Search results for: scattering transform
1570 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 1701569 Controlled Drug Delivery System for Delivery of Poor Water Soluble Drugs
Authors: Raj Kumar, Prem Felix Siril
Abstract:
The poor aqueous solubility of many pharmaceutical drugs and potential drug candidates is a big challenge in drug development. Nanoformulation of such candidates is one of the major solutions for the delivery of such drugs. We initially developed the evaporation assisted solvent-antisolvent interaction (EASAI) method. EASAI method is use full to prepared nanoparticles of poor water soluble drugs with spherical morphology and particles size below 100 nm. However, to further improve the effect formulation to reduce number of dose and side effect it is important to control the delivery of drugs. However, many drug delivery systems are available. Among the many nano-drug carrier systems, solid lipid nanoparticles (SLNs) have many advantages over the others such as high biocompatibility, stability, non-toxicity and ability to achieve controlled release of drugs and drug targeting. SLNs can be administered through all existing routes due to high biocompatibility of lipids. SLNs are usually composed of lipid, surfactant and drug were encapsulated in lipid matrix. A number of non-steroidal anti-inflammatory drugs (NSAIDs) have poor bioavailability resulting from their poor aqueous solubility. In the present work, SLNs loaded with NSAIDs such as Nabumetone (NBT), Ketoprofen (KP) and Ibuprofen (IBP) were successfully prepared using different lipids and surfactants. We studied and optimized experimental parameters using a number of lipids, surfactants and NSAIDs. The effect of different experimental parameters such as lipid to surfactant ratio, volume of water, temperature, drug concentration and sonication time on the particles size of SLNs during the preparation using hot-melt sonication was studied. It was found that particles size was directly proportional to drug concentration and inversely proportional to surfactant concentration, volume of water added and temperature of water. SLNs prepared at optimized condition were characterized thoroughly by using different techniques such as dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). We successfully prepared the SLN of below 220 nm using different lipids and surfactants combination. The drugs KP, NBT and IBP showed 74%, 69% and 53% percentage of entrapment efficiency with drug loading of 2%, 7% and 6% respectively in SLNs of Campul GMS 50K and Gelucire 50/13. In-vitro drug release profile of drug loaded SLNs is shown that nearly 100% of drug was release in 6 h.Keywords: nanoparticles, delivery, solid lipid nanoparticles, hot-melt sonication, poor water soluble drugs, solubility, bioavailability
Procedia PDF Downloads 3121568 Low-Density Polyethylene Film Biodegradation Potential by Fungal Species From Thailand
Authors: Patcharee Pripdeevech, Sarunpron Khruengsai
Abstract:
Thirty fungi were tested for their degradation ability on low-density polyethylene (LDPE) plastic film. Biodegradation of all fungi was screened in mineral salt medium broth containing LDPE film as the sole carbon source for 30 days. Diaporthe italiana, Thyrostroma jaczewskii, Colletotrichum fructicola, and Stagonosporopsis citrulli were able to colonize and cover the surface of LDPE film in media. The degradation test result was compared to those obtained from Aspergillus niger. LDPE films cocultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, A. niger, and control showed weight loss of 43.90%, 46.34%, 48.78%, 45.12%, 28.78%, and 10.85%, respectively. The tensile strength of degraded LDPE films cocultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, A. niger, and control also reduced significantly by 1.56 MPa, 1.78 MPa, 0.43 MPa, 1.86 MPa, 3.34 MPa, and 9.98 MPa, respectively. Analysis of LDPE films by Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the biodegradation by the presence of morphological changes such as cracks, scions, and holes on the surface of the film. These fungi have the ability to break down and consume the LDPE film, especially C. fructicola. These findings showed the potential of fungi in Thailand that play an important role in LDPE film degradation.Keywords: plastic biodegradation, LDPE film, fungi, Fourier transform infrared, scanning electron microscopy
Procedia PDF Downloads 1341567 Clusterization Probability in 14N Nuclei
Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev
Abstract:
The main aim of the current work is to examine if 14N is candidate to be clusterized nuclei or not. In order to check this attendance, we have measured the angular distributions for 14N ion beam elastically scattered on 12C target nuclei at different low energies; 17.5, 21, and 24.5MeV which are close to the Coulomb barrier energy for 14N+12C nuclear system. Study of various transfer reactions could provide us with useful information about the attendance of nuclei to be in a composite form (core + valence). The experimental data were analyzed using two approaches; Phenomenological (Optical Potential) and semi-microscopic (Double Folding Potential). The agreement between the experimental data and the theoretical predictions is fairly good in the whole angular range.Keywords: deuteron transfer, elastic scattering, optical model, double folding, density distribution
Procedia PDF Downloads 3281566 Investigation of Amorphous Silicon A-Si Thin Films Deposited on Silicon Substrate by Raman Spectroscopy
Authors: Amirouche Hammouda, Nacer Boucherou, Aicha Ziouche, Hayet Boudjellal
Abstract:
Silicon has excellent physical and electrical properties for optoelectronics industry. It is a promising material with many advantages. On Raman characterization of thin films deposited on crystalline silicon substrate, the signal Raman of amorphous silicon is often disturbed by the Raman signal of the crystalline silicon substrate. In this paper, we propose to characterize thin layers of amorphous silicon deposited on crystalline silicon substrates. The results obtained have shown the possibility to bring out the Raman spectrum of deposited layers by optimizing experimental parameters.Keywords: raman scattering, amorphous silicon, crystalline silicon, thin films
Procedia PDF Downloads 731565 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy
Authors: Van Tran Thi Thuy, Dukjoon Kim
Abstract:
A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.Keywords: magnetic, nano, PNIPAM, polysuccinimide
Procedia PDF Downloads 4151564 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement
Authors: Yunha Ryu, Kyoungsik Kim
Abstract:
Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy
Procedia PDF Downloads 6251563 Room Temperature Electron Spin Resonance and Raman Study of Nanocrystalline Zn(1-x)Cu(x)O (0.005 < x < 0.05) Synthesized by Pyrophoric Method
Authors: Jayashree Das, V. V. Srinivasu , D. K. Mishra, A. Maity
Abstract:
Owing to the important potential applications over decades, transition metal (TM: Mn, Fe, Ni, Cu, Cr, V etc.) doped ZnO-based diluted magnetic semiconductors (DMS) always attract research attention for more and newer investigations. One of the interesting aspects of these materials is to study and understand the magnetic property at room temperature properly, which is very crucial to select a material for any related application. In this regard, Electron spin resonance (ESR) study has been proven to be a powerful technique to investigate the spin dynamics of electrons inside the system, which are responsible for the magnetic behaviour of any system. ESR as well as the Raman and Photoluminescence spectroscopy studies are also helpful to study the defects present or created inside the system in the form of oxygen vacancy or cluster instrumental in determining the room temperature ferromagnetic property of transition metal doped ZnO system, which can be controlled through varying dopant concentration, appropriate synthesis technique and sintering of the samples. For our investigation, we synthesised Cu-doped ZnO nanocrystalline samples with composition Zn1-xCux ( 0.005< x < 0.05) by pyrophoric method and sintered at a low temperature of 650 0C. The microwave absorption is studied by the Electron Spin Resonance (ESR) of X-band (9.46 GHz) at room temperature. Systematic analysis of the obtained ESR spectra reveals that all the compositions of Cu-doped ZnO samples exhibit resonance signals of appreciable line widths and g value ~ 2.2, typical characteristic of ferromagnetism in the sample. Raman scattering and the photoluminescence study performed on the samples clearly indicated the presence of pronounced defect related peaks in the respective spectra. Cu doping in ZnO with varying concentration also observed to affect the optical band gap and the respective absorption edges in the UV-Vis spectra. FTIR spectroscopy reveals the Cu doping effect on the stretching bonds of ZnO. To probe into the structural and morphological changes incurred by Cu doping, we have performed XRD, SEM and EDX study, which confirms adequate Cu substitution without any significant impurity phase formation or lattice disorder. With proper explanation, we attempt to correlate the results observed for the structural optical and magnetic behaviour of the Cu-doped ZnO samples. We also claim that our result can be instrumental for appropriate applications of transition metal doped ZnO based DMS in the field of optoelectronics and Spintronics.Keywords: diluted magnetic semiconductors, electron spin resonance, raman scattering, spintronics.
Procedia PDF Downloads 3131562 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell
Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari
Abstract:
This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy
Procedia PDF Downloads 1461561 Microwave Tomography: The Analytical Treatment for Detecting Malignant Tumor Inside Human Body
Authors: Muhammad Hassan Khalil, Xu Jiadong
Abstract:
Early detection through screening is the best tool short of a perfect treatment against the malignant tumor inside the breast of a woman. By detecting cancer in its early stages, it can be recognized and treated before it has the opportunity to spread and change into potentially dangerous. Microwave tomography is a new imaging method based on contrast in dielectric properties of materials. The mathematical theory of microwave tomography involves solving an inverse problem for Maxwell’s equations. In this paper, we present designed antenna for breast cancer detection, which will use in microwave tomography configuration.Keywords: microwave imaging, inverse scattering, breast cancer, malignant tumor detection
Procedia PDF Downloads 3711560 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)
Procedia PDF Downloads 2351559 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform
Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu
Abstract:
Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform
Procedia PDF Downloads 651558 Equivalent Circuit Modelling of Active Reflectarray Antenna
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents equivalent circuit modeling of active planar reflectors which can be used for the detailed analysis and characterization of reflector performance in terms of lumped components. Equivalent circuit representation has been proposed for PIN diodes and liquid crystal based active planar reflectors designed within X-band frequency range. A very close agreement has been demonstrated between equivalent circuit results, 3D EM simulated results as well as measured scattering parameter results. In the case of measured results, a maximum discrepancy of 1.05dB was observed in the reflection loss performance, which can be attributed to the losses occurred during measurement process.Keywords: Equivalent circuit modelling, planar reflectors, reflectarray antenna, PIN diode, liquid crystal
Procedia PDF Downloads 2861557 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 1731556 Rapid Discrimination of Porcine and Tilapia Fish Gelatin by Fourier Transform Infrared- Attenuated Total Reflection Combined with 2 Dimensional Infrared Correlation Analysis
Authors: Norhidayu Muhamad Zain
Abstract:
Gelatin, a purified protein derived mostly from porcine and bovine sources, is used widely in food manufacturing, pharmaceutical, and cosmetic industries. However, the presence of any porcine-related products are strictly forbidden for Muslim and Jewish consumption. Therefore, analytical methods offering reliable results to differentiate the sources of gelatin are needed. The aim of this study was to differentiate the sources of gelatin (porcine and tilapia fish) using Fourier transform infrared- attenuated total reflection (FTIR-ATR) combined with two dimensional infrared (2DIR) correlation analysis. Porcine gelatin (PG) and tilapia fish gelatin (FG) samples were diluted in distilled water at concentrations ranged from 4-20% (w/v). The samples were then analysed using FTIR-ATR and 2DIR correlation software. The results showed a significant difference in the pattern map of synchronous spectra at the region of 1000 cm⁻¹ to 1100 cm⁻¹ between PG and FG samples. The auto peak at 1080 cm⁻¹ that attributed to C-O functional group was observed at high intensity in PG samples compared to FG samples. Meanwhile, two auto peaks (1080 cm⁻¹ and 1030 cm⁻¹) at lower intensity were identified in FG samples. In addition, using 2D correlation analysis, the original broad water OH bands in 1D IR spectra can be effectively differentiated into six auto peaks located at 3630, 3340, 3230, 3065, 2950 and 2885 cm⁻¹ for PG samples and five auto peaks at 3630, 3330, 3230, 3060 and 2940 cm⁻¹ for FG samples. Based on the rule proposed by Noda, the sequence of the spectral changes in PG samples is as following: NH₃⁺ amino acid > CH₂ and CH₃ aliphatic > OH stretch > carboxylic acid OH stretch > NH in secondary amide > NH in primary amide. In contrast, the sequence was totally in the opposite direction for FG samples and thus both samples provide different 2D correlation spectra ranged from 2800 cm-1 to 3700 cm⁻¹. This method may provide a rapid determination of gelatin source for application in food, pharmaceutical, and cosmetic products.Keywords: 2 dimensional infrared (2DIR) correlation analysis, Fourier transform infrared- attenuated total reflection (FTIR-ATR), porcine gelatin, tilapia fish gelatin
Procedia PDF Downloads 2501555 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran
Authors: M. Ahmadi, M. Kafil, H. Ebrahimi
Abstract:
Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.Keywords: broken bar, condition monitoring, diagnostics, empirical mode decomposition, fourier transform, wavelet transform
Procedia PDF Downloads 1501554 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques
Authors: Gurmail Singh
Abstract:
Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility
Procedia PDF Downloads 1271553 A Compact Wearable Slot Antenna for LTE and WLAN Applications
Authors: Haider K. Raad
Abstract:
In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.Keywords: wearable electronics, slot Antenna, LTE, WLAN
Procedia PDF Downloads 2341552 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 231551 Sol-Gel Derived Yttria-Stabilized Zirconia Nanoparticles for Dental Applications: Synthesis and Characterization
Authors: Anastasia Beketova, Emmanouil-George C. Tzanakakis, Ioannis G. Tzoutzas, Eleana Kontonasaki
Abstract:
In restorative dentistry, yttria-stabilized zirconia (YSZ) nanoparticles can be applied as fillers to improve the mechanical properties of various resin-based materials. Using sol-gel based synthesis as simple and cost-effective method, nano-sized YSZ particles with high purity can be produced. The aim of this study was to synthesize YSZ nanoparticles by the Pechini sol-gel method at different temperatures and to investigate their composition, structure, and morphology. YSZ nanopowders were synthesized by the sol-gel method using zirconium oxychloride octahydrate (ZrOCl₂.8H₂O) and yttrium nitrate hexahydrate (Y(NO₃)₃.6H₂O) as precursors with the addition of acid chelating agents to control hydrolysis and gelation reactions. The obtained powders underwent TG_DTA analysis and were sintered at three different temperatures: 800, 1000, and 1200°C for 2 hours. Their composition and morphology were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction Analysis (XRD), Scanning Electron Microscopy with associated with Energy Dispersive X-ray analyzer (SEM-EDX), Transmission Electron Microscopy (TEM) methods, and Dynamic Light Scattering (DLS). FTIR and XRD analysis showed the presence of pure tetragonal phase in the composition of nanopowders. By increasing the calcination temperature, the crystallinity of materials increased, reaching 47.2 nm for the YSZ1200 specimens. SEM analysis at high magnifications and DLS analysis showed submicron-sized particles with good dispersion and low agglomeration, which increased in size as the sintering temperature was elevated. From the TEM images of the YSZ1000 specimen, it can be seen that zirconia nanoparticles are uniform in size and shape and attain an average particle size of about 50 nm. The electron diffraction patterns clearly revealed ring patterns of polycrystalline tetragonal zirconia phase. Pure YSZ nanopowders have been successfully synthesized by the sol-gel method at different temperatures. Their size is small, and uniform, allowing their incorporation of dental luting resin cements to improve their mechanical properties and possibly enhance the bond strength of demanding dental ceramics such as zirconia to the tooth structure. This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme 'Human Resources Development, Education and Lifelong Learning 2014- 2020' in the context of the project 'Development of zirconia adhesion cements with stabilized zirconia nanoparticles: physicochemical properties and bond strength under aging conditions' (MIS 5047876).Keywords: dental cements, nanoparticles, sol-gel, yttria-stabilized zirconia, YSZ
Procedia PDF Downloads 1471550 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 5281549 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides
Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami
Abstract:
Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane
Procedia PDF Downloads 4361548 Development of Long and Short Range Ordered Domains in a High Specific Strength Steel
Authors: Nikhil Kumar, Aparna Singh
Abstract:
Microstructural development when annealed at different temperatures in a high aluminum and manganese light weight steel has been examined. The FCC matrix of the manganese (Mn)-rich and nickel (Ni)-rich areas in the studied Fe-Mn-Al-Ni-C-light weight steel have been found to contain anti phase domains. In the Mn-rich region short order range of domains manifested by the diffuse scattering in the electron diffraction patterns was observed. Domains in the Ni-rich region were found to be arranged periodically validated through lattice imaging. The nature of these domains can be tuned with annealing temperature resulting in profound influence in the mechanical properties.Keywords: Anti-phase domain boundaries, BCC, FCC, Light Weight Steel
Procedia PDF Downloads 1411547 Globalization as Instrument for Multi-National Corporation in Transforming Asian’s Perspective towards Clean Water Consumption
Authors: Atanta Gian
Abstract:
It is inevitable that globalization has succeeded in transforming the world today. The influence of globalization has emerged in almost every aspect of life nowadays, especially in shaping the perception of the people. It can be seen on how easy for people are affected by the information surrounding them. Due to globalization, the flow of information has become more rapid along with the development of technology. People tend to believe in information that they actually get by themselves, if there is information where most of the people believe it is true, then this information could be categorized as factual and relevant. Therefore if people gain information on what is best for them in terms of daily consumption, then this information could transform their perspective, and it becomes a consideration in selecting their needs for daily consumption. By looking at this trend, the author sees that globalization could be used by Multi-National Corporation (MNC) to enhance the promotion of their products. This is applied by shaping the perspectives of the world regarding what is the best for them. Multi-National Corporation which has better technology in terms of the development of their external promotion could utilize this opportunity to affect people’s perspectives into what they want. In this paper, the author would like to elaborate how globalization is applied by MNC to shape people’s perspective regarding what is the best for them. The author would utilize a case study to analyze on how MNC could transform the perspectives of Asian people regarding the necessary of having a better quality drinking water, which in this case, MNC has shaped the perspective of Asian people in choosing their product by promoting the bottled water as the best choice for them. In the end of this paper, author would come to a conclusion that MNCs are able to shape the world’s perspective regarding the needs of their products which is supported by the globalization that is happening now.Keywords: consumption, globalisation, influence, information technology, multi-national corporations
Procedia PDF Downloads 2091546 Analysis of Scattering Behavior in the Cavity of Phononic Crystals with Archimedean Tilings
Authors: Yi-Hua Chen, Hsiang-Wen Tang, I-Ling Chang, Lien-Wen Chen
Abstract:
The defect mode of two-dimensional phononic crystals with Archimedean tilings was explored in the present study. Finite element method and supercell method were used to obtain dispersion relation of phononic crystals. The simulations of the acoustic wave propagation within phononic crystals are demonstrated. Around the cavity which is created by removing several cylinders in the perfect Archimedean tilings, whispering-gallery mode (WGM) can be observed. The effects of the cavity geometry on the WGM modes are investigated. The WGM modes with high Q-factor and high cavity pressure can be obtained by phononic crystals with Archimedean tilings.Keywords: defect mode, Archimedean tilings, phononic crystals, whispering-gallery modes
Procedia PDF Downloads 5081545 Impact of Zeolite NaY Synthesized from Kaolin on the Properties of Pyrolytic Oil Derived from Used Tire
Authors: Julius Ilawe Osayi, Peter Osifo
Abstract:
Solid waste disposal, such as used tires is a global challenge as well as energy crisis due to rising energy demand amidst price uncertainty and depleting fossil fuel reserves. Therefore, the effectiveness of pyrolysis as a disposal method that can transform used tires into liquid fuel and other end-products has made the process attractive to researchers. Although used tires have been converted to liquid fuel using pyrolysis, there is the need to improve on the liquid fuel properties. Hence, this paper reports the investigation of zeolite NaY synthesized from kaolin, a locally abundant soil material in the Benin metropolis as a suitable catalyst and its effect on the properties of pyrolytic oil produced from used tires. The pyrolysis process was conducted for a range of 1 to 10 wt.% of catalyst concentration to used tire at a temperature of 600 oC, a heating rate of 15oC/min and particle size of 6mm. Although no significant increase in pyrolytic oil yield was observed compared to the previously investigated non-catalytic pyrolysis of a used tire. However, the Fourier transform infrared (FTIR), Nuclear Magnetic Resonance (NMR); and Gas chromatography-mass spectrometry (GC-MS) characterization results revealed the pyrolytic oil to possess an improved physicochemical and fuel properties alongside valuable industrial chemical species. This confirms the possibility of transforming kaolin into a catalyst suitable for improved fuel properties of the liquid fraction obtainable from thermal cracking of hydrocarbon materials.Keywords: catalytic pyrolysis, fossil fuel, kaolin, pyrolytic oil, used tyres, Zeolite NaY
Procedia PDF Downloads 1791544 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm
Procedia PDF Downloads 4411543 Radar Cross Section Modelling of Lossy Dielectrics
Authors: Ciara Pienaar, J. W. Odendaal, J. Joubert, J. C. Smit
Abstract:
Radar cross section (RCS) of dielectric objects play an important role in many applications, such as low observability technology development, drone detection, and monitoring as well as coastal surveillance. Various materials are used to construct the targets of interest such as metal, wood, composite materials, radar absorbent materials, and other dielectrics. Since simulated datasets are increasingly being used to supplement infield measurements, as it is more cost effective and a larger variety of targets can be simulated, it is important to have a high level of confidence in the predicted results. Confidence can be attained through validation. Various computational electromagnetic (CEM) methods are capable of predicting the RCS of dielectric targets. This study will extend previous studies by validating full-wave and asymptotic RCS simulations of dielectric targets with measured data. The paper will provide measured RCS data of a number of canonical dielectric targets exhibiting different material properties. As stated previously, these measurements are used to validate numerous CEM methods. The dielectric properties are accurately characterized to reduce the uncertainties in the simulations. Finally, an analysis of the sensitivity of oblique and normal incidence scattering predictions to material characteristics is also presented. In this paper, the ability of several CEM methods, including method of moments (MoM), and physical optics (PO), to calculate the RCS of dielectrics were validated with measured data. A few dielectrics, exhibiting different material properties, were selected and several canonical targets, such as flat plates and cylinders, were manufactured. The RCS of these dielectric targets were measured in a compact range at the University of Pretoria, South Africa, over a frequency range of 2 to 18 GHz and a 360° azimuth angle sweep. This study also investigated the effect of slight variations in the material properties on the calculated RCS results, by varying the material properties within a realistic tolerance range and comparing the calculated RCS results. Interesting measured and simulated results have been obtained. Large discrepancies were observed between the different methods as well as the measured data. It was also observed that the accuracy of the RCS data of the dielectrics can be frequency and angle dependent. The simulated RCS for some of these materials also exhibit high sensitivity to variations in the material properties. Comparison graphs between the measured and simulation RCS datasets will be presented and the validation thereof will be discussed. Finally, the effect that small tolerances in the material properties have on the calculated RCS results will be shown. Thus the importance of accurate dielectric material properties for validation purposes will be discussed.Keywords: asymptotic, CEM, dielectric scattering, full-wave, measurements, radar cross section, validation
Procedia PDF Downloads 2401542 Denoising Transient Electromagnetic Data
Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen
Abstract:
Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform
Procedia PDF Downloads 851541 Constructions of Linear and Robust Codes Based on Wavelet Decompositions
Authors: Alla Levina, Sergey Taranov
Abstract:
The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability
Procedia PDF Downloads 489