Search results for: recession forecasting
285 Identifying Strategies and Techniques for the Egyptian Medium and Large Size Contractors to Respond to Economic Hardship
Authors: Michael Salib, Samer Ezeldin, Ahmed Waly
Abstract:
There are numerous challenges and problems facing the construction industry in several countries in the Middle East, as a result of numerous economic and political effects. As an example in Egypt, several construction companies have shut down and left the market since 2016. The closure of these companies occurred, as they did not respond with the suitable techniques and strategies that will enable them to survive during this economic turmoil period. A research is conducted in order to identify adequate strategies to be implemented by the Egyptian contractors that could allow them survive and keep competing during such economic hardship period. Two different techniques were used in order to identify these startegies. First, a deep research were conducted on the companies located in countries that suffered similar economic harship to identify the strategies they used in order to survive. Second, interviews were conducted with experts in the construction field in order to list the effective strategies they used that allowed them to survive. Moreover, at the end of each interview, the experts were asked to rate the applicability of the previously identified strategies used in the foreign countries, then the efficiency of each strategy if used in Egypt. A framework model is developed in order to assist the construction companies in choosing the suitable techniques to their company size, through identifying the top ranked strategies and techniques that should be adopted by the company based on the parameters given to the model. In order to verify this framework, the financial statements of two leading companies in the Egyptian construction market were studied. The first Contractor has applied nearly all the top ranked strategies identified in this paper, while the other contractor has applied only few of the identified top ranked strategies. Finally, another expert interviews were conducted in order to validate the framework. These experts were asked to test the model and rate through a questionnaire its applicability and effectiveness.Keywords: construction management, economic hardship, recession, survive
Procedia PDF Downloads 126284 Gas Flaring Utilization at KK Station
Authors: Abd Alati Ali Abushnaq, Malek Essnni, Abduraouf Eteer
Abstract:
The present study proposes a comprehensive approach to effectively utilize associated gas from the KK remote station, eliminating the practice of flaring and mitigating greenhouse gas (GHG) emissions. The proposed integrated system involves diverting the associated gas via a newly designed pipeline, seamlessly connecting to the existing 12-inch pipeline at the tie-in point. The proposed destination is the low-pressure system at A-100 or 3rd stage, where the associated gas will be channeled towards the NGL (natural gas liquid) plant for processing. To ensure the system's efficacy under varying gas production scenarios, the study employs two industry-standard simulation software packages, Aspen HYSYS and PIPSIM. The simulated results demonstrate the system's ability to handle the projected increase in gas production, reaching up to 38 MMSCFD. This comprehensive analysis ensures the system's robustness and adaptability to future production demands.Keywords: associated gas, flaring mitigation, GHG emissions, pipeline diversion, NGL plant, KK remote station, production forecasting, Aspen HYSYS, PIPSIM
Procedia PDF Downloads 87283 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 354282 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension
Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe
Abstract:
The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.Keywords: neural network, hypertension, data set, training set, supervised learning
Procedia PDF Downloads 391281 A Deep Learning Based Integrated Model For Spatial Flood Prediction
Authors: Vinayaka Gude Divya Sampath
Abstract:
The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.Keywords: deep learning, disaster management, flood prediction, urban flooding
Procedia PDF Downloads 146280 The Impact of Shifting Trading Pattern from Long-Haul to Short-Sea to the Car Carriers’ Freight Revenues
Authors: Tianyu Wang, Nikita Karandikar
Abstract:
The uncertainty around cost, safety, and feasibility of the decarbonized shipping fuels has made it increasingly complex for the shipping companies to set pricing strategies and forecast their freight revenues going forward. The increase in the green fuel surcharges will ultimately influence the automobile’s consumer prices. The auto shipping demand (ton-miles) has been gradually shifting from long-haul to short-sea trade over the past years following the relocation of the original equipment manufacturer (OEM) manufacturing to regions such as South America and Southeast Asia. The objective of this paper is twofold: 1) to investigate the car-carriers freight revenue development over the years when the trade pattern is gradually shifting towards short-sea exports 2) to empirically identify the quantitative impact of such trade pattern shifting to mainly freight rate, but also vessel size, fleet size as well as Green House Gas (GHG) emission in Roll on-Roll Off (Ro-Ro) shipping. In this paper, a model of analyzing and forecasting ton-miles and freight revenues for the trade routes of AS-NA (Asia to North America), EU-NA (Europe to North America), and SA-NA (South America to North America) is established by deploying Automatic Identification System (AIS) data and the financial results of a selected car carrier company. More specifically, Wallenius Wilhelmsen Logistics (WALWIL), the Norwegian Ro-Ro carrier listed on Oslo Stock Exchange, is selected as the case study company in this paper. AIS-based ton-mile datasets of WALWIL vessels that are sailing into North America region from three different origins (Asia, Europe, and South America), together with WALWIL’s quarterly freight revenues as reported in trade segments, will be investigated and compared for the past five years (2018-2022). Furthermore, ordinary‐least‐square (OLS) regression is utilized to construct the ton-mile demand and freight revenue forecasting. The determinants of trade pattern shifting, such as import tariffs following the China-US trade war and fuel prices following the 0.1% Emission Control Areas (ECA) zone requirement after IMO2020 will be set as key variable inputs to the machine learning model. The model will be tested on another newly listed Norwegian Car Carrier, Hoegh Autoliner, to forecast its 2022 financial results and to validate the accuracy based on its actual results. GHG emissions on the three routes will be compared and discussed based on a constant emission per mile assumption and voyage distances. Our findings will provide important insights about 1) the trade-off evaluation between revenue reduction and energy saving with the new ton-mile pattern and 2) how the trade flow shifting would influence the future need for the vessel and fleet size.Keywords: AIS, automobile exports, maritime big data, trade flows
Procedia PDF Downloads 120279 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities
Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia
Abstract:
There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy
Procedia PDF Downloads 166278 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances
Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun
Abstract:
In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.Keywords: hydropower, high order neural network, Kalman filter, optimal control
Procedia PDF Downloads 298277 A Review on Modeling and Optimization of Integration of Renewable Energy Resources (RER) for Minimum Energy Cost, Minimum CO₂ Emissions and Sustainable Development, in Recent Years
Authors: M. M. Wagh, V. V. Kulkarni
Abstract:
The rising economic activities, growing population and improving living standards of world have led to a steady growth in its appetite for quality and quantity of energy services. As the economy expands the electricity demand is going to grow further, increasing the challenges of the more generation and stresses on the utility grids. Appropriate energy model will help in proper utilization of the locally available renewable energy sources such as solar, wind, biomass, small hydro etc. to integrate in the available grid, reducing the investments in energy infrastructure. Further to these new technologies like smart grids, decentralized energy planning, energy management practices, energy efficiency are emerging. In this paper, the attempt has been made to study and review the recent energy planning models, energy forecasting models, and renewable energy integration models. In addition, various modeling techniques and tools are reviewed and discussed.Keywords: energy modeling, integration of renewable energy, energy modeling tools, energy modeling techniques
Procedia PDF Downloads 345276 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries
Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco
Abstract:
SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model
Procedia PDF Downloads 152275 Theoretical and ML-Driven Identification of a Mispriced Credit Risk
Authors: Yuri Katz, Kun Liu, Arunram Atmacharan
Abstract:
Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning
Procedia PDF Downloads 79274 The Factors Predicting Credibility of News in Social Media in Thailand
Authors: Ekapon Thienthaworn
Abstract:
This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.Keywords: credibility of news, behaviors and attitudes, social media, web board
Procedia PDF Downloads 468273 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method
Procedia PDF Downloads 341272 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York
Authors: Haowei Lu, Anaya Aaron
Abstract:
Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty
Procedia PDF Downloads 32271 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 345270 Fisheries Education in Karnataka: Trends, Current Status, Performance and Prospects
Authors: A. Vinay, Mary Josephine, Shreesha. S. Rao, Dhande Kranthi Kumar, J. Nandini
Abstract:
This paper looks at the development of Fisheries education in Karnataka and the supply of skilled human capital to the sector. The study tries to analyse their job occupancy patterns, Compound Growth Rate (CGR) and forecasts the fisheries graduates supply using the Holt method. In Karnataka, fisheries are one of the neglected allied sectors of agriculture in spite of having enormous scope and potential to contribute to the State's agriculture GDP. The State Government has been negligent in absorbing skilled human capital for the development of fisheries, as there are so many vacant positions in both education institutes, as well as the State fisheries department. CGR and forecasting of fisheries graduates shows a positive growth rate and increasing trend, from which we can understand that by proper utilization of skilled human capital can bring development in the fisheries sector of Karnataka.Keywords: compound growth rate, fisheries education, holt method, skilled human capital
Procedia PDF Downloads 266269 Assessment of the Effectiveness of the Anti-Debris Flow Engineering Constructed to Reduce the Risk of Expected Debris Flow in the River Mletiskhevi by Computer Program RAMMS
Authors: Sopio Gogilava, Goga Chakhaia, Levan Tsulukidze, Zurab Laoshvili, Irina Khubulava, Shalva Bosikashvili, Teimuraz Gugushvili
Abstract:
Geoinformatics systems (GIS) integrated computer program RAMMS is widely used for forecasting debris flows and accordingly for the determination of anticipating risks with 85% accuracy. In view of the above, the work introduces new capabilities of the computer program RAMMS, which evaluates the effectiveness of anti-debris flow engineering construction, namely: the possibility of decreasing the expected velocity, kinetic energy, and output cone volume in the Mletiskhevi River. As a result of research has been determined that the anti-debris flow engineering construction designed to reduce the expected debris flow risk in the Mletiskhevi River is an effective environmental protection technology, that's why its introduction is promising.Keywords: construction, debris flow, geoinformatics systems, program RAMMS
Procedia PDF Downloads 145268 Stacking Ensemble Approach for Combining Different Methods in Real Estate Prediction
Authors: Sol Girouard, Zona Kostic
Abstract:
A home is often the largest and most expensive purchase a person makes. Whether the decision leads to a successful outcome will be determined by a combination of critical factors. In this paper, we propose a method that efficiently handles all the factors in residential real estate and performs predictions given a feature space with high dimensionality while controlling for overfitting. The proposed method was built on gradient descent and boosting algorithms and uses a mixed optimizing technique to improve the prediction power. Usually, a single model cannot handle all the cases thus our approach builds multiple models based on different subsets of the predictors. The algorithm was tested on 3 million homes across the U.S., and the experimental results demonstrate the efficiency of this approach by outperforming techniques currently used in forecasting prices. With everyday changes on the real estate market, our proposed algorithm capitalizes from new events allowing more efficient predictions.Keywords: real estate prediction, gradient descent, boosting, ensemble methods, active learning, training
Procedia PDF Downloads 277267 Integration of Wireless Sensor Networks and Radio Frequency Identification (RFID): An Assesment
Authors: Arslan Murtaza
Abstract:
RFID (Radio Frequency Identification) and WSN (Wireless sensor network) are two significant wireless technologies that have extensive diversity of applications and provide limitless forthcoming potentials. RFID is used to identify existence and location of objects whereas WSN is used to intellect and monitor the environment. Incorporating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. It can be widely used in stock management, asset tracking, asset counting, security, military, environmental monitoring and forecasting, healthcare, intelligent home, intelligent transport vehicles, warehouse management, and precision agriculture. This assessment presents a brief introduction of RFID, WSN, and integration of WSN and RFID, and then applications related to both RFID and WSN. This assessment also deliberates status of the projects on RFID technology carried out in different computing group projects to be taken on WSN and RFID technology.Keywords: wireless sensor network, RFID, embedded sensor, Wi-Fi, Bluetooth, integration, time saving, cost efficient
Procedia PDF Downloads 334266 Enhancing Predictive Accuracy in Pharmaceutical Sales through an Ensemble Kernel Gaussian Process Regression Approach
Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf
Abstract:
This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matern, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matern, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.Keywords: Gaussian process regression, ensemble kernels, bayesian optimization, pharmaceutical sales analysis, time series forecasting, data analysis
Procedia PDF Downloads 71265 An Epsilon Hierarchical Fuzzy Twin Support Vector Regression
Authors: Arindam Chaudhuri
Abstract:
The research presents epsilon- hierarchical fuzzy twin support vector regression (epsilon-HFTSVR) based on epsilon-fuzzy twin support vector regression (epsilon-FTSVR) and epsilon-twin support vector regression (epsilon-TSVR). Epsilon-FTSVR is achieved by incorporating trapezoidal fuzzy numbers to epsilon-TSVR which takes care of uncertainty existing in forecasting problems. Epsilon-FTSVR determines a pair of epsilon-insensitive proximal functions by solving two related quadratic programming problems. The structural risk minimization principle is implemented by introducing regularization term in primal problems of epsilon-FTSVR. This yields dual stable positive definite problems which improves regression performance. Epsilon-FTSVR is then reformulated as epsilon-HFTSVR consisting of a set of hierarchical layers each containing epsilon-FTSVR. Experimental results on both synthetic and real datasets reveal that epsilon-HFTSVR has remarkable generalization performance with minimum training time.Keywords: regression, epsilon-TSVR, epsilon-FTSVR, epsilon-HFTSVR
Procedia PDF Downloads 375264 Co-Integration Model for Predicting Inflation Movement in Nigeria
Authors: Salako Rotimi, Oshungade Stephen, Ojewoye Opeyemi
Abstract:
The maintenance of price stability is one of the macroeconomic challenges facing Nigeria as a nation. This paper attempts to build a co-integration multivariate time series model for inflation movement in Nigeria using data extracted from the abstract of statistics of the Central Bank of Nigeria (CBN) from 2008 to 2017. The Johansen cointegration test suggests at least one co-integration vector describing the long run relationship between Consumer Price Index (CPI), Food Price Index (FPI) and Non-Food Price Index (NFPI). All three series show increasing pattern, which indicates a sign of non-stationary in each of the series. Furthermore, model predictability was established with root-mean-square-error, mean absolute error, mean average percentage error, and Theil’s unbiased statistics for n-step forecasting. The result depicts that the long run coefficient of a consumer price index (CPI) has a positive long-run relationship with the food price index (FPI) and non-food price index (NFPI).Keywords: economic, inflation, model, series
Procedia PDF Downloads 244263 Energy Analysis of Seasonal Air Conditioning Demand of All Income Classes Using Bottom up Model in Pakistan
Authors: Saba Arif, Anam Nadeem, Roman Kalvin, Tanzeel Rashid, Burhan Ali, Juntakan Taweekun
Abstract:
Currently, the energy crisis is taking serious attention. Globally, industries and building are major share takers of energy. 72% of total global energy is consumed by residential houses, markets, and commercial building. Additionally, in appliances air conditioners are major consumer of electricity; about 60% energy is used for cooling purpose in houses due to HVAC units. Energy demand will aid in determining what changes will be needed whether it is the estimation of the required energy for households or instituting conservation measures. Bottom-up model is one of the most famous methods for forecasting. In current research bottom-up model of air conditioners' energy consumption in all income classes in comparison with seasonal variation and hourly consumption is calculated. By comparison of energy consumption of all income classes by usage of air conditioners, total consumption of actual demand and current availability can be seen.Keywords: air conditioning, bottom up model, income classes, energy demand
Procedia PDF Downloads 248262 Formulating a Flexible-Spread Fuzzy Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
This study proposes a regression model with flexible spreads for fuzzy input-output data to cope with the situation that the existing measures cannot reflect the actual estimation error. The main idea is that a dissemblance index (DI) is carefully identified and defined for precisely measuring the actual estimation error. Moreover, the graded mean integration (GMI) representation is adopted for determining more representative numeric regression coefficients. Notably, to comprehensively compare the performance of the proposed model with other ones, three different criteria are adopted. The results from commonly used test numerical examples and an application to Taiwan's business monitoring indicator illustrate that the proposed dissemblance index method not only produces valid fuzzy regression models for fuzzy input-output data, but also has satisfactory and stable performance in terms of the total estimation error based on these three criteria.Keywords: dissemblance index, forecasting, fuzzy sets, linear regression
Procedia PDF Downloads 360261 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data
Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho
Abstract:
Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.Keywords: smartcard data, ANN, bus, ridership
Procedia PDF Downloads 167260 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations
Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska
Abstract:
Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.Keywords: scaffolding, health and safety at work, temperature, wind velocity
Procedia PDF Downloads 173259 Statistical Models and Time Series Forecasting on Crime Data in Nepal
Authors: Dila Ram Bhandari
Abstract:
Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.Keywords: time series analysis, forecasting, ARIMA, machine learning
Procedia PDF Downloads 164258 ATM Location Problem and Cash Management in ATM's
Authors: M. Erol Genevois, D. Celik, H. Z. Ulukan
Abstract:
Automated teller machines (ATMs) can be considered among one of the most important service facilities in the banking industry. The investment in ATMs and the impact on the banking industry is growing steadily in every part of the world. The banks take into consideration many factors like safety, convenience, visibility, cost in order to determine the optimum locations of ATMs. Today, ATMs are not only available in bank branches but also at retail locations. Another important factor is the cash management in ATMs. A cash demand model for every ATM is needed in order to have an efficient cash management system. This forecasting model is based on historical cash demand data which is highly related to the ATMs location. So, the location and the cash management problem should be considered together. Although the literature survey on facility location models is quite large, it is surprising that there are only few studies which handle together ATMs location and cash management problem. In order to fulfill the gap, this paper provides a general review on studies, efforts and development in ATMs location and cash management problem.Keywords: ATM location problem, cash management problem, ATM cash replenishment problem, literature review in ATMs
Procedia PDF Downloads 480257 Reliability, Availability and Capacity Analysis of Power Plants in Kuwait
Authors: Mehmet Savsar
Abstract:
One of the most important factors affecting power plant performance is the reliability of the turbine units operated under different conditions. Reliability directly affects plant availability and performance. Therefore, it is very important to be able to analyze turbine units, as well as power plant system reliability and availability under various operational conditions. In this paper, data related to power station failures are collected and analyzed in detail for all power stations in the state of Kuwait. Failures are characterized and categorized. Reliabilities of various power plants are analyzed and availabilities are quantified. Based on calculated availabilities of all installed power plants, actual power output is estimated. Furthermore, based on the past 15 years of data, power consumption trend is determined and the demand for power in the future is forecasted. Estimated power output is compared to the forecasted demand in order to determine the need for future capacity expansion.Keywords: power plants, reliability, availability, capacity, preventive maintenance, forecasting
Procedia PDF Downloads 358256 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.Keywords: forecasting, generalized extreme value (GEV), meteorology, return level
Procedia PDF Downloads 478