Search results for: thermoplastic poly urethane
443 Optimizing Detection Methods for THz Bio-imaging Applications
Authors: C. Bolakis, I. S. Karanasiou, D. Grbovic, G. Karunasiri, N. Uzunoglu
Abstract:
A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved.Keywords: bio-imaging, fine-tuned absorber, fingerprint, microbolometer
Procedia PDF Downloads 348442 Multi-Walled Carbon Nanotubes as Nucleating Agents
Authors: Rabindranath Jana, Plabani Basu, Keka Rana
Abstract:
Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation
Procedia PDF Downloads 496441 Poly-ε-Caprolactone Nanofibers with Synthetic Growth Factor Enriched Liposomes as Controlled Drug Delivery System
Authors: Vera Sovkova, Andrea Mickova, Matej Buzgo, Karolina Vocetkova, Eva Filova, Evzen Amler
Abstract:
PCL (poly-ε-caprolactone) nanofibrous scaffolds with adhered liposomes were prepared and tested as a possible drug delivery system for various synthetic growth factors. TGFβ, bFGF, and IGF-I have been shown to increase hMSC (human mesenchymal stem cells) proliferation and to induce hMSC differentiation. Functionalized PCL nanofibers were prepared with synthetic growth factors encapsulated in liposomes adhered to them in three different concentrations. Other samples contained PCL nanofibers with adhered, free synthetic growth factors. The synthetic growth factors free medium served as a control. The interaction of liposomes with the PCL nanofibers was visualized by SEM, and the release kinetics were determined by ELISA testing. The potential of liposomes, immobilized on the biodegradable scaffolds, as a delivery system for synthetic growth factors, and as a suitable system for MSCs adhesion, proliferation and differentiation in vitro was evaluated by MTS assay, dsDNA amount determination, confocal microscopy, flow cytometry and real-time PCR. The results showed that the growth factors adhered to the PCL nanofibers stimulated cell proliferation mainly up to day 11 and that subsequently their effect was lower. By contrast, the release of the lowest concentration of growth factors from liposomes resulted in gradual proliferation of MSCs throughout the experiment. Moreover, liposomes, as well as free growth factors, stimulated type II collagen production, which was confirmed by immunohistochemical staining using monoclonal antibody against type II collagen. The results of this study indicate that growth factors enriched liposomes adhered to surface of PCL nanofibers could be useful as a drug delivery instrument for application in short timescales, be combined with nanofiber scaffolds to promote local and persistent delivery while mimicking the local microenvironment. This work was supported by project LO1508 from the Ministry of Education, Youth and Sports of the Czech RepublicKeywords: drug delivery, growth factors, hMSC, liposomes, nanofibres
Procedia PDF Downloads 289440 Graded Orientation of the Linear Polymers
Authors: Levan Nadareishvili, Roland Bakuradze, Barbara Kilosanidze, Nona Topuridze, Liana Sharashidze, Ineza Pavlenishvili
Abstract:
Some regularities of formation of a new structural state of the thermoplastic polymers-gradually oriented (stretched) state (GOS) are discussed. Transition into GOS is realized by the graded oriented stretching-by action of inhomogeneous mechanical field on the isotropic linear polymers or by zonal stretching that is implemented on a standard tensile-testing machine with using a specially designed zone stretching device (ZSD). Both technical approaches (especially zonal stretching method) allows to manage the such quantitative parameters of gradually oriented polymers as a range of change in relative elongation/orientation degree, length of this change and profile (linear, hyperbolic, parabolic, logarithmic, etc.). Uniaxial graded stretching method should be considered as an effective technological solution to create polymer materials with a predetermined gradient of physical properties.Keywords: controlled graded stretching, gradually oriented state, linear polymers, zone stretching device
Procedia PDF Downloads 434439 Developing a Self-Healing Concrete Filler Using Poly(Methyl Methacrylate) Based Two-Part Adhesive
Authors: Shima Taheri, Simon Clark
Abstract:
Concrete is an essential building material used in the majority of structures. Degradation of concrete over time increases the life-cycle cost of an asset with an estimated annual cost of billions of dollars to national economies. Most of the concrete failure occurs due to cracks, which propagate through a structure and cause weakening leading to failure. Stopping crack propagation is thus the key to protecting concrete structures from failure and is the best way to prevent inconveniences and catastrophes. Furthermore, the majority of cracks occur deep within the concrete in inaccessible areas and are invisible to normal inspection. Few materials intrinsically possess self-healing ability, but one that does is concrete. However, self-healing in concrete is limited to small dormant cracks in a moist environment and is difficult to control. In this project, we developed a method for self-healing of nascent fractures in concrete components through the automatic release of self-curing healing agents encapsulated in breakable nano- and micro-structures. The Poly(methyl methacrylate) (PMMA) based two-part adhesive is encapsulated in core-shell structures with brittle/weak inert shell, synthesized via miniemulsion/solvent evaporation polymerization. Stress fields associated with propagating cracks can break these capsules releasing the healing agents at the point where they are needed. The shell thickness is playing an important role in preserving the content until the final setting of concrete. The capsules can also be surface functionalized with carboxyl groups to overcome the homogenous mixing issues. Currently, this formulated self-healing system can replace up to 1% of cement in a concrete formulation. Increasing this amount to 5-7% in the concrete formulation without compromising compression strength and shrinkage properties, is still under investigation. This self-healing system will not only increase the durability of structures by stopping crack propagation but also allow the use of less cement in concrete construction, thereby adding to the global effort for CO2 emission reduction.Keywords: self-healing concrete, concrete crack, concrete deterioration, durability
Procedia PDF Downloads 117438 A Hybrid Film: NiFe₂O₄ Nanoparticles in Poly-3-Hydroxybutyrate as an Antibacterial Agent
Authors: Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Roberto Y. Sato-Berrú
Abstract:
In this work, a hybrid film based on poly-3-hydroxybutyrate (P3HB) and nickel ferrite (NiFe₂O₄) nanoparticles (NPs) was obtained by a simple and reproducible methodology in order to study its antibacterial and cytotoxic properties. The motivation for this research is the current antimicrobial resistance (RAM). This is a threat to human health and development worldwide. RAM is caused by the emergence of bacterial strains resistant to traditional antibiotics that were used as treatment. Due to this, the need to investigate new alternatives for preventing and treating bacterial infections emerges. In this sense, metal oxide NPs have aroused great interest due to their unique physicochemical properties. However, their use is limited by the nanostructured nature, commonly obtained by chemical and physical synthesis methods, as powders or colloidal dispersions. Therefore, the incorporation of nanostructured materials in polymer matrices to obtain hybrid materials that allow disinfecting and preventing the spread of bacteria on various surfaces. Accordingly, this work presents the synthesis and study of the antibacterial properties of the P3HB@NiFe₂O₄ hybrid film as a potential material to inhibit bacterial growth. The NiFe₂O₄ NPs were previously synthesized by a mechanochemical method. The P3HB and P3HB@NiFe₂O₄ films were obtained by the solvent casting method. The films were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD pattern showed that the NiFe₂O₄ NPs were incorporated into the P3HB polymer matrix and retained their nanometric sizes. By energy dispersive X-ray spectroscopy (EDS), it was observed that the NPs are homogeneously distributed in the film. The bactericidal effect of the films obtained was evaluated in vitro using the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth results showed that the P3HB@NiFe₂O₄ hybrid film was inhibited by 97% and 96% for S. aureus and P. aeruginosa, respectively. Surprisingly, the P3HB film inhibited both bacterial strains by around 90%. The cytotoxicity of the NiFe₂O₄ NPs, P3HB@NiFe₂O₄ hybrid film, and the P3HB film was evaluated using human skin cells, keratinocytes, and fibroblasts, finding that the NPs are biocompatible. The P3HB film and hybrids are cytotoxic, which demonstrated that although P3HB is known and reported as a biocompatible polymer, under our work conditions, P3HB was cytotoxic. Its bactericidal effect could be related to this activity. Its films are bactericidal and cytotoxic to keratinocytes and fibroblasts, the first barrier of human skin. Despite this, the hybrid film of P3HB@NiFe₂O₄ presents synergy with the bactericidal effect between P3HB and NPs, increasing bacterial inhibition. In addition, NPs decrease the cytotoxicity of P3HB to keratinocytes. The methodology used in this work was successful in producing hybrid films with antibacterial activity. However, future challenges are generated to find relationships between NPs and P3HB that allow taking advantage of their bactericidal properties and do not compromise biocompatibility.Keywords: poly-3-hydroxybutyrate, nanoparticles, hybrid film, antibacterial
Procedia PDF Downloads 82437 Self-Healing Hydrogel Triggered by Magnetic Microspheres to Control Glutathione Release for Cartilage Repair
Authors: I-Yun Cheng, Min-Yu Chiang, Shwu-Jen Chang, San-Yuan Chen
Abstract:
Osteoarthritis (OA) is among the most challenging joint diseases, and as far as we know, there is currently no exact and effective cure for it because it has low self-repair ability due to lack of blood vessels and low cell density in articular cartilage. So far, there have been several methods developed to treat cartilage disorder. The most common method is to treat the high molecular weight of hyaluronic acid (HA) injection, but it will degrade after a period of time, so the patients need to inject HA repeatedly. In recent years, self-healing hydrogel has drawn considerable attention because it can recover its initial mechanical properties after damaged and further increase the lifetime of the hydrogel. Here, we aim to develop a self-healable composite hydrogel combined with magnetic microspheres to trigger glutathione(GSH) release for promoting cartilage repair. We use HA-cyclodextrin (CD) as host polymer and poly(acrylic acid)-ferrocene (pAA-Fc) as guest polymer to form the self-healable HA-pAA hydrogel by host and guest interaction where various graft amount of pAA-Fc (pAA:Fc= 1:2, 1:1.5, 1:1, 2:1, 4:1) was conducted to develop different mechanical strength hydrogel. The rheology analysis showed that the 4:1 of pAA-Fc has higher mechanical strength than other formulations. On the other hand, iron oxide nanoparticle, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI) were used to synthesize porous magnetic microspheres via double emulsification water-in-oil-in-water (W/O/W) to increase GSH loading which acted as a reductant to control the hydrogel crosslink density and promote hydrogel self-healing. The results show that the porous magnetic microspheres can be loaded with 70% of GSH and sustained release about 50% of GSH after 24 hours. More importantly, the HA-pAA composite hydrogel can self-heal rapidly within 24 hours when suffering external force destruction by releasing GSH from the magnetic microspheres. Therefore, the developed the HA-pAA composite hydrogel combined with GSH-loaded magnetic microspheres can be in-vivo guided to damaged OA surface for inducing the cartilage repair by controlling the crosslinking of self-healing hydrogel via GSH release.Keywords: articular cartilage, magnetic microsphere, osteoarthritis, self-healing hydrogel
Procedia PDF Downloads 132436 Charge Transport of Individual Thermoelectric Bi₂Te₃ Core-Poly(3,4-Ethylenedioxythiophene):Polystyrenesulfonate Shell Nanowires Determined Using Conductive Atomic Force Microscopy and Spectroscopy
Authors: W. Thongkham, K. Sinthiptharakoon, K. Tantisantisom, A. Klamchuen, P. Khanchaitit, K. Jiramitmongkon, C. Lertsatitthanakorn, M. Liangruksa
Abstract:
Due to demands of sustainable energy, thermoelectricity converting waste heat into electrical energy has become one of the intensive fields of worldwide research. However, such harvesting technology has shown low device performance in the temperature range below 150℃. In this work, a hybrid nanowire of inorganic bismuth telluride (Bi₂Te₃) and organic poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) synthesized using a simple in-situ one-pot synthesis, enhancing efficiency of the nanowire-incorporated PEDOT:PSS-based thermoelectric converter is highlighted. Since the improvement is ascribed to the increased electrical conductivity of the thermoelectric host material, the individual hybrid nanowires are investigated using voltage-dependent conductive atomic force microscopy (CAFM) and spectroscopy (CAFS) considering that the electrical transport measurement can be performed either on insulating or conducting areas of the sample. Correlated with detailed chemical information on the crystalline structure and compositional profile of the nanowire core-shell structure, an electrical transporting pathway through the nanowire and the corresponding electronic-band structure have been determined, in which the native oxide layer on the Bi₂Te₃ surface is not considered, and charge conduction on the topological surface states of Bi₂Te₃ is suggested. Analyzing the core-shell nanowire synthesized using the conventional mixing of as-prepared Bi₂Te₃ nanowire with PEDOT:PSS for comparison, the oxide-removal effect of the in-situ encapsulating polymeric layer is further supported. The finding not only provides a structural information for mechanistic determination of the thermoelectricity, but it also encourages new approach toward more appropriate encapsulation and consequently higher efficiency of the nanowire-based thermoelectric generation.Keywords: electrical transport measurement, hybrid Bi₂Te₃-PEDOT:PSS nanowire, nanoencapsulation, thermoelectricity, topological insulator
Procedia PDF Downloads 205435 Injection of Bradykinin in Femoral Artery Elicits Cardiorespiratory Reflexes Involving Perivascular Afferents in Rat Models
Authors: Sanjeev K. Singh, Maloy B. Mandal, Revand R.
Abstract:
The physiology of baroreceptors and chemoreceptors present in large blood vessels of the heart is well known in regulation of cardiorespiratory functions. Since large blood vessels and peripheral blood vessels are of same mesodermal origin, therefore, involvement of the latter in regulation of cardiorespiratory system is expected. Role of perivascular nerves in mediating cardiorespiratory alterations produced after intra-arterial injection of a nociceptive agent (bradykinin) was examined in urethane anesthetized male rats. Respiratory frequency, blood pressure, and heart rate were recorded for 30 min after the retrograde injection of bradykinin/saline in the femoral artery. In addition, paw edema was determined and water content was expressed as percentage of wet weight. Injection of bradykinin produced immediate tachypnoeic, hypotensive and bradycardiac responses of shorter latency (5-8 s) favoring the neural mechanisms involved in it. Injection of equi-volume of saline did not produce any responses and served as time matched control. Paw edema was observed in the ipsilateral hind limb. Pretreatment with diclofenac sodium significantly attenuated the bradykinin-induced responses and also blocked the paw edema. Ipsilateral femoral and sciatic nerve sectioning attenuated bradykinin-induced responses significantly indicating the origin of responses from the local vascular bed. Administration of bradykinin in the segment of an artery produced reflex cardiorespiratory changes by stimulating the perivascular nociceptors involving prostaglandins. This is a novel study exhibiting the role of peripheral blood vessels in regulation of cardiorespiratory system.Keywords: vasosensory reflex, cardiorespiratory changes, nociceptive agent, bradykinin, VR1 receptors
Procedia PDF Downloads 148434 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography
Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias
Abstract:
In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA
Procedia PDF Downloads 330433 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives
Authors: Dong Xie, Jun Zhao, Yiming Weng
Abstract:
One of the challenges in dental cement biomaterials is how to make a restorative with mechanical strengths and wear resistance that are comparable to contemporary dental resin composites. Currently none of the dental cement restoratives has been used in high stress-bearing sites due to their low mechanical strengths and poor wear-resistance. The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37 oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37-55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.Keywords: dental materials, polymers, strength, biomaterials
Procedia PDF Downloads 441432 Analysis of Bending Abilities of Soft Pneumatic Actuator
Authors: Jeevan Balaji, Shreyas Chigurupati
Abstract:
Pneumatic gripper use compressed air to operate its actuators (fingers). Unlike the conventional metallic gripper, a soft pneumatic actuator (SPA) can be used for relocating fragile objects. An added advantage for this gripper is that the pressure exerted on the object can be varied by changing the dimensions of the air chambers and also by the number of chambers. SPAs have many benefits over conventional robots in the military, medical fields because of their compliance nature and are easily produced using the 3D printing process. In the paper, SPA is proposed to perform pick and place tasks. A design was developed for the actuators, which is convenient for gripping any fragile objects. Thermoplastic polyurethane (TPU) is used for 3D printing the actuators. The actuator model behaves differently as the parameters such as its chamber height, number of chambers change. A detailed FEM model of the actuator is drafted for different pressure inputs using ABAQUS CAE software, and a safe loading pressure range is found.Keywords: soft robotics, pneumatic actuator, design and modelling, bending analysis
Procedia PDF Downloads 166431 Tri/Tetra-Block Copolymeric Nanocarriers as a Potential Ocular Delivery System of Lornoxicam: Experimental Design-Based Preparation, in-vitro Characterization and in-vivo Estimation of Transcorneal Permeation
Authors: Alaa Hamed Salama, Rehab Nabil Shamma
Abstract:
Introduction: Polymeric micelles that can deliver drug to intended sites of the eye have attracted much scientific attention recently. The aim of this study was to review the aqueous-based formulation of drug-loaded polymeric micelles that hold significant promise for ophthalmic drug delivery. This study investigated the synergistic performance of mixed polymeric micelles made of linear and branched poly (ethylene oxide)-poly (propylene oxide) for the more effective encapsulation of Lornoxicam (LX) as a hydrophobic model drug. Methods: The co-micellization process of 10% binary systems combining different weight ratios of the highly hydrophilic poloxamers; Synperonic® PE/P84, and Synperonic® PE/F127 and the hydrophobic poloxamine counterpart (Tetronic® T701) was investigated by means of photon correlation spectroscopy and cloud point. The drug-loaded micelles were tested for their solubilizing capacity towards LX. Results: Results showed a sharp solubility increase from 0.46 mg/ml up to more than 4.34 mg/ml, representing about 136-fold increase. Optimized formulation was selected to achieve maximum drug solubilizing power and clarity with lowest possible particle size. The optimized formulation was characterized by 1HNMR analysis which revealed complete encapsulation of the drug within the micelles. Further investigations by histopathological and confocal laser studies revealed the non-irritant nature and good corneal penetrating power of the proposed nano-formulation. Conclusion: LX-loaded polymeric nanomicellar formulation was fabricated allowing easy application of the drug in the form of clear eye drops that do not cause blurred vision or discomfort, thus achieving high patient compliance.Keywords: confocal laser scanning microscopy, Histopathological studies, Lornoxicam, micellar solubilization
Procedia PDF Downloads 449430 A Review on Development of Pedicle Screws and Characterization of Biomaterials for Fixation in Lumbar Spine
Authors: Shri Dubey, Jamal Ghorieshi
Abstract:
Instability of the lumbar spine is caused by various factors that include degenerative disc, herniated disc, traumatic injuries, and other disorders. Pedicle screws are widely used as a main fixation device to construct rigid linkages of vertebrae to provide a fully functional and stable spine. Various technologies and methods have been used to restore the stabilization. However, loosening of pedicle screws is the main cause of concerns for neurosurgeons. This could happen due to poor bone quality with osteoporosis as well as types of pedicle screw used. Compatibilities and stabilities of pedicle screws with bone depend on design (thread design, length, and diameter) and material. Grip length and pullout strength affect the motion and stability of the spine when it goes through different phases such as extension, flexion, and rotation. Pullout strength of augmented pedicle screws is increased in both primary and salvage procedures by 119% (p = 0.001) and 162% (p = 0.01), respectively. Self-centering pedicle screws at different trajectories (0°, 10°, 20°, and 30°) show the same pullout strength as insertion in a straight-ahead trajectory. The outer cylindrical and inner conical shape of pedicle screws show the highest pullout strength in Grades 5 and 15 foams (synthetic bone). An outer cylindrical and inner conical shape with a V-shape thread exhibit the highest pullout strength in all foam grades. The maximum observed pullout strength is at axial pullout configuration at 0°. For Grade 15 (240 kg/m³) foam, there is a decline in pull out strength. The largest decrease in pullout strength is reported for Grade 10 (160 kg/m³) foam. The maximum pullout strength of 2176 N (0.32-g/cm³ Sawbones) on all densities. Type 1 Pedicle screw shows the best fixation due to smaller conical core diameter and smaller thread pitch (Screw 2 with 2 mm; Screws 1 and 3 with 3 mm).Keywords: polymethylmethacrylate, PMMA, classical pedicle screws, CPS, expandable poly-ether-ether-ketone shell, EPEEKS, includes translaminar facet screw, TLFS, poly-ether-ether-ketone, PEEK, transfacetopedicular screw, TFPS
Procedia PDF Downloads 155429 Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering
Authors: Aleksandra BužArovska, Gordana Bogoeva Gaceva
Abstract:
Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation.Keywords: biodegradation, bone tissue engineering, mineralization, PLA scaffolds
Procedia PDF Downloads 269428 Enhanced Poly Fluoroalkyl Substances Degradation in Complex Wastewater Using Modified Continuous Flow Nonthermal Plasma Reactor
Authors: Narasamma Nippatlapallia
Abstract:
Communities across the world are desperate to get their environment free of toxic per-poly fluoroalkyl substances (PFAS) especially when these chemicals are in aqueous media. In the present study, two different chain length PFAS (PFHxA (C6), PFDA (C10)) are selected for degradation using a modified continuous flow nonthermal plasma. The results showed 82.3% PFHxA and 94.1 PFDA degradation efficiencies, respectively. The defluorination efficiency is also evaluated which is 28% and 34% for PFHxA and PFDA, respectively. The results clearly indicates that the structure of PFAS has a great impact on degradation efficiency. The effect of flow rate is studied. increase in flow rate beyond 2 mL/min, decrease in degradation efficiency of the targeted PFAS was noticed. PFDA degradation was decreased from 85% to 42%, and PFHxA was decreased to 32% from 64% with increase in flow rate from 2 to 5 mL/min. Similarly, with increase in flow rate the percentage defluorination was decreased for both C10, and C6 compounds. This observation can be attributed to mainly because of change in residence time (contact time). Real water/wastewater is a composition of various organic, and inorganic ions that may affect the activity of oxidative species such as 𝑂𝐻. radicals on the target pollutants. Therefore, it is important to consider radicals quenching chemicals to understand the efficiency of the reactor. In gas-liquid NTP discharge reactors 𝑂𝐻. , 𝑒𝑎𝑞 − , 𝑂 . , 𝑂3, 𝐻2𝑂2, 𝐻. are often considered as reactive species for oxidation and reduction of pollutants. In this work, the role played by two distinct 𝑂 .𝐻 Scavengers, ethanol and glycerol, on PFAS percentage degradation, and defluorination efficiency (i,e., fluorine removal) are measured was studied. The addition of scavenging agents to the PFAS solution diminished the PFAS degradation to different extents depending on the target compound molecular structure. In comparison with the degradation of only PFAS solution, the addition of 1.25 M ethanol inhibited C10, and C6 degradation by 8%, and 12%, respectively. This research was supported with energy efficiency, production rate, and specific yield, fluoride, and PFAS concentration analysis with respect to optimum hydraulic retention time (HRT) of the continuous flow reactor.Keywords: wastewater, PFAS, nonthermal plasma, mineralization, defluorination
Procedia PDF Downloads 29427 Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation
Authors: Salwa Mohamed Salah Eldin, Howida Kamal Ibrahim
Abstract:
Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption.Keywords: biodegradable polymers, cation-exchange resin, microencapsulation, venlafaxine hcl
Procedia PDF Downloads 394426 Numerical Tools for Designing Multilayer Viscoelastic Damping Devices
Authors: Mohammed Saleh Rezk, Reza Kashani
Abstract:
Auxiliary damping has gained popularity in recent years, especially in structures such as mid- and high-rise buildings. Distributed damping systems (typically viscous and viscoelastic) or reactive damping systems (such as tuned mass dampers) are the two types of damping choices for such structures. Distributed VE dampers are normally configured as braces or damping panels, which are engaged through relatively small movements between the structural members when the structure sways under wind or earthquake loading. In addition to being used as stand-alone dampers in distributed damping applications, VE dampers can also be incorporated into the suspension element of tuned mass dampers (TMDs). In this study, analytical and numerical tools for modeling and design of multilayer viscoelastic damping devices to be used in dampening the vibration of large structures are developed. Considering the limitations of analytical models for the synthesis and analysis of realistic, large, multilayer VE dampers, the emphasis of the study has been on numerical modeling using the finite element method. To verify the finite element models, a two-layer VE damper using ½ inch synthetic viscoelastic urethane polymer was built, tested, and the measured parameters were compared with the numerically predicted ones. The numerical model prediction and experimentally evaluated damping and stiffness of the test VE damper were in very good agreement. The effectiveness of VE dampers in adding auxiliary damping to larger structures is numerically demonstrated by chevron bracing one such damper numerically into the model of a massive frame subject to an abrupt lateral load. A comparison of the responses of the frame to the aforementioned load, without and with the VE damper, clearly shows the efficacy of the damper in lowering the extent of frame vibration.Keywords: viscoelastic, damper, distributed damping, tuned mass damper
Procedia PDF Downloads 107425 Synthesis and Study the Effect of HNTs on PVA/Chitosan Composite Material
Authors: Malek Ali
Abstract:
Composites materials of Poly (vinyl alcohol) (PVA)/Chitosan (CS) have been synthesized and characterized successfully. HNTs have been added to composites to enhance the mechanical and degradation properties by hydrogen bonding interactions, compatibility, and chemical crosslink between HNTs and PVA. PVA/CS/HNTs composites prepared with different concentration ratio. SEM micrographs of composites surface showed that more agglomeration with more chitosan ratio. Mechanical and degradation properties were characterized and the result indicates that Mechanical and degradation of 80%PVA/5%Chitosan/15%HNTs higher than the others PVA/CS/HNTs composites.Keywords: PVA/chitosan, composites, PVA/CS/HNTs, HNTs
Procedia PDF Downloads 292424 Soliton Solutions in (3+1)-Dimensions
Authors: Magdy G. Asaad
Abstract:
Solitons are among the most beneficial solutions for science and technology for their applicability in physical applications including plasma, energy transport along protein molecules, wave transport along poly-acetylene molecules, ocean waves, constructing optical communication systems, transmission of information through optical fibers and Josephson junctions. In this talk, we will apply the bilinear technique to generate a class of soliton solutions to the (3+1)-dimensional nonlinear soliton equation of Jimbo-Miwa type. Examples of the resulting soliton solutions are computed and a few solutions are plotted.Keywords: Pfaffian solutions, N-soliton solutions, soliton equations, Jimbo-Miwa
Procedia PDF Downloads 453423 Hydroponic Cultivation Enhances the Morpho-Physiological Traits and Quality Flower Production in Tagetes patula L
Authors: Ujala, Diksha Sharma, Mahinder Partap, Ashish R. Warghat, Bhavya Bhargava
Abstract:
In soil-less agriculture, hydroponic is considered a potential farming system for the production of uniform quality plant material in significantly less time. Therefore, for the first time, the current investigation corroborates the effect of different cultivation conditions (open-field, poly-house, and hydroponic) on morpho-physiological traits, phenolic content, and essential oil components analysis in three flower color variants (yellow, scarlet red, and orange) of Tagetes patula. The results revealed that the maximum plant height, number of secondary branches, number of flowers, photosynthesis, stomatal conductance, and transpiration rate were observed under the hydroponic system as compared to other conditions. However, the maximum content of gallic acid (0.82 mg/g DW), syringic acid (3.98 mg/g DW), epicatechin (0.48 mg/g DW), p-coumaric acid (7.28 mg/g DW), protocatechuic acid (0.59 mg/g DW), ferulic acid (2.58 mg/g DW), and luteolin (8.24 mg/g DW) were quantified maximally under open-field conditions. However, under hydroponic conditions, the higher content of vanillic acid (0.43 mg/g DW), caffeic acid (0.49 mg/g DW), and quercetin (0.92 mg/g DW) were quantified. Moreover, a total of nineteen volatile components were identified in the essential oil of different flower color variants of T. patula cultivated under different conditions. The major reported volatile components in essential oil were (-)-caryophyllene oxide, trans-β-caryophyllene, trans-geraniol, 3 methyl-benzyl alcohol, and 2,2’:5’,2”-terthiophene. It has also been observed that the volatile component percentage range in all variants was observed in open-field (70.85 % to 90.54 %), poly-house (59.03 % to 77.93 %), and hydroponic (68.78 % to 89.41 %). In conclusion, the research highlighted that morpho-physiological performance with flower production was enhanced in the hydroponic system. However, phenolic content and volatile components were maximally observed in open-field conditions. However, significant results have been reported under hydroponic conditions in all studied parameters, so it could be a potential strategy for quality biomass production in T. patula.Keywords: Tagetes patula, cultivation conditions, hydroponic, morpho-physiology
Procedia PDF Downloads 74422 Photoelectrical Stimulation for Cancer Therapy
Authors: Mohammad M. Aria, Fatma Öz, Yashar Esmaeilian, Marco Carofiglio, Valentina Cauda, Özlem Yalçın
Abstract:
Photoelectrical stimulation of cells with semiconductor organic polymers have been shown promising applications in neuroprosthetics such as retinal prosthesis. Photoelectrical stimulation of the cell membranes can be induced through a photo-electric charge separation mechanism in the semiconductor materials, and it can alter intracellular calcium level through both stimulation of voltage-gated ion channels and increase of intracellular reactive oxygen species (ROS) level. On the other hand, targeting voltage-gated ion channels in cancer cells to induce cell apoptosis through calcium signaling alternation is an effective mechanism which has been explained before. In this regard, remote control of the voltage-gated ion channels aimed to alter intracellular calcium by using photo-active organic polymers can be novel technology in cancer therapy. In this study, we used P (ITO/Indium thin oxide)/P3HT(poly(3-hexylthiophene-2,5-diyl)) and PN (ITO/ZnO/P3HT) photovoltaic junctions to stimulate MDA-MB-231 breast cancer cells. We showed that the photo-stimulation of breast cancer cells through photo capacitive current generated by the photovoltaic junctions are able to excite the cells and alternate intracellular calcium based on the calcium imaging (at 8mW/cm² green light intensity and 10-50 ms light durations), which has been reported already to safety stimulate neurons. The control group did not undergo light treatment and was cultured in T-75 flasks. We detected 20-30% cell death for ITO/P3HT and 51-60% cell death for ITO/ZnO/P3HT samples in the light treated MDA-MB-231 cell group. Western blot analysis demonstrated poly(ADP-ribose) polymerase (PARP) activated cell death in the light treated group. Furthermore, Annexin V and PI fluorescent staining indicated both apoptosis and necrosis in treated cells. In conclusion, our findings revealed that the photoelectrical stimulation of cells (through long time overstimulation) can induce cell death in cancer cells.Keywords: Ca²⁺ signaling, cancer therapy, electrically excitable cells, photoelectrical stimulation, voltage-gated ion channels
Procedia PDF Downloads 177421 Evaluation of the Fire Propagation Characteristics of Thermoplastics
Authors: Ji-Hun Choi, Kyoung-Suk Cho, Seung-Un Chae
Abstract:
Consisting of organic compounds, plastic ignites easily and burns fast. In addition, a large amount of toxic gas is produced while it is burning. When plastic is heated, its volume decreases because its surface is melted. The decomposition of its molecular bond generates combustible liquid of low viscosity, which accelerates plastic combustion and spreads the flames. Radiant heat produced in the process propagates the fire to increase the risk of human and property damages. Accordingly, the purpose of this study was to identify chemical, thermal and combustion characteristics of thermoplastic plastics using the fire propagation apparatus based on experimental criteria of ISO 12136 and ASTM E 2058. By the experiment result, as the ignition time increased, the thermal response parameter (TRP) decreased and as the TRP increased, the slope decreased. In other words, the large the TRP was, the longer the time taken for heating and ignition of the material was. It was identified that the fire propagation speed dropped accordingly.Keywords: fire propagation apparatus (FPA), ISO 12136, thermal response parameter (TRP), fire propagation index (FPI)
Procedia PDF Downloads 202420 Study of the Montmorillonite Effect on PET/Clay and PEN/Clay Nanocomposites
Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour
Abstract:
Nanocomposite polymer / clay are relatively important area of research. These reinforced plastics have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters ie polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/ poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This was evidence that both PET/PEN and nPET/nPEN blends are compatible in the entire range of compositions. In addition, the nPET/nPEN blends showed lower Tc and higher Tm values than the corresponding neat PET/PEN blends. In conclusion, the results obtained indicate that n(PET/PEN) blends are different from the pure ones in nanostructure and physical behavior.Keywords: blends, exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing
Procedia PDF Downloads 298419 Ultrasensitive Detection and Discrimination of Cancer-Related Single Nucleotide Polymorphisms Using Poly-Enzyme Polymer Bead Amplification
Authors: Lorico D. S. Lapitan Jr., Yihan Xu, Yuan Guo, Dejian Zhou
Abstract:
The ability of ultrasensitive detection of specific genes and discrimination of single nucleotide polymorphisms is important for clinical diagnosis and biomedical research. Herein, we report the development of a new ultrasensitive approach for label-free DNA detection using magnetic nanoparticle (MNP) assisted rapid target capture/separation in combination with signal amplification using poly-enzyme tagged polymer nanobead. The sensor uses an MNP linked capture DNA and a biotin modified signal DNA to sandwich bind the target followed by ligation to provide high single-nucleotide polymorphism discrimination. Only the presence of a perfect match target DNA yields a covalent linkage between the capture and signal DNAs for subsequent conjugation of a neutravidin-modified horseradish peroxidase (HRP) enzyme through the strong biotin-nuetravidin interaction. This converts each captured DNA target into an HRP which can convert millions of copies of a non-fluorescent substrate (amplex red) to a highly fluorescent product (resorufin), for great signal amplification. The use of polymer nanobead each tagged with thousands of copies of HRPs as the signal amplifier greatly improves the signal amplification power, leading to greatly improved sensitivity. We show our biosensing approach can specifically detect an unlabeled DNA target down to 10 aM with a wide dynamic range of 5 orders of magnitude (from 0.001 fM to 100.0 fM). Furthermore, our approach has a high discrimination between a perfectly matched gene and its cancer-related single-base mismatch targets (SNPs): It can positively detect the perfect match DNA target even in the presence of 100 fold excess of co-existing SNPs. This sensing approach also works robustly in clinical relevant media (e.g. 10% human serum) and gives almost the same SNP discrimination ratio as that in clean buffers. Therefore, this ultrasensitive SNP biosensor appears to be well-suited for potential diagnostic applications of genetic diseases.Keywords: DNA detection, polymer beads, signal amplification, single nucleotide polymorphisms
Procedia PDF Downloads 249418 Synthesis, Characterization and Applications of Novel Hydrogels Based On Chitosan Derivatives
Authors: Mahmoud H. Aboul-Ela, Riham R. Mohamed, Magdy W. Sabaa
Abstract:
Synthesis of cross-linked hydrogels composed of trimethyl chitosan (TMC) and poly(vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, XRD, SEM and TGA. The prepared hydrogels were investigated as adsorbent materials for some transition metal ions from their aqueous solutions. Moreover, the swell ability of the prepared hydrogels was also investigated in both acidic and alkaline pHs, as well as in simulated body fluid (SBF).Keywords: trimethyl chitosan, hydrogels, metal uptake, superabsorbent materials
Procedia PDF Downloads 391417 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs
Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha
Abstract:
Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide
Procedia PDF Downloads 373416 A Facile One Step Modification of Poly(dimethylsiloxane) via Smart Polymers for Biomicrofluidics
Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta
Abstract:
Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. It is easily patterned and can replicate features down to nanometers. Its flexibility, gas permeability that allows oxygenation, and low cost also drive its wide adoption. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant non-specific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. While silicon, glass, and thermoplastics have been used, they come with problems of their own such as rigidity, high cost, and special tooling needs, which limit their use to a smaller user base. Many strategies to alleviate these common problems with PDMS are lack of general practical applicability, or have limited shelf lives in terms of the modifications they achieve. This restricts large scale implementation and adoption by industrial and research communities. Accordingly, we aim to tailor biocompatible PDMS surfaces by developing a simple and one step bulk modification approach with novel smart materials to reduce non-specific molecular adsorption and to stabilize long-term cell analysis with PDMS substrates. Smart polymers that blended with PDMS during device manufacture, spontaneously segregate to surfaces when in contact with aqueous solutions and create a < 1 nm layer that reduces non-specific adsorption of organic and biomolecules. Our methods are fully compatible with existing PDMS device manufacture protocols without any additional processing steps. We have demonstrated that our modified PDMS microfluidic system is effective at blocking the adsorption of proteins while retaining the viability of primary rat hepatocytes and preserving the biocompatibility, oxygen permeability, and transparency of the material. We expect this work will enable the development of fouling-resistant biomedical materials from microfluidics to hospital surfaces and tubing.Keywords: cell culture, microfluidics, non-specific protein adsorption, PDMS, smart polymers
Procedia PDF Downloads 294415 Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes
Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari
Abstract:
In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL.Keywords: surface modification, layer-by-layer technique, weak polyelectrolytes, adsorption-desorption behavior
Procedia PDF Downloads 64414 0.13-μm CMOS Vector Modulator for Wireless Backhaul System
Authors: J. S. Kim, N. P. Hong
Abstract:
In this paper, a CMOS vector modulator designed for wireless backhaul system based on 802.11ac is presented. A poly phase filter and sign select switches yield two orthogonal signal paths. Two variable gain amplifiers with strongly reduced phase shift of only ±5 ° are used to weight these paths. It has a phase control range of 360 ° and a gain range of -10 dB to 10 dB. The current drawn from a 1.2 V supply amounts 20.4 mA. Using a 0.13 mm technology, the chip die area amounts 1.47x0.75 mm².Keywords: CMOS, phase shifter, backhaul, 802.11ac
Procedia PDF Downloads 386