering action until 8.34 percentage. So, the recommendations were given to apply the method for future e-commerce warehouse operations.Keywords: e-commerce, order, fulfilment, strategy, simulation
Procedia PDF Downloads 15014453 Reliability-Centered Maintenance Application for the Development of Maintenance Strategy for a Cement Plant
Authors: Nabil Hameed Al-Farsi
Abstract:
This study’s main goal is to develop a model and a maintenance strategy for a cement factory called Arabian Cement Company, Rabigh Plant. The proposed work here depends on Reliability centric maintenance approach to develop a strategy and maintenance schedule that ensures increasing the reliability of the production system components, thus ensuring continuous productivity. The cost-effective maintenance of the plant’s dependability performance is the key goal of durability-based maintenance is. The cement plant consists of 7 important steps, so, developing a maintenance plan based on Reliability centric maintenance (RCM) method is made up of 10 steps accordingly starting from selecting units and data until performing and updating the model. The processing unit chosen for the analysis of this case is the calcinatory unit regarding model’s validation and the Travancore Titanium Products Ltd (TTP) using the claimed data history acquired from the maintenance department maintenance from the mentioned company. After applying the proposed model, the results of the maintenance simulation justified the plant's existing scheduled maintenance policy being reconsidered. Results represent the need for preventive maintenance for all Class A criticality equipment instead of the planned maintenance and the breakdown one for all other equipment depends on its criticality and an FMEA report. Consequently, the additional cost of preventive maintenance would be offset by the cost savings from breakdown maintenance for the remaining equipment.Keywords: engineering, reliability, strategy, maintenance, failure modes, effects and criticality analysis (FMEA)
Procedia PDF Downloads 17314452 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran
Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani
Abstract:
The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation
Procedia PDF Downloads 24114451 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid
Authors: D. Šedivý, S. Fialová
Abstract:
The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid
Procedia PDF Downloads 38614450 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles
Authors: Siamack A. Shirazi, Farzin Darihaki
Abstract:
Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid
Procedia PDF Downloads 16914449 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies
Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann
Abstract:
Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)
Procedia PDF Downloads 36214448 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 7314447 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures
Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse
Abstract:
A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling
Procedia PDF Downloads 13414446 Correlation between Copper Uptake and Decrease of Copper (Hypocupremia) in Burn Patients-Infected Pseudomonas aeruginosa
Authors: Khaled M. Khleifat
Abstract:
Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram-positive bacteria Bacillusthuringiensis strain Israelisas well as Gram-negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis and Enterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron-binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.Keywords: Pseudomonas aeruginosa, hypocupremia, correlation, PCV
Procedia PDF Downloads 31114445 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 12114444 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics
Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo
Abstract:
The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing
Procedia PDF Downloads 13314443 Structure Function and Violation of Scale Invariance in NCSM: Theory and Numerical Analysis
Authors: M. R. Bekli, N. Mebarki, I. Chadou
Abstract:
In this study, we focus on the structure functions and violation of scale invariance in the context of non-commutative standard model (NCSM). We find that this violation appears in the first order of perturbation theory and a non-commutative version of the DGLAP evolution equation is deduced. Numerical analysis and comparison with experimental data imposes a new bound on the non-commutative parameter.Keywords: NCSM, structure function, DGLAP equation, standard model
Procedia PDF Downloads 61114442 Comparing Forecasting Performances of the Bass Diffusion Model and Time Series Methods for Sales of Electric Vehicles
Authors: Andreas Gohs, Reinhold Kosfeld
Abstract:
This study should be of interest for practitioners who want to predict precisely the sales numbers of vehicles equipped with an innovative propulsion technology as well as for researchers interested in applied (regional) time series analysis. The study is based on the numbers of new registrations of pure electric and hybrid cars. Methods of time series analysis like ARIMA are compared with the Bass Diffusion-model concerning their forecasting performances for new registrations in Germany at the national and federal state levels. Especially it is investigated if the additional information content from regional data increases the forecasting accuracy for the national level by adding predictions for the federal states. Results of parameters of the Bass Diffusion Model estimated for Germany and its sixteen federal states are reported. While the focus of this research is on the German market, estimation results are also provided for selected European and other countries. Concerning Bass-parameters and forecasting performances, we get very different results for Germany's federal states and the member states of the European Union. This corresponds to differences across the EU-member states in the adoption process of this innovative technology. Concerning the German market, the adoption is rather proceeded in southern Germany and stays behind in Eastern Germany except for Berlin.Keywords: bass diffusion model, electric vehicles, forecasting performance, market diffusion
Procedia PDF Downloads 16814441 Management of Local Towns (Tambon) According to Philosophy of Sufficiency Economy
Authors: Wichian Sriprachan, Chutikarn Sriviboon
Abstract:
The objectives of this research were to study the management of local towns and to develop a better model of town management according to the Philosophy of Sufficiency Economy. This study utilized qualitative research, field research, as well as documentary research at the same time. A total of 10 local towns or Tambons of Supanburi province, Thailand were selected for an in-depth interview. The findings revealed that the model of local town management according to Philosophy of Sufficient Economy was in a level of “good” and the model of management has the five basic guidelines: 1) ability to manage budget information and keep it up-to-date, 2) ability to decision making according to democracy rules, 3) ability to use check and balance system, 4) ability to control, follow, and evaluation, and 5) ability to allow the general public to participate. In addition, the findings also revealed that the human resource management according to Philosophy of Sufficient Economy includes obeying laws, using proper knowledge, and having integrity in five areas: plan, recruit, select, train, and maintain human resources.Keywords: management, local town (Tambon), principles of sufficiency economy, marketing management
Procedia PDF Downloads 34714440 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards
Authors: Golnush Masghati-Amoli, Paul Chin
Abstract:
Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering
Procedia PDF Downloads 13414439 Modelling the Dynamics and Optimal Control Strategies of Terrorism within the Southern Borno State Nigeria
Authors: Lubem Matthew Kwaghkor
Abstract:
Terrorism, which remains one of the largest threats faced by various nations and communities around the world, including Nigeria, is the calculated use of violence to create a general climate of fear in a population to attain particular goals that might be political, religious, or economical. Several terrorist groups are currently active in Nigeria, leading to attacks on both civil and military targets. Among these groups, Boko Haram is the deadliest terrorist group operating majorly in Borno State. The southern part of Borno State in North-Eastern Nigeria has been plagued by terrorism, insurgency, and conflict for several years. Understanding the dynamics of terrorism is crucial for developing effective strategies to mitigate its impact on communities and to facilitate peace-building efforts. This research aims to develop a mathematical model that captures the dynamics of terrorism within the southern part of Borno State, Nigeria, capturing both government and local community intervention strategies as control measures in combating terrorism. A compartmental model of five nonlinear differential equations is formulated. The model analyses show that a feasible solution set of the model exists and is bounded. Stability analyses show that both the terrorism free equilibrium and the terrorism endermic equilibrium are asymptotically stable, making the model to have biological meaning. Optimal control theory will be employed to identify the most effective strategy to prevent or minimize acts of terrorism. The research outcomes are expected to contribute towards enhancing security and stability in Southern Borno State while providing valuable insights for policymakers, security agencies, and researchers. This is an ongoing research.Keywords: modelling, terrorism, optimal control, susceptible, non-susceptible, community intervention
Procedia PDF Downloads 2514438 Business-to-Business Deals Based on a Co-Utile Collaboration Mechanism: Designing Trust Company of the Future
Authors: Riccardo Bonazzi, Michaël Poli, Abeba Nigussie Turi
Abstract:
This paper presents an applied research of a new module for the financial administration and management industry, Personalizable and Automated Checklists Integrator, Overseeing Legal Investigations (PACIOLI). It aims at designing the business model of the trust company of the future. By identifying the key stakeholders, we draw a general business process design of the industry. The business model focuses on disintermediating the traditional form of business through the new technological solutions of a software company based in Switzerland and hence creating a new interactive platform. The key stakeholders of this interactive platform are identified as IT experts, legal experts, and the New Edge Trust Company (NATC). The mechanism we design and propose has a great importance in improving the efficiency of the financial business administration and management industry, and it also helps to foster the provision of high value added services in the sector.Keywords: new edge trust company, business model design, automated checklists, financial technology
Procedia PDF Downloads 37314437 Demonstration of Land Use Changes Simulation Using Urban Climate Model
Authors: Barbara Vojvodikova, Katerina Jupova, Iva Ticha
Abstract:
Cities in their historical evolution have always adapted their internal structure to the needs of society (for example protective city walls during classicism era lost their defense function, became unnecessary, were demolished and gave space for new features such as roads, museums or parks). Today it is necessary to modify the internal structure of the city in order to minimize the impact of climate changes on the environment of the population. This article discusses the results of the Urban Climate model owned by VITO, which was carried out as part of a project from the European Union's Horizon grant agreement No 730004 Pan-European Urban Climate Services Climate-Fit city. The use of the model was aimed at changes in land use and land cover in cities related to urban heat islands (UHI). The task of the application was to evaluate possible land use change scenarios in connection with city requirements and ideas. Two pilot areas in the Czech Republic were selected. One is Ostrava and the other Hodonín. The paper provides a demonstration of the application of the model for various possible future development scenarios. It contains an assessment of the suitability or inappropriateness of scenarios of future development depending on the temperature increase. Cities that are preparing to reconstruct the public space are interested in eliminating proposals that would lead to an increase in temperature stress as early as in the assignment phase. If they have evaluation on the unsuitability of some type of design, they can limit it into the proposal phases. Therefore, especially in the application of models on Local level - in 1 m spatial resolution, it was necessary to show which type of proposals would create a significant temperature island in its implementation. Such a type of proposal is considered unsuitable. The model shows that the building itself can create a shady place and thus contribute to the reduction of the UHI. If it sensitively approaches the protection of existing greenery, this new construction may not pose a significant problem. More massive interventions leading to the reduction of existing greenery create a new heat island space.Keywords: climate model, heat islands, Hodonin, land use changes, Ostrava
Procedia PDF Downloads 14314436 Effect of Peganum harmala Seeds on Blood Factors, Immune Response and Intestinal Selected Bacterial Population in Broiler Chickens
Authors: Majid Goudarzi
Abstract:
This experiment was designed to study the effects of feeding different levels of Peganum harmala seeds (PHS) and antibiotic on serum biochemical parameters, immune response and intestinal microflora composition in Ross broiler chickens. A total of 240 one-d-old unsexed broiler chickens were randomly allocated to each of the four treatment groups, each with four replicate pens of 15 chicks. The dietary treatments included of control (C) - without PHS and antibiotic - the diet contains 300 mg/kg Lincomycin 0.88% (A) and the diets contain 2 g/kg (H1) and 4 g/kg (H2) PHS. The chicks were raised on floor pens and received diets and water ad libitum for six weeks. Blood samplings were performed for the determination of antibody titer against Newcastle disease on 14 and 21 days and for biochemical parameters on 42 days of age. The populations of Lactobacilli spp. and Escherichia coli were enumerated in ileum by conventional microbiological techniques using selective agar media. Inclusion of PHS in diet resulted in a significant decrease in total cholesterol and significant increase in HDL relative to the control and antibiotic groups. Antibody titer against NDV was not affected by experimental treatments. E. coli population in birds supplemented with antibiotic and PHS was significantly lower than control, but Lactobacilli spp. population increased only by antibiotic and not by PHS. In conclusion, the results of this study showed that addition of PHS powder seem to have a positive influence on some biochemical parameters and gastrointestinal microflora.Keywords: antibiotic, biochemical parameters, immune system, Peganum harmala
Procedia PDF Downloads 362