Search results for: statistical monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6946

Search results for: statistical monitoring

6616 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors

Authors: João Filipe Papel, Tatsuji Munaka

Abstract:

With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.

Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living

Procedia PDF Downloads 104
6615 Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History

Authors: Joel M. De La Rosa R.

Abstract:

In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors.

Keywords: vertical shaft, flotation method, very soft clays, construction supervision

Procedia PDF Downloads 188
6614 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 72
6613 Assessment of Hepatosteatosis Among Diabetic and Nondiabetic Patients Using Biochemical Parameters and Noninvasive Imaging Techniques

Authors: Tugba Sevinc Gamsiz, Emine Koroglu, Ozcan Keskin

Abstract:

Aim: Nonalcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease in the general population. The higher mortality and morbidity among NAFLD patients and lack of symptoms makes early detection and management important. In our study, we aimed to evaluate the relationship between noninvasive imaging and biochemical markers in diabetic and nondiabetic patients diagnosed with NAFLD. Materials and Methods: The study was conducted from (September 2017) to (December 2017) on adults admitted to Internal Medicine and Gastroenterology outpatient clinics with hepatic steatosis reported on ultrasound or transient elastography within the last six months that exclude patients with other liver diseases or alcohol abuse. The data were collected and analyzed retrospectively. Number cruncher statistical system (NCSS) 2007 program was used for statistical analysis. Results: 116 patients were included in this study. Diabetic patients compared to nondiabetics had significantly higher Controlled Attenuation Parameter (CAP), Liver Stiffness Measurement (LSM) and fibrosis values. Also, hypertension, hepatomegaly, high BMI, hypertriglyceridemia, hyperglycemia, high A1c, and hyperuricemia were found to be risk factors for NAFLD progression to fibrosis. Advanced fibrosis (F3, F4) was present in 18,6 % of all our patients; 35,8 % of diabetic and 5,7 % of nondiabetic patients diagnosed with hepatic steatosis. Conclusion: Transient elastography is now used in daily clinical practice as an accurate noninvasive tool during follow-up of patients with fatty liver. Early diagnosis of the stage of liver fibrosis improves the monitoring and management of patients, especially in those with metabolic syndrome criteria.

Keywords: diabetes, elastography, fatty liver, fibrosis, metabolic syndrome

Procedia PDF Downloads 152
6612 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients

Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner

Abstract:

In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.

Keywords: acoustic emission, damage detection, shaking table test, structural health monitoring

Procedia PDF Downloads 231
6611 The Effect of Precipitation on Weed Infestation of Spring Barley under Different Tillage Conditions

Authors: J. Winkler, S. Chovancová

Abstract:

The article deals with the relation between rainfall in selected months and subsequent weed infestation of spring barley. The field experiment was performed at Mendel University agricultural enterprise in Žabčice, Czech Republic. Weed infestation was measured in spring barley vegetation in years 2004 to 2012. Barley was grown in three tillage variants: conventional tillage technology (CT), minimization tillage technology (MT), and no tillage (NT). Precipitation was recorded in one-day intervals. Monthly precipitation was calculated from the measured values in the months of October through to April. The technique of canonical correspondence analysis was applied for further statistical processing. 41 different species of weeds were found in the course of the 9-year monitoring period. The results clearly show that precipitation affects the incidence of most weed species in the selected months, but acts differently in the monitored variants of tillage technologies.

Keywords: weeds, precipitation, tillage, weed infestation forecast

Procedia PDF Downloads 498
6610 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 364
6609 A Novel Software Model for Enhancement of System Performance and Security through an Optimal Placement of PMU and FACTS

Authors: R. Kiran, B. R. Lakshmikantha, R. V. Parimala

Abstract:

Secure operation of power systems requires monitoring of the system operating conditions. Phasor measurement units (PMU) are the device, which uses synchronized signals from the GPS satellites, and provide the phasors information of voltage and currents at a given substation. The optimal locations for the PMUs must be determined, in order to avoid redundant use of PMUs. The objective of this paper is to make system observable by using minimum number of PMUs & the implementation of stability software at 22OkV grid for on-line estimation of the power system transfer capability based on voltage and thermal limitations and for security monitoring. This software utilizes State Estimator (SE) and synchrophasor PMU data sets for determining the power system operational margin under normal and contingency conditions. This software improves security of transmission system by continuously monitoring operational margin expressed in MW or in bus voltage angles, and alarms the operator if the margin violates a pre-defined threshold.

Keywords: state estimator (SE), flexible ac transmission systems (FACTS), optimal location, phasor measurement units (PMU)

Procedia PDF Downloads 409
6608 Statistical Randomness Testing of Some Second Round Candidate Algorithms of CAESAR Competition

Authors: Fatih Sulak, Betül A. Özdemir, Beyza Bozdemir

Abstract:

In order to improve symmetric key research, several competitions had been arranged by organizations like National Institute of Standards and Technology (NIST) and International Association for Cryptologic Research (IACR). In recent years, the importance of authenticated encryption has rapidly increased because of the necessity of simultaneously enabling integrity, confidentiality and authenticity. Therefore, at January 2013, IACR announced the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR Competition) which will select secure and efficient algorithms for authenticated encryption. Cryptographic algorithms are anticipated to behave like random mappings; hence, it is important to apply statistical randomness tests to the outputs of the algorithms. In this work, the statistical randomness tests in the NIST Test Suite and the other recently designed randomness tests are applied to six second round algorithms of the CAESAR Competition. It is observed that AEGIS achieves randomness after 3 rounds, Ascon permutation function achieves randomness after 1 round, Joltik encryption function achieves randomness after 9 rounds, Morus state update function achieves randomness after 3 rounds, Pi-cipher achieves randomness after 1 round, and Tiaoxin achieves randomness after 1 round.

Keywords: authenticated encryption, CAESAR competition, NIST test suite, statistical randomness tests

Procedia PDF Downloads 315
6607 Safety-critical Alarming Strategy Based on Statistically Defined Slope Deformation Behaviour Model Case Study: Upright-dipping Highwall in a Coal Mining Area

Authors: Lintang Putra Sadewa, Ilham Prasetya Budhi

Abstract:

Slope monitoring program has now become a mandatory campaign for any open pit mines around the world to operate safely. Utilizing various slope monitoring instruments and strategies, miners are now able to deliver precise decisions in mitigating the risk of slope failures which can be catastrophic. Currently, the most sophisticated slope monitoring technology available is the Slope Stability Radar (SSR), whichcan measure wall deformation in submillimeter accuracy. One of its eminent features is that SSRcan provide a timely warning by automatically raise an alarm when a predetermined rate-of-movement threshold is reached. However, establishing proper alarm thresholds is arguably one of the onerous challenges faced in any slope monitoring program. The difficulty mainly lies in the number of considerations that must be taken when generating a threshold becausean alarm must be effectivethat it should limit the occurrences of false alarms while alsobeing able to capture any real wall deformations. In this sense, experience shows that a site-specific alarm thresholdtendsto produce more reliable results because it considers site distinctive variables. This study will attempt to determinealarming thresholds for safety-critical monitoring based on an empirical model of slope deformation behaviour that is defined statistically fromdeformation data captured by the Slope Stability Radar (SSR). The study area comprises of upright-dipping highwall setting in a coal mining area with intense mining activities, andthe deformation data used for the study were recorded by the SSR throughout the year 2022. The model is site-specific in nature thus, valuable information extracted from the model (e.g., time-to-failure, onset-of-acceleration, and velocity) will be applicable in setting up site-specific alarm thresholds and will give a clear understanding of how deformation trends evolve over the area.

Keywords: safety-critical monitoring, alarming strategy, slope deformation behaviour model, coal mining

Procedia PDF Downloads 90
6606 Online Monitoring Rheological Property of Polymer Melt during Injection Molding

Authors: Chung-Chih Lin, Chien-Liang Wu

Abstract:

The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.

Keywords: injection molding, melt viscosity, shear rate, monitoring

Procedia PDF Downloads 381
6605 The Variable Sampling Interval Xbar Chart versus the Double Sampling Xbar Chart

Authors: Michael B. C. Khoo, J. L. Khoo, W. C. Yeong, W. L. Teoh

Abstract:

The Shewhart Xbar control chart is a useful process monitoring tool in manufacturing industries to detect the presence of assignable causes. However, it is insensitive in detecting small process shifts. To circumvent this problem, adaptive control charts are suggested. An adaptive chart enables at least one of the chart’s parameters to be adjusted to increase the chart’s sensitivity. Two common adaptive charts that exist in the literature are the double sampling (DS) Xbar and variable sampling interval (VSI) Xbar charts. This paper compares the performances of the DS and VSI Xbar charts, based on the average time to signal (ATS) criterion. The ATS profiles of the DS Xbar and VSI Xbar charts are obtained using the Mathematica and Statistical Analysis System (SAS) programs, respectively. The results show that the VSI Xbar chart is generally superior to the DS Xbar chart.

Keywords: adaptive charts, average time to signal, double sampling, charts, variable sampling interval

Procedia PDF Downloads 286
6604 Statistical Characteristics of Distribution of Radiation-Induced Defects under Random Generation

Authors: P. Selyshchev

Abstract:

We consider fluctuations of defects density taking into account their interaction. Stochastic field of displacement generation rate gives random defect distribution. We determinate statistical characteristics (mean and dispersion) of random field of point defect distribution as function of defect generation parameters, temperature and properties of irradiated crystal.

Keywords: irradiation, primary defects, interaction, fluctuations

Procedia PDF Downloads 343
6603 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 478
6602 Monitoring System for Electronic Procurement Systems

Authors: Abdulah Fajar

Abstract:

Electronic Procurement System has been implemented at government institution in Indonesia. This system has been developed centrally at Institution of National Procurement Policy (LKPP) and implemented autonomously at either local or national government institution. The lack of competency at many institution on Information Technology Management arise several major problems. The main concern of LKPP to local administrator is assured that the system is running normally and always be able to serve the needs of its users. Monitoring system has been identified as the one of solution to prevent the problems appeared. Monitoring system is developed using Simple Network Management Protocol (SNMP) and implemented at LKPP. There are two modules; Main Dashboard and Local Agent. Main Dashboard is intended for LKPP and Local Agent is intended to implement at local autonomous e-procurement system (LPSE). There are several resources that must be monitored such as computation, memory and network traffic. Agile paradigm is applied to this project to assure user and system requirement is met. The length of project is the one of reason why agile paradigm has been chosen. The system has been successfully delivered to LKPP.

Keywords: procurement system, SNMP, LKPP, LPSE

Procedia PDF Downloads 427
6601 Management and Agreement Protocol in Computer Security

Authors: Abdulameer K. Hussain

Abstract:

When dealing with a cryptographic system we note that there are many activities performed by parties of this cryptographic system and the most prominent of these activities is the process of agreement between the parties involved in the cryptographic system on how to deal and perform the cryptographic system tasks to be more secure, more confident and reliable. The most common agreement among parties is a key agreement and other types of agreements. Despite the fact that there is an attempt from some quarters to find other effective agreement methods but these methods are limited to the traditional agreements. This paper presents different parameters to perform more effectively the task of the agreement, including the key alternative, the agreement on the encryption method used and the agreement to prevent the denial of the services. To manage and achieve these goals, this method proposes the existence of an control and monitoring entity to manage these agreements by collecting different statistical information of the opinions of the authorized parties in the cryptographic system. These statistics help this entity to take the proper decision about the agreement factors. This entity is called Agreement Manager (AM).

Keywords: agreement parameters, key agreement, key exchange, security management

Procedia PDF Downloads 421
6600 ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend

Authors: Abubakar Uba Ibrahim, Ibrahim Haruna Shanono

Abstract:

Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities.

Keywords: communication technology between appliances, demand response, load monitoring, smart appliances, smart grid

Procedia PDF Downloads 613
6599 Technique for Online Condition Monitoring of Surge Arresters

Authors: Anil S. Khopkar, Kartik S. Pandya

Abstract:

Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.

Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current

Procedia PDF Downloads 66
6598 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 58
6597 The Impact of Innovations in Human Resource Practices, Innovation Capabilities and Competitive Advantage on Company Performance

Authors: Bita Kharazi

Abstract:

The purpose of this research was to investigate the impact of innovations in human resource practices, innovation capabilities, and competitive advantage on company performance. This research was applied in terms of purpose and in terms of method, it was descriptive research of correlation type. The statistical population of this research was all the employees of Zar Industrial and Research Group. The sampling method was available in this research, and Cochran's formula was used to determine the statistical sample size. A standard questionnaire was used to collect information in this research, and SPSS software and simultaneous regression statistical tests were used to analyze the data. Based on the findings of the present research, it was found that the components of creativity in human resource practices, innovation capability, and competitive advantage have a significant impact on the company's performance.

Keywords: human resource management, innovation, competitive advantage, company performance

Procedia PDF Downloads 16
6596 Land Subsidence Monitoring in Semarang and Demak Coastal Area Using Persistent Scatterer Interferometric Synthetic Aperture Radar

Authors: Reyhan Azeriansyah, Yudo Prasetyo, Bambang Darmo Yuwono

Abstract:

Land subsidence is one of the problems that occur in the coastal areas of Java Island, one of which is the Semarang and Demak areas located in the northern region of Central Java. The impact of sea erosion, rising sea levels, soil structure vulnerable and economic development activities led to both these areas often occurs on land subsidence. To know how much land subsidence that occurred in the region needs to do the monitoring carried out by remote sensing methods such as PS-InSAR method. PS-InSAR is a remote sensing technique that is the development of the DInSAR method that can monitor the movement of the ground surface that allows users to perform regular measurements and monitoring of fixed objects on the surface of the earth. PS InSAR processing is done using Standford Method of Persistent Scatterers (StaMPS). Same as the recent analysis technique, Persistent Scatterer (PS) InSAR addresses both the decorrelation and atmospheric problems of conventional InSAR. StaMPS identify and extract the deformation signal even in the absence of bright scatterers. StaMPS is also applicable in areas undergoing non-steady deformation, with no prior knowledge of the variations in deformation rate. In addition, this method can also cover a large area so that the decline in the face of the land can cover all coastal areas of Semarang and Demak. From the PS-InSAR method can be known the impact on the existing area in Semarang and Demak region per year. The PS-InSAR results will also be compared with the GPS monitoring data to determine the difference in land decline that occurs between the two methods. By utilizing remote sensing methods such as PS-InSAR method, it is hoped that the PS-InSAR method can be utilized in monitoring the land subsidence and can assist other survey methods such as GPS surveys and the results can be used in policy determination in the affected coastal areas of Semarang and Demak.

Keywords: coastal area, Demak, land subsidence, PS-InSAR, Semarang, StaMPS

Procedia PDF Downloads 266
6595 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images

Procedia PDF Downloads 425
6594 A CM-Based Model for 802.11 Networks Security Policies Enforcement

Authors: Karl Mabiala Dondia, Jing Ma

Abstract:

In recent years, networks based on the 802.11 standards have gained a prolific deployment. The reason for this massive acceptance of the technology by both home users and corporations is assuredly due to the "plug-and-play" nature of the technology and the mobility. The lack of physical containment due to inherent nature of the wireless medium makes maintenance very challenging from a security standpoint. This study examines via continuous monitoring various predictable threats that 802.11 networks can face, how they are executed, where each attack may be executed and how to effectively defend against them. The key goal is to identify the key components of an effective wireless security policy.

Keywords: wireless LAN, IEEE 802.11 standards, continuous monitoring, security policy

Procedia PDF Downloads 380
6593 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 112
6592 Design of Circular Patch Antenna in Terahertz Band for Medical Applications

Authors: Moulfi Bouchra, Ferouani Souheyla, Ziani Kerarti Djalal, Moulessehoul Wassila

Abstract:

The wireless body network (WBAN) is the most interesting network these days and especially with the appearance of contagious illnesses such as covid 19, which require surveillance in the house. In this article, we have designed a circular microstrip antenna. Gold is the material used respectively for the patch and the ground plane and Gallium (εr=12.94) is chosen as the dielectric substrate. The dimensions of the antenna are 82.10*62.84 μm2 operating at a frequency of 3.85 THz. The proposed, designed antenna has a return loss of -46.046 dB and a gain of 3.74 dBi, and it can measure various physiological parameters and sensors that help in the overall monitoring of an individual's health condition.

Keywords: circular patch antenna, Terahertz transmission, WBAN applications, real-time monitoring

Procedia PDF Downloads 307
6591 Structural Health Monitoring Method Using Stresses Occurring on Bridge Bearings Under Temperature

Authors: T. Nishido, S. Fukumoto

Abstract:

The functions of movable bearings decline due to corrosion and sediments. As the result, they cannot move or rotate according to the behaviors of girders. Because of the constraints, the bending moments are generated by the horizontal reaction forces and the heights of girders. Under these conditions, the authors obtained the following results by analysis and experiment. Tensile stresses due to the moments occurred at temperature fluctuations. The large tensile stresses on concrete slabs around the bearings caused cracks. Even if concrete slabs are newly replaced, cracks will come out again with function declined bearings. The functional declines of bearings are generally found by using displacement gauges. However the method is not suitable for long-term measurements. We focused on the change in the strains at the bearings and the lower flanges near them at temperature fluctuations. It was found that their strains were particularly large when the movements of the bearings were constrained. Therefore, we developed a long-term health monitoring wireless system with FBG (Fiber Bragg Grating) sensors which were attached to bearings and lower flanges. The FBG sensors have the characteristics such as non-electrical influence, resistance to weather, and high strain sensitivity. Such characteristics are suitable for long-term measurements. The monitoring system was inexpensive because it was limited to the purpose of measuring strains and temperature. Engineers can monitor the behaviors of bearings in real time with the wireless system. If an office is away from bridge sites, the system will save traveling time and cost.

Keywords: bridge bearing, concrete slab,  FBG sensor, health monitoring

Procedia PDF Downloads 221
6590 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry

Authors: Maryam Kiani

Abstract:

The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.

Keywords: 2D materials, geopolymers, electrical properties, self-sensing

Procedia PDF Downloads 132
6589 Research on Transmission Parameters Determination Method Based on Dynamic Characteristic Analysis

Authors: Baoshan Huang, Fanbiao Bao, Bing Li, Lianghua Zeng, Yi Zheng

Abstract:

Parameter control strategy based on statistical characteristics can analyze the choice of the transmission ratio of an automobile transmission. According to the difference of the transmission gear, the number and spacing of the gear can be determined. Transmission ratio distribution of transmission needs to satisfy certain distribution law. According to the statistic characteristics of driving parameters, the shift control strategy of the vehicle is analyzed. CVT shift schedule adjustment algorithm based on statistical characteristic parameters can be seen from the above analysis, if according to the certain algorithm to adjust the size of, can adjust the target point are in the best efficiency curve and dynamic curve between the location, to alter the vehicle characteristics. Based on the dynamic characteristics and the practical application of the vehicle, this paper presents the setting scheme of the transmission ratio.

Keywords: vehicle dynamics, transmission ratio, transmission parameters, statistical characteristics

Procedia PDF Downloads 404
6588 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines

Authors: Nicolae Constantin, Ştefan Sorohan

Abstract:

The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.

Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities

Procedia PDF Downloads 339
6587 Building Information Modelling (BIM) and Unmanned Aerial Vehicles (UAV) Technologies in Road Construction Project Monitoring and Management: Case Study of a Project in Cyprus

Authors: Yiannis Vacanas, Kyriacos Themistocleous, Athos Agapiou, Diofantos Hadjimitsis

Abstract:

Building Information Modelling (BIM) technology is considered by construction professionals as a very valuable process in modern design, procurement and project management. Construction professionals of all disciplines can use a single 3D model which BIM technology provides, to design a project accurately and furthermore monitor the progress of construction works effectively and efficiently. Unmanned Aerial Vehicles (UAVs), a technology initially developed for military applications, is now without any difficulty accessible and has already been used by commercial industries, including the construction industry. UAV technology has mainly been used for collection of images that allow visual monitoring of building and civil engineering projects conditions in various circumstances. UAVs, nevertheless, have undergone significant advances in equipment capabilities and now have the capacity to acquire high-resolution imagery from many angles in a cost effective manner, and by using photogrammetry methods, someone can determine characteristics such as distances, angles, areas, volumes and elevations of an area within overlapping images. In order to examine the potential of using a combination of BIM and UAV technologies in construction project management, this paper presents the results of a case study of a typical road construction project where the combined use of the two technologies was used in order to achieve efficient and accurate as-built data collection of the works progress, with outcomes such as volumes, and production of sections and 3D models, information necessary in project progress monitoring and efficient project management.

Keywords: BIM, project management, project monitoring, UAV

Procedia PDF Downloads 303