Search results for: acoustic modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4417

Search results for: acoustic modeling

847 Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders

Authors: Annamária Käferné Rácz, Bence Jáger, Balázs Kövesdi, László Dunai

Abstract:

Due to the numerous advantages of steel corrugated web girders, its application field is growing for bridges as well as for buildings. The global stability behavior of such girders is significantly larger than those of conventional I-girders with flat web, thus the application of the structural steel material can be significantly reduced. Design codes and specifications do not provide clear and complete rules or recommendations for the determination of the lateral torsional buckling (LTB) resistance of corrugated web girders. Therefore, the authors made a thorough investigation regarding the LTB resistance of the corrugated web girders. Finite element (FE) simulations have been performed to develop new design formulas for the determination of the LTB resistance of trapezoidally corrugated web girders. FE model is developed considering geometrical and material nonlinear analysis using equivalent geometric imperfections (GMNI analysis). The equivalent geometric imperfections involve the initial geometric imperfections and residual stresses coming from rolling, welding and flame cutting. Imperfection sensitivity analysis was performed to determine the necessary magnitudes regarding only the first eigenmodes shape imperfections. By the help of the validated FE model, an extended parametric study is carried out to investigate the LTB resistance for different trapezoidal corrugation profiles. First, the critical moment of a specific girder was calculated by FE model. The critical moments from the FE calculations are compared to the previous analytical calculation proposals. Then, nonlinear analysis was carried out to determine the ultimate resistance. Due to the numerical investigations, new proposals are developed for the determination of the LTB resistance of trapezoidally corrugated web girders through a modification factor on the design method related to the conventional flat web girders.

Keywords: corrugated web, lateral torsional buckling, critical moment, FE modeling

Procedia PDF Downloads 287
846 Ebola Virus Glycoprotein Inhibitors from Natural Compounds: Computer-Aided Drug Design

Authors: Driss Cherqaoui, Nouhaila Ait Lahcen, Ismail Hdoufane, Mehdi Oubahmane, Wissal Liman, Christelle Delaite, Mohammed M. Alanazi

Abstract:

The Ebola virus is a highly contagious and deadly pathogen that causes Ebola virus disease. The Ebola virus glycoprotein (EBOV-GP) is a key factor in viral entry into host cells, making it a critical target for therapeutic intervention. Using a combination of computational approaches, this study focuses on the identification of natural compounds that could serve as potent inhibitors of EBOV-GP. The 3D structure of EBOV-GP was selected, with missing residues modeled, and this structure was minimized and equilibrated. Two large natural compound databases, COCONUT and NPASS, were chosen and filtered based on toxicity risks and Lipinski’s Rule of Five to ensure drug-likeness. Following this, a pharmacophore model, built from 22 reported active inhibitors, was employed to refine the selection of compounds with a focus on structural relevance to known Ebola inhibitors. The filtered compounds were subjected to virtual screening via molecular docking, which identified ten promising candidates (five from each database) with strong binding affinities to EBOV-GP. These compounds were then validated through molecular dynamics simulations to evaluate their binding stability and interactions with the target. The top three compounds from each database were further analyzed using ADMET profiling, confirming their favorable pharmacokinetic properties, stability, and safety. These results suggest that the selected compounds have the potential to inhibit EBOV-GP, offering new avenues for antiviral drug development against the Ebola virus.

Keywords: EBOV-GP, Ebola virus glycoprotein, high-throughput drug screening, molecular docking, molecular dynamics, natural compounds, pharmacophore modeling, virtual screening

Procedia PDF Downloads 28
845 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin

Authors: Goksel Ezgi Guzey, Bihrat Onoz

Abstract:

The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.

Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower

Procedia PDF Downloads 133
844 Solid State Fermentation Process Development for Trichoderma asperellum Using Inert Support in a Fixed Bed Fermenter

Authors: Mauricio Cruz, Andrés Díaz García, Martha Isabel Gómez, Juan Carlos Serrato Bermúdez

Abstract:

The disadvantages of using natural substrates in SSF processes have been well recognized and mainly are associated to gradual decomposition of the substrate, formation of agglomerates and decrease of porosity bed generating limitations in the mass and heat transfer. Additionally, in several cases, materials with a high agricultural value such as sour milk, beets, rice, beans and corn have been used. Thus, the use of economic inert supports (natural or synthetic) in combination with a nutrient suspension for the production of biocontrol microorganisms is a good alternative in SSF processes, but requires further studies in the fields of modeling and optimization. Therefore, the aim of this work is to compare the performance of two inert supports, a synthetic (polyurethane foam) and a natural one (rice husk), identifying the factors that have the major effects on the productivity of T. asperellum Th204 and the maximum specific growth rate in a PROPHYTA L05® fixed bed bioreactor. For this, the six factors C:N ratio, temperature, inoculation rate, bed height, air moisture content and airflow were evaluated using a fractional design. The factors C:N and air flow were identified as significant on the productivity (expressed as conidia/dry substrate•h). The polyurethane foam showed higher maximum specific growth rate (0.1631 h-1) and productivities of 3.89 x107 conidia/dry substrate•h compared to rice husk (2.83x106) and natural substrate based on rice (8.87x106) used as control. Finally, a quadratic model was generated and validated, obtaining productivities higher than 3.0x107 conidia/dry substrate•h with air flow at 0.9 m3/h and C:N ratio at 18.1.

Keywords: bioprocess, scale up, fractional design, C:N ratio, air flow

Procedia PDF Downloads 510
843 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling

Procedia PDF Downloads 128
842 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices

Authors: Amani Abdallah, Isam Shahrour

Abstract:

The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.

Keywords: distribution system, drinking water, refraction index, sensor, real-time

Procedia PDF Downloads 360
841 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 32
840 Structural Model on Organizational Climate, Leadership Behavior and Organizational Commitment: Work Engagement of Private Secondary School Teachers in Davao City

Authors: Genevaive Melendres

Abstract:

School administrators face the reality of teachers losing their engagement, or schools losing the teachers. This study is then conducted to identify a structural model that best predict work engagement of private secondary teachers in Davao City. Ninety-three teachers from four sectarian schools and 56 teachers from four non-sectarian schools were involved in the completion of four survey instruments namely Organizational Climate Questionnaire, Leader Behavior Descriptive Questionnaire, Organizational Commitment Scales, and Utrecht Work Engagement Scales. Data were analyzed using frequency distribution, mean, standardized deviation, t-test for independent sample, Pearson r, stepwise multiple regression analysis, and structural equation modeling. Results show that schools have high level of organizational climate dimensions; leaders oftentimes show work-oriented and people-oriented behavior; teachers have high normative commitment and they are very often engaged at their work. Teachers from non-sectarian schools have higher organizational commitment than those from sectarian schools. Organizational climate and leadership behavior are positively related to and predict work engagement whereas commitment did not show any relationship. This study underscores the relative effects of three variables on the work engagement of teachers. After testing network of relationships and evaluating several models, a best-fitting model was found between leadership behavior and work engagement. The noteworthy findings suggest that principals pay attention and consistently evaluate their behavior for this best predicts the work engagement of the teachers. The study provides value to administrators who take decisions and create conditions in which teachers derive fulfillment.

Keywords: leadership behavior, organizational climate, organizational commitment, private secondary school teachers, structural model on work engagement

Procedia PDF Downloads 275
839 Meanings and Concepts of Standardization in Systems Medicine

Authors: Imme Petersen, Wiebke Sick, Regine Kollek

Abstract:

In systems medicine, high-throughput technologies produce large amounts of data on different biological and pathological processes, including (disturbed) gene expressions, metabolic pathways and signaling. The large volume of data of different types, stored in separate databases and often located at different geographical sites have posed new challenges regarding data handling and processing. Tools based on bioinformatics have been developed to resolve the upcoming problems of systematizing, standardizing and integrating the various data. However, the heterogeneity of data gathered at different levels of biological complexity is still a major challenge in data analysis. To build multilayer disease modules, large and heterogeneous data of disease-related information (e.g., genotype, phenotype, environmental factors) are correlated. Therefore, a great deal of attention in systems medicine has been put on data standardization, primarily to retrieve and combine large, heterogeneous datasets into standardized and incorporated forms and structures. However, this data-centred concept of standardization in systems medicine is contrary to the debate in science and technology studies (STS) on standardization that rather emphasizes the dynamics, contexts and negotiations of standard operating procedures. Based on empirical work on research consortia that explore the molecular profile of diseases to establish systems medical approaches in the clinic in Germany, we trace how standardized data are processed and shaped by bioinformatics tools, how scientists using such data in research perceive such standard operating procedures and which consequences for knowledge production (e.g. modeling) arise from it. Hence, different concepts and meanings of standardization are explored to get a deeper insight into standard operating procedures not only in systems medicine, but also beyond.

Keywords: data, science and technology studies (STS), standardization, systems medicine

Procedia PDF Downloads 344
838 Analysis of the Detachment of Water Droplets from a Porous Fibrous Surface

Authors: Ibrahim Rassoul, E-K. Si Ahmed

Abstract:

The growth, deformation, and detachment of fluid droplets adherent to solid substrates is a problem of fundamental interest with numerous practical applications. Specific interest in this proposal is the problem of a droplet on a fibrous, hydrophobic substrate subjected to body or external forces (gravity, convection). The past decade has seen tremendous advances in proton exchange membrane fuel cell (PEMFC) technology. However, there remain many challenges to bring commercially viable stationary PEMFC products to the market. PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On the one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause 'flooding' (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The aim of this work is to investigate the stability of a liquid water droplet emerging form a GDL pore, to gain fundamental insight into the instability process leading to detachment. The approach will combine analytical and numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, water droplet, gas diffusion layer, contact angle, surface tension

Procedia PDF Downloads 257
837 Ontology based Fault Detection and Diagnosis system Querying and Reasoning examples

Authors: Marko Batic, Nikola Tomasevic, Sanja Vranes

Abstract:

One of the strongholds in the ubiquitous efforts related to the energy conservation and energy efficiency improvement is represented by the retrofit of high energy consumers in buildings. In general, HVAC systems represent the highest energy consumers in buildings. However they usually suffer from mal-operation and/or malfunction, causing even higher energy consumption than necessary. Various Fault Detection and Diagnosis (FDD) systems can be successfully employed for this purpose, especially when it comes to the application at a single device/unit level. In the case of more complex systems, where multiple devices are operating in the context of the same building, significant energy efficiency improvements can only be achieved through application of comprehensive FDD systems relying on additional higher level knowledge, such as their geographical location, served area, their intra- and inter- system dependencies etc. This paper presents a comprehensive FDD system that relies on the utilization of common knowledge repository that stores all critical information. The discussed system is deployed as a test-bed platform at the two at Fiumicino and Malpensa airports in Italy. This paper aims at presenting advantages of implementation of the knowledge base through the utilization of ontology and offers improved functionalities of such system through examples of typical queries and reasoning that enable derivation of high level energy conservation measures (ECM). Therefore, key SPARQL queries and SWRL rules, based on the two instantiated airport ontologies, are elaborated. The detection of high level irregularities in the operation of airport heating/cooling plants is discussed and estimation of energy savings is reported.

Keywords: airport ontology, knowledge management, ontology modeling, reasoning

Procedia PDF Downloads 543
836 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: collapse load analysis, inelastic buckling, liquefaction, pile group

Procedia PDF Downloads 166
835 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 88
834 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model

Authors: Yepeng Cheng, Yasuhiko Morimoto

Abstract:

Customer relationship analysis is vital for retail stores, especially for supermarkets. The point of sale (POS) systems make it possible to record the daily purchasing behaviors of customers as an identification point of sale (ID-POS) database, which can be used to analyze customer behaviors of a supermarket. The customer value is an indicator based on ID-POS database for detecting the customer loyalty of a store. In general, there are many supermarkets in a city, and other nearby competitor supermarkets significantly affect the customer value of customers of a supermarket. However, it is impossible to get detailed ID-POS databases of competitor supermarkets. This study firstly focused on the customer value and distance between a customer's home and supermarkets in a city, and then constructed the models based on logistic regression analysis to analyze correlations between distance and purchasing behaviors only from a POS database of a supermarket chain. During the modeling process, there are three primary problems existed, including the incomparable problem of customer values, the multicollinearity problem among customer value and distance data, and the number of valid partial regression coefficients. The improved customer value, Huff’s gravity model, and inverse attractiveness frequency are considered to solve these problems. This paper presents three types of models based on these three methods for loyal customer classification and competitors’ influence analysis. In numerical experiments, all types of models are useful for loyal customer classification. The type of model, including all three methods, is the most superior one for evaluating the influence of the other nearby supermarkets on customers' purchasing of a supermarket chain from the viewpoint of valid partial regression coefficients and accuracy.

Keywords: customer value, Huff's Gravity Model, POS, Retailer

Procedia PDF Downloads 127
833 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 133
832 VR in the Middle School Classroom-An Experimental Study on Spatial Relations and Immersive Virtual Reality

Authors: Danielle Schneider, Ying Xie

Abstract:

Middle school science, technology, engineering, and math (STEM) teachers experience an exceptional challenge in the expectation to incorporate curricula that builds strong spatial reasoning skills on rudimentary geometry concepts. Because spatial ability is so closely tied to STEM students’ success, researchers are tasked to determine effective instructional practices that create an authentic learning environment within the immersive virtual reality learning environment (IVRLE). This study looked to investigate the effect of the IVRLE on middle school STEM students’ spatial reasoning skills as a methodology to benefit the STEM middle school students’ spatial reasoning skills. This experimental study was comprised of thirty 7th-grade STEM students divided into a treatment group that was engaged in an immersive VR platform where they engaged in building an object in the virtual realm by applying spatial processing and visualizing its dimensions and a control group that built the identical object using a desktop computer-based, computer-aided design (CAD) program. Before and after the students participated in the respective “3D modeling” environment, their spatial reasoning abilities were assessed using the Middle Grades Mathematics Project Spatial Visualization Test (MGMP-SVT). Additionally, both groups created a physical 3D model as a secondary measure to measure the effectiveness of the IVRLE. The results of a one-way ANOVA in this study identified a negative effect on those in the IVRLE. These findings suggest that with middle school students, virtual reality (VR) proved an inadequate tool to benefit spatial relation skills as compared to desktop-based CAD.

Keywords: virtual reality, spatial reasoning, CAD, middle school STEM

Procedia PDF Downloads 89
831 The Hidden Role of Interest Rate Risks in Carry Trades

Authors: Jingwen Shi, Qi Wu

Abstract:

We study the role played interest rate risk in carry trade return in order to understand the forward premium puzzle. In this study, our goal is to investigate to what extent carry trade return is indeed due to compensation for risk taking and, more important, to reveal the nature of these risks. Using option data not only on exchange rates but also on interest rate swaps (swaptions), our first finding is that, besides the consensus currency risks, interest rate risks also contribute a non-negligible portion to the carry trade return. What strikes us is our second finding. We find that large downside risks of future exchange rate movements are, in fact, priced significantly in option market on interest rates. The role played by interest rate risk differs structurally from the currency risk. There is a unique premium associated with interest rate risk, though seemingly small in size, which compensates the tail risks, the left tail to be precise. On the technical front, our study relies on accurately retrieving implied distributions from currency options and interest rate swaptions simultaneously, especially the tail components of the two. For this purpose, our major modeling work is to build a new international asset pricing model where we use an orthogonal setup for pricing kernels and specify non-Gaussian dynamics in order to capture three sets of option skew accurately and consistently across currency options and interest rate swaptions, domestic and foreign, within one model. Our results open a door for studying forward premium anomaly through implied information from interest rate derivative market.

Keywords: carry trade, forward premium anomaly, FX option, interest rate swaption, implied volatility skew, uncovered interest rate parity

Procedia PDF Downloads 448
830 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 94
829 Evaluation of Effectiveness of Three Common Equine Thrush Treatments

Authors: A. S. Strait, J. A. Bryk-Lucy, L. M. Ritchie

Abstract:

Thrush is a common disease of ungulates primarily affecting the frog and sulci, caused by the anaerobic bacteria Fusobacterium necrophorum. Thrush accounts for approximately 45.0% of hoof disorders in horses. Prevention and treatment of thrush are essential to prevent horses from developing severe infections and becoming lame. Proper knowledge of hoof care and thrush treatments is crucial to avoid financial costs, unsoundness and lost training time. Research on the effectiveness of numerous commercial and homemade thrush treatments is limited in the equine industry. The objective of this study was to compare the effectiveness of three common thrush treatments for horses: weekly application of Thrush Buster, daily dilute bleach solution spray, or Metronidazole pastes every other day. Cases of thrush diagnosed by a veterinarian or veterinarian-trained researcher were given a score, from 0 to 4, based on the severity of the thrush in each hoof (n=59) and randomly assigned a treatment. Cases were rescored each week of the three-week treatment, and the final and initial scores were compared to determine effectiveness. The thrush treatments were compared with Thrush Buster as the reference at a significance level of α=.05. Binomial Logistic Regression Modeling was performed, finding that the odds of a hoof treated with Metronidazole to be thrush-free was 6.1 times greater than a hoof treated with Thrush Buster (p=0.001), while the odds of a hoof that was treated with bleach to be thrush-free was only 0.97 times greater than a hoof treated with Thrush Buster (p=0.970), after adjustment for treatment week. Of the three treatments utilized in this study, Metronidazole paste applied to the affected areas every other day was the most effective treatment for thrush in horses. There are many other thrush remedies available, and further research is warranted to determine the efficacy of additional treatment options.

Keywords: fusobacterium necrophorum, thrush, equine, horse, lameness

Procedia PDF Downloads 163
828 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 351
827 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 136
826 Spatiotemporal Modeling of Under-Five Mortality and Associated Risk Factors in Ethiopia

Authors: Melkamu A. Zeru, Aweke A. Mitiku, Endashaw Amuka

Abstract:

Background: Under-five mortality is the likelihood that a baby will pass away before turning exactly 5 years old, represented as a percentage per 1,000 live births. Exploring the spatial distribution and identifying the temporal pattern is important to reducing under-five child mortality globally, including in Ethiopia. Thus, this study aimed to identify the risk factors of under-five mortality and the spatiotemporal variation in Ethiopian administrative zones. Method: This study used the 2000-2016 Ethiopian Demographic and Health Survey (EDHS) data, which were collected using a two-stage sampling method. A total of 43,029 (10,873 in 2000, 9,861 in 2005, 11,654 in 2011, and 10,641 in 2016) weighted sample under-five child mortality was used. The space-time dynamic model was employed to account for spatial and time effects in 65 administrative zones in Ethiopia. Results: From the result of a general nesting spatial-temporal dynamic model, there was a significant space-time interaction effect [γ = -0.1444, 95 % CI (-0.6680, -0.1355)] for under-five mortality. The increase in the percentages of mothers illiteracy [𝛽 = 0.4501, 95% CI (0.2442, 0.6559)], not vaccinated[𝛽= 0.7681, 95% CI (0.5683, 0.9678)], unimproved water[𝛽= 0.5801, CI (0.3793, 0.7808)] were increased death rates for under five children while increased percentage of contraceptive use [𝛽= -0.6609, 95% CI (-0.8636, -0.4582)] and ANC visit > 4 times [𝛽= -0.1585, 95% CI(-0.1812, -0.1357)] were contributed to the decreased under-five mortality rate at the zone in Ethiopia. Conclusions: Even though the mortality rate for children under five has decreased over time, still there is still higher in different zones of Ethiopia. There exists spatial and temporal variation in under-five mortality among zones. Therefore, it is very important to consider spatial neighbourhoods and temporal context when aiming to avoid under-five mortality.

Keywords: under-five children mortality, space-time dynamic, spatiotemporal, Ethiopia

Procedia PDF Downloads 42
825 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 395
824 Comparison of E-learning and Face-to-Face Learning Models Through the Early Design Stage in Architectural Design Education

Authors: Gülay Dalgıç, Gildis Tachir

Abstract:

Architectural design studios are ambiencein where architecture design is realized as a palpable product in architectural education. In the design studios that the architect candidate will use in the design processthe information, the methods of approaching the design problem, the solution proposals, etc., are set uptogetherwith the studio coordinators. The architectural design process, on the other hand, is complex and uncertain.Candidate architects work in a process that starts with abstre and ill-defined problems. This process starts with the generation of alternative solutions with the help of representation tools, continues with the selection of the appropriate/satisfactory solution from these alternatives, and then ends with the creation of an acceptable design/result product. In the studio ambience, many designs and thought relationships are evaluated, the most important step is the early design phase. In the early design phase, the first steps of converting the information are taken, and converted information is used in the constitution of the first design decisions. This phase, which positively affects the progress of the design process and constitution of the final product, is complex and fuzzy than the other phases of the design process. In this context, the aim of the study is to investigate the effects of face-to-face learning model and e-learning model on the early design phase. In the study, the early design phase was defined by literature research. The data of the defined early design phase criteria were obtained with the feedback graphics created for the architect candidates who performed e-learning in the first year of architectural education and continued their education with the face-to-face learning model. The findings of the data were analyzed with the common graphics program. It is thought that this research will contribute to the establishment of a contemporary architectural design education model by reflecting the evaluation of the data and results on architectural education.

Keywords: education modeling, architecture education, design education, design process

Procedia PDF Downloads 143
823 Human Resource Information System: Role in HRM Practices and Organizational Performance

Authors: Ejaz Ali M. Phil

Abstract:

Enterprise Resource Planning (ERP) systems are playing a vital role in effective management of business functions in large and complex organizations. Human Resource Information System (HRIS) is a core module of ERP, providing concrete solutions to implement Human Resource Management (HRM) Practices in an innovative and efficient manner. Over the last decade, there has been considerable increase in the studies on HRIS. Nevertheless, previous studies relatively lacked to examine the moderating role of HRIS in performing HRM practices that may affect the firms’ performance. The current study was carried out to examine the impact of HRM practices (training, performance appraisal) on perceived organizational performance, with moderating role of HRIS, where the system is in place. The study based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) Theories, advocating that strengthening of human capital enables an organization to achieve and sustain competitive advantage which leads to improved organizational performance. Data were collected through structured questionnaire based upon adopted instruments after establishing reliability and validity. The structural equation modeling (SEM) were used to assess the model fitness, hypotheses testing and to establish validity of the instruments through Confirmatory Factor Analysis (CFA). A total 220 employees of 25 firms in corporate sector were sampled through non-probability sampling technique. Path analysis revealing that HRM practices and HRIS have significant positive impact on organizational performance. The results further showed that the HRIS moderated the relationships between training, performance appraisal and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are discussed.

Keywords: enterprise resource planning, human resource, information system, human capital

Procedia PDF Downloads 399
822 Bridge Members Segmentation Algorithm of Terrestrial Laser Scanner Point Clouds Using Fuzzy Clustering Method

Authors: Donghwan Lee, Gichun Cha, Jooyoung Park, Junkyeong Kim, Seunghee Park

Abstract:

3D shape models of the existing structure are required for many purposes such as safety and operation management. The traditional 3D modeling methods are based on manual or semi-automatic reconstruction from close-range images. It occasions great expense and time consuming. The Terrestrial Laser Scanner (TLS) is a common survey technique to measure quickly and accurately a 3D shape model. This TLS is used to a construction site and cultural heritage management. However there are many limits to process a TLS point cloud, because the raw point cloud is massive volume data. So the capability of carrying out useful analyses is also limited with unstructured 3-D point. Thus, segmentation becomes an essential step whenever grouping of points with common attributes is required. In this paper, members segmentation algorithm was presented to separate a raw point cloud which includes only 3D coordinates. This paper presents a clustering approach based on a fuzzy method for this objective. The Fuzzy C-Means (FCM) is reviewed and used in combination with a similarity-driven cluster merging method. It is applied to the point cloud acquired with Lecia Scan Station C10/C5 at the test bed. The test-bed was a bridge which connects between 1st and 2nd engineering building in Sungkyunkwan University in Korea. It is about 32m long and 2m wide. This bridge was used as pedestrian between two buildings. The 3D point cloud of the test-bed was constructed by a measurement of the TLS. This data was divided by segmentation algorithm for each member. Experimental analyses of the results from the proposed unsupervised segmentation process are shown to be promising. It can be processed to manage configuration each member, because of the segmentation process of point cloud.

Keywords: fuzzy c-means (FCM), point cloud, segmentation, terrestrial laser scanner (TLS)

Procedia PDF Downloads 238
821 The Antecedents of Internet Addiction toward Smartphone Usage

Authors: Pui-Lai To, Chechen Liao, Hen-Yi Huang

Abstract:

Twenty years after Internet development, scholars have started to identify the negative impacts brought by the Internet. Overuse of Internet could develop Internet dependency and in turn cause addiction behavior. Therefore understanding the phenomenon of Internet addiction is important. With the joint efforts of experts and scholars, Internet addiction has been officially listed as a symptom that affects public health, and the diagnosis, causes and treatment of the symptom have also been explored. On the other hand, in the area of smartphone Internet usage, most studies are still focusing on the motivation factors of smartphone usage. Not much research has been done on smartphone Internet addiction. In view of the increasing adoption of smartphones, this paper is intended to find out whether smartphone Internet addiction exists in modern society or not. This study adopted the research methodology of online survey targeting users with smartphone Internet experience. A total of 434 effective samples were recovered. In terms of data analysis, Partial Least Square (PLS) in Structural Equation Modeling (SEM) is used for sample analysis and research model testing. Software chosen for statistical analysis is SPSS 20.0 for windows and SmartPLS 2.0. The research result successfully proved that smartphone users who access Internet service via smartphone could also develop smartphone Internet addiction. Factors including flow experience, depression, virtual social support, smartphone Internet affinity and maladaptive cognition all have significant and positive influence on smartphone Internet addiction. In the scenario of smartphone Internet use, descriptive norm has a positive and significant influence on perceived playfulness, while perceived playfulness also has a significant and positive influence on flow experience. Depression, on the other hand, is negatively influenced by actual social support and positive influenced by the virtual social support.

Keywords: internet addiction, smartphone usage, social support, perceived playfulness

Procedia PDF Downloads 249
820 Comparative Study of Flood Plain Protection Zone Determination Methodologies in Colombia, Spain and Canada

Authors: P. Chang, C. Lopez, C. Burbano

Abstract:

Flood protection zones are riparian buffers that are formed to manage and mitigate the impact of flooding, and in turn, protect local populations. The purpose of this study was to evaluate the Guía Técnica de Criterios para el Acotamiento de las Rondas Hídricas in Colombia against international regulations in Canada and Spain, in order to determine its limitations and contribute to its improvement. The need to establish a specific corridor that allows for the dynamic development of a river is clear; however, limitations present in the Colombian Technical Guide are identified. The study shows that international regulations provide similar concepts as used in Colombia, but additionally integrate aspects such as regionalization that allows for a better characterization of the channel way, and incorporate the frequency of flooding and its probability of occurrence in the concept of risk when determining the protection zone. The case study analyzed in Dosquebradas - Risaralda aimed at comparing the application of the different standards through hydraulic modeling. It highlights that the current Colombian standard does not offer sufficient details in its implementation phase, which leads to a false sense of security related to inaccuracy and lack of data. Furthermore, the study demonstrates how the Colombian norm is ill-adapted to the conditions of Dosquebradas typical of the Andes region, both in the social and hydraulic aspects, and does not reduce the risk, nor does it improve the protection of the population. Our study considers it pertinent to include risk estimation as an integral part of the methodology when establishing protect flood zone, considering the particularity of water systems, as they are characterized by an heterogeneous natural dynamic behavior.

Keywords: environmental corridor, flood zone determination, hydraulic domain, legislation flood protection zone

Procedia PDF Downloads 118
819 Numerical Modeling of Air Shock Wave Generated by Explosive Detonation and Dynamic Response of Structures

Authors: Michał Lidner, Zbigniew SzcześNiak

Abstract:

The ability to estimate blast load overpressure properly plays an important role in safety design of buildings. The issue of studying of blast loading on structural elements has been explored for many years. However, in many literature reports shock wave overpressure is estimated with simplified triangular or exponential distribution in time. This indicates some errors when comparing real and numerical reaction of elements. Nonetheless, it is possible to further improve setting similar to the real blast load overpressure function versus time. The paper presents a method of numerical analysis of the phenomenon of the air shock wave propagation. It uses Finite Volume Method and takes into account energy losses due to a heat transfer with respect to an adiabatic process rule. A system of three equations (conservation of mass, momentum and energy) describes the flow of a volume of gaseous medium in the area remote from building compartments, which can inhibit the movement of gas. For validation three cases of a shock wave flow were analyzed: a free field explosion, an explosion inside a steel insusceptible tube (the 1D case) and an explosion inside insusceptible cube (the 3D case). The results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected. Additionally analyses of dynamic response of one of considered structural element were made.

Keywords: adiabatic process, air shock wave, explosive, finite volume method

Procedia PDF Downloads 194
818 Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall

Authors: M. V. Bartashevich

Abstract:

The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia.

Keywords: Heat Flux, Heat Transfer Enhancement, External Blowing, Thin Liquid Film

Procedia PDF Downloads 153