Search results for: radiation processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5070

Search results for: radiation processing

4740 Researches Concerning Photons as Corpuscles with Mass and Negative Electrostatic Charge

Authors: Ioan Rusu

Abstract:

Let us consider that the entire universe is composed of a single hydrogen atom within which the electron is moving around the proton. In this case, according to classical theories of physics, radiation and photons, respectively, should be absorbed by the electron. Depending on the number of photons absorbed, the electron radius of rotation around the proton is established. Until now, the principle of photon absorption by electrons and the electron transition to a new energy level, namely to a higher radius of rotation around the proton, is not clarified in physics. This paper aims to demonstrate that photons have mass and negative electrostatic charge similar to electrons but infinitely smaller. The experiments which demonstrate this theory are simple: thermal expansion, photoelectric effect and thermonuclear reaction.

Keywords: electrostatic, electron, photon, proton, radiation

Procedia PDF Downloads 398
4739 Thermo-Mechanical Treatment of Chromium Alloyed Low Carbon Steel

Authors: L. Kučerová, M. Bystrianský, V. Kotěšovec

Abstract:

Thermo-mechanical processing with various processing parameters was applied to 0.2%C-0.6%Mn-2S%i-0.8%Cr low alloyed high strength steel. The aim of the processing was to achieve the microstructures typical for transformation induced plasticity (TRIP) steels. Thermo-mechanical processing used in this work incorporated two or three deformation steps. The deformations were in all the cases carried out during the cooling from soaking temperatures to various bainite hold temperatures. In this way, 4-10% of retained austenite were retained in the final microstructures, consisting further of ferrite, bainite, martensite and pearlite. The complex character of TRIP steel microstructure is responsible for its good strength and ductility. The strengths achieved in this work were in the range of 740 MPa – 836 MPa with ductility A5mm of 31-41%.

Keywords: pearlite, retained austenite, thermo-mechanical treatment, TRIP steel

Procedia PDF Downloads 293
4738 Microstructure and Mechanical Evaluation of PMMA/Al₂O₃ Nanocomposite Fabricated via Friction Stir Processing

Authors: Reham K. El Sawah, N. S. M. El-Tayeb

Abstract:

This study aims to produce a polymer matrix composite reinforced with Al₂O₃ nanoparticles in order to enhance the mechanical properties of PMMA. The composite was fabricated via Friction stir processing to ensure homogenous dispersion of Al₂O₃ nanoparticles in the polymer, and the processing was submerged to prevent the sputtering of nanoparticles. The surface quality, microstructure, impact energy and hardness of the prepared samples were investigated. Good surface quality and dispersion of nanoparticles were attained through employing sufficient processing conditions. The experimental results indicated that as the percentage of nanoparticles increased, the impact energy and hardness increased, reaching 2 kJ/m2 and 14.7 HV at a nanoparticle concentration of 25%, which means that the toughness and the hardness of the polymer-ceramic produced composite is higher than unprocessed PMMA by 66% and 33% respectively.

Keywords: friction stir processing, polymer matrix nanocomposite, mechanical properties, microstructure

Procedia PDF Downloads 177
4737 Protective Role of Curcumin against Ionising Radiation of Gamma Ray

Authors: Turban Kar, Maitree Bhattacharyya

Abstract:

Curcumin, a dietary antioxidant has been identified as a wonder molecule to possess therapeutic properties protecting the cellular macromolecules from oxidative damage. In our experimental study, we have explored the effectiveness of curcumin in protecting the structural paradigm of Human Serum Albumin (HSA) when exposed to gamma irradiation. HSA, being an important transport protein of the circulatory system, is involved in binding of variety of metabolites, drugs, dyes and fatty acids due to the presence of hydrophobic pockets inside the structure. HSA is also actively involved in the transportation of drugs and metabolites to their targets, because of its long half-life and regulation of osmotic blood pressure. Gamma rays, in its increasing concentration, results in structural alteration of the protein and superoxide radical generation. Curcumin, on the other hand, mitigates the damage, which has been evidenced in the following experiments. Our study explores the possibility for protection by curcumin during the molecular and conformational changes of HSA when exposed to gamma irradiation. We used a combination of spectroscopic methods to probe the conformational ensemble of the irradiated HSA and finally evaluated the extent of restoration by curcumin. SDS - PAGE indicated the formation of cross linked aggregates as a consequence of increasing exposure of gamma radiation. CD and FTIR spectroscopy inferred significant decrease in alpha helix content of HSA from 57% to 15% with increasing radiation doses. Steady state and time resolved fluorescence studies complemented the spectroscopic measurements when lifetime decay was significantly reduced from 6.35 ns to 0.37 ns. Hydrophobic and bityrosine study showed the effectiveness of curcumin for protection against radiation induced free radical generation. Moreover, bityrosine and hydrophobic profiling of gamma irradiated HSA in presence and absence of curcumin provided light on the formation of ROS species generation and the protective (magical) role of curcumin. The molecular mechanism of curcumin protection to HSA from gamma irradiation is yet unknown, though a possible explanation has been proposed in this work using Thioflavin T assay. It was elucidated, that when HSA is irradiated at low dose of gamma radiation in presence of curcumin, it is capable of retaining the native characteristic properties to a greater extent indicating stabilization of molecular structure. Thus, curcumin may be utilized as a therapeutic strategy to protect cellular proteins.

Keywords: Bityrosine content, conformational change, curcumin, gamma radiation, human serum albumin

Procedia PDF Downloads 156
4736 Biosensors as Analytical Tools in Legume Processing

Authors: S. V. Ncube, A. I. O. Jideani, E. T. Gwata

Abstract:

The plight of food insecurity in developing countries has led to renewed interest in underutilized legumes. Their nutritional versatility, desirable functionality, pharmaceutical value and inherent bioactive compounds have drawn the attention of researchers. This has provoked the development of value added products with the aim of commercially exploiting their full potential. However processing of these legumes leads to changes in nutritional composition as affected by processing variables like pH, temperature and pressure. There is therefore a need for process control and quality assurance during production of the value added products. However, conventional methods for microbiological and biochemical identification are labour intensive and time-consuming. Biosensors offer rapid and affordable methods to assure the quality of the products. They may be used to quantify nutrients and anti-nutrients in the products while manipulating and monitoring variables such as pH, temperature, pressure and oxygen that affect the quality of the final product. This review gives an overview of the types of biosensors used in the food industry, their advantages and disadvantages and their possible application in processing of legumes.

Keywords: legume processing, biosensors, quality control, nutritional versatility

Procedia PDF Downloads 493
4735 An Improved Model of Estimation Global Solar Irradiation from in situ Data: Case of Oran Algeria Region

Authors: Houcine Naim, Abdelatif Hassini, Noureddine Benabadji, Alex Van Den Bossche

Abstract:

In this paper, two models to estimate the overall monthly average daily radiation on a horizontal surface were applied to the site of Oran (35.38 ° N, 0.37 °W). We present a comparison between the first one is a regression equation of the Angstrom type and the second model is developed by the present authors some modifications were suggested using as input parameters: the astronomical parameters as (latitude, longitude, and altitude) and meteorological parameters as (relative humidity). The comparisons are made using the mean bias error (MBE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute bias error (MABE). This comparison shows that the second model is closer to the experimental values that the model of Angstrom.

Keywords: meteorology, global radiation, Angstrom model, Oran

Procedia PDF Downloads 234
4734 Electromagnetic Source Direction of Arrival Estimation via Virtual Antenna Array

Authors: Meiling Yang, Shuguo Xie, Yilong Zhu

Abstract:

Nowadays, due to diverse electric products and complex electromagnetic environment, the localization and troubleshooting of the electromagnetic radiation source is urgent and necessary especially on the condition of far field. However, based on the existing DOA positioning method, the system or devices are complex, bulky and expensive. To address this issue, this paper proposes a single antenna radiation source localization method. A single antenna moves to form a virtual antenna array combined with DOA and MUSIC algorithm to position accurately, meanwhile reducing the cost and simplify the equipment. As shown in the results of simulations and experiments, the virtual antenna array DOA estimation modeling is correct and its positioning is credible.

Keywords: virtual antenna array, DOA, localization, far field

Procedia PDF Downloads 374
4733 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm

Authors: Hooman Torabifard

Abstract:

In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.

Keywords: image summarization, particle swarm optimization, image threshold, image processing

Procedia PDF Downloads 135
4732 Study on the Fabrication and Mechanical Characterization of Pineapple Fiber-Reinforced Unsaturated Polyester Resin Based Composites: Effect of Gamma Irradiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Pineapple leaf fiber (PALF) reinforced polypropylene (PP) based composites were fabricated by a conventional compression molding technique. In this investigation, PALF composites were manufactured using different percentages of fiber, which were varying from 25-50% on the total weight of the composites. To fabricate the PALF/PP composites, untreated and treated fibers were selected. A systematic study was done to observe the physical, mechanical and interfacial behavior of the composites. In this study, mechanical properties of the composites such as tensile, impact and bending properties were observed precisely. It was found that 45wt% of fiber composites showed better mechanical properties than others. Maximum tensile strength (TS) and bending strength (BS) was observed, 65 MPa and 50 MPa respectively, whereas the highest tensile modulus (TM) and bending modulus (BM) was examined, 1.7 GPa and 0.85 GPa respectively. The PALF/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The values of TS, BS, TM, and BM of the irradiated (5.0 kGy) composites were found to improve by 19%, 23%, 17% and 25 % over non-irradiated composites. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated PALF/PP based composites showed better fiber-matrix adhesion and interfacial bonding than untreated PALF/PP based composites. Water uptake and soil degradation tests of untreated and treated composites were also investigated.

Keywords: PALF, polypropylene, compression molding technique, gamma radiation, mechanical properties, scanning electron microscope

Procedia PDF Downloads 151
4731 UV-Cured Coatings Based on Acrylated Epoxidized Soybean Oil and Epoxy Carboxylate

Authors: Alaaddin Cerit, Suheyla Kocaman, Ulku Soydal

Abstract:

During the past two decades, photoinitiated polymerization has been attracting a great interest in terms of scientific and industrial activity. The wide recognition of UV treatment in the polymer industry results not only from its many practical applications but also from its advantage for low-cost processes. Unlike most thermal curing systems, radiation-curable systems can polymerize at room temperature without additional heat, and the curing is completed in a very short time. The advantage of cationic UV technology is that post-cure can continue in the ‘dark’ after radiation. In this study, bio-based acrylated epoxidized soybean oil (AESO) was cured with UV radiation using radicalic photoinitiator Irgacure 184. Triarylsulphonium hexafluoroantimonate was used as cationic photoinitiator for curing of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The effect of curing time and the amount of initiators on the curing degree and thermal properties were investigated. The thermal properties of the coating were analyzed after crosslinking UV irradiation. The level of crosslinking in the coating was evaluated by FTIR analysis. Cationic UV-cured coatings demonstrated excellent adhesion and corrosion resistance properties. Therefore, our study holds a great potential with its simple and low-cost applications.

Keywords: acrylated epoxidized soybean oil, epoxy carboxylate, thermal properties, uv-curing

Procedia PDF Downloads 260
4730 Comparison of Breast Surface Doses for Full-Field Digital Mammography and Digital Breast Tomosynthesis Using Breast Phantoms

Authors: Chia-Hui Chen, Chien-Kuo Wang

Abstract:

Background: Full field digital mammography (FFDM) is widely used in diagnosis of breast cancer. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Hence, the radiation dose delivered to the patients involved in an imaging protocol is of utmost concern. Aim: To compare the surface radiation dose (ESD) of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) by using breast phantoms. Method: We analyzed the average entrance surface dose (ESD) of FFDM and DBT by using breast phantoms. Optically Stimulated luminescent Dosimeters (OSLD) were placed in a tissue-equivalent Breast phantom at difference sites of interest. Absorbed dose measurements were obtained after digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) exposures. Results: An automatic exposure control (AEC) is proposed for surface dose measurement during DBT and FFDM. The mean ESD values for DBT and FFDM were 6.37 mGy and 3.51mGy, respectively. Using of OSLD measured for surface dose during DBT and FFDM. There were 19.87 mGy and 11.36 mGy, respectively. The surface exposure dose of DBT could possibly be increased by two times with FFDM. Conclusion: The radiation dose from DBT was higher than that of FFDM and the difference in dose between AEC and OSLD measurements at phantom surface.

Keywords: full-field digital mammography, digital breast tomosynthesis, optically stimulated luminescent dosimeters, surface dose

Procedia PDF Downloads 421
4729 Study of Natural Radioactive and Radiation Hazard Index of Soil from Sembrong Catchment Area, Johor, Malaysia

Authors: M. I. A. Adziz, J. Sharib Sarip, M. T. Ishak, D. N. A. Tugi

Abstract:

Radiation exposure to humans and the environment is caused by natural radioactive material sources. Given that exposure to people and communities can occur through several pathways, it is necessary to pay attention to the increase in naturally radioactive material, particularly in the soil. Continuous research and monitoring on the distribution and determination of these natural radionuclides' activity as a guide and reference are beneficial, especially in an accidental exposure. Surface soil/sediment samples from several locations identified around the Sembrong catchment area were taken for the study. After 30 days of secular equilibrium with their daughters, the activity concentrations of the naturally occurring radioactive material (NORM) members, i.e. ²²⁶Ra, ²²⁸Ra, ²³⁸U, ²³²Th, and ⁴⁰K, were measured using high purity germanium (HPGe) gamma spectrometer. The results obtained showed that the radioactivity concentration of ²³⁸U ranged between 17.13 - 30.13 Bq/kg, ²³²Th ranged between 22.90 - 40.05 Bq/kg, ²²⁶Ra ranged between 19.19 - 32.10 Bq/kg, ²²⁸Ra ranged between 21.08 - 39.11 Bq/kg and ⁴⁰K ranged between 9.22 - 51.07 Bq/kg with average values of 20.98 Bq/kg, 27.39 Bq/kg, 23.55 Bq/kg, 26.93 Bq/kg and 23.55 Bq/kg respectively. The values obtained from this study were low or equivalent to previously reported in previous studies. It was also found that the mean/mean values obtained for the four parameters of the Radiation Hazard Index, namely radium equivalent activity (Raeq), external dose rate (D), annual effective dose and external hazard index (Hₑₓ), were 65.40 Bq/kg, 29.33 nGy/h, 19.18 ¹⁰⁻⁶Sv and 0.19 respectively. These obtained values are low compared to the world average values and the values of globally applied standards. Comparison with previous studies (dry season) also found that the values for all four parameters were low and equivalent. This indicates the level of radiation hazard in the area around the study is safe for the public.

Keywords: catchment area, gamma spectrometry, naturally occurring radioactive material (NORM), soil

Procedia PDF Downloads 103
4728 Proton Irradiation Testing on Commercial Enhancement Mode GaN Power Transistor

Authors: L. Boyaci

Abstract:

Two basic equipment of electrical power subsystem of space satellites are Power Conditioning Unit (PCU) and Power Distribution Unit (PDU). Today, the main switching element used in power equipment in satellites is silicon (Si) based radiation-hardened MOSFET. GaNFETs have superior performances over MOSFETs in terms of their conduction and switching characteristics. GaNFET has started to take MOSFET’s place in many applications in industry especially by virtue of its switching performances. If GaNFET can also be used in equipment for space applications, this would be great revolution for future space power subsystem designs. In this study, the effect of proton irradiation on Gallium Nitride based power transistors was investigated. Four commercial enhancement mode GaN power transistors from Efficient Power Conversion Corporation (EPC) are irradiated with 30MeV protons while devices are switching. Flux of 8.2x10⁹ protons/cm²/s is applied for 12.5 seconds to reach ultimate fluence of 10¹¹ protons/cm². Vgs-Ids characteristics are measured and recorded for each device before, during and after irradiation. It was observed that if there would be destructive events. Proton induced permanent damage on devices is not observed. All the devices remained healthy and continued to operate. For two of these devices, further irradiation is applied with same flux for 30 minutes up to a total fluence level of 1.476x10¹³ protons/cm². We observed that GaNFETs are fully functional under this high level of radiation and no destructive events and irreversible failures took place for transistors. Results reveal that irradiated GaNFET in this experiment has radiation tolerance under proton testing and very important candidate for being one of the future power switching element in space.

Keywords: enhancement mode GaN power transistors, proton irradiation effects, radiation tolerance

Procedia PDF Downloads 153
4727 Prediction of Ionizing Radiation Doses in Irradiated red Pepper (Capsicum annuum) and Mint (Mentha piperita) by Gel Electrophoresis

Authors: Şeyma Özçirak Ergün, Ergün Şakalar, Emrah Yalazi̇, Nebahat Şahi̇n

Abstract:

Food irradiation is a usage of exposing food to ionising radiation (IR) such as gamma rays. IR has been used to decrease the number of harmful microorganisms in the food such as spices. Excessive usage of IR can cause damage to both food and people who consuming food. And also it causes to damages on food DNA. Generally, IR detection techniques were utilized in literature for spices are Electron Spin Resonance (ESR), Thermos Luminescence (TL). Storage creates negative effect on IR detection method then analyses of samples have been performed without storage in general. In the experimental part, red pepper (Capsicum annuum) and mint (Mentha piperita) as spices were exposed to 0, 0.272, 0.497, 1.06, 3.64, 8.82, and 17.42 kGy ionize radiation. ESR was applied to samples irradiated. DNA isolation from irradiated samples was performed using GIDAGEN Multi Fast DNA isolation kit. The DNA concentration was measured using a microplate reader spectrophotometer (Infinite® 200 PRO-Life Science–Tecan). The concentration of each DNA was adjusted to 50 ng/µL. Genomic DNA was imaged by UV transilluminator (Gel Doc XR System, Bio-Rad) for the estimation of genomic DNA bp-fragment size after IR. Thus, agarose gel profiles of irradiated spices were obtained to determine the change of band profiles. Besides, samples were examined at three different time periods (0, 3, 6 months storage) to show the feasibility of developed method. Results of gel electrophoresis showed especially degradation of DNA of irradiated samples. In conclusion, this study with gel electrophoresis can be used as a basis for the identification of the dose of irradiation by looking at degradation profiles at specific amounts of irradiation. Agarose gel results of irradiated samples were confirmed with ESR analysis. This method can be applied widely to not only food products but also all biological materials containing DNA to predict radiation-induced damage of DNA.

Keywords: DNA, electrophoresis, gel electrophoresis, ionizeradiation

Procedia PDF Downloads 259
4726 A Review of Research on Pre-training Technology for Natural Language Processing

Authors: Moquan Gong

Abstract:

In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.

Keywords: natural language processing, pre-training, language model, word vectors

Procedia PDF Downloads 59
4725 Protection of Patients and Staff in External Beam Radiotherapy Using Linac in Kenya

Authors: Calvince Okome Odeny

Abstract:

There is a current action to increase radiotherapy services in Kenya. The National government of Kenya, in collaboration with the county governments, has embarked on building radiotherapy centers in all 47 regions of the country. As these new centers are established in Kenya, it has to be ensured that minimum radiation safety standards are in place prior to operation. For full implementation of this, it is imperative that more Research and training for regulators are done on radiation protection, and safety and national regulatory infrastructure is geared towards ensuring radiation protection and safety in all aspects of the use of external radiotherapy practices. The present work aims at reviewing the level of protection and safety for patients and staff during external beam radiotherapy using Linac in Kenya and provides relevant guidance to improve protection and safety. A retrospective evaluation was done to verify whether those occupationally exposed workers and patients are adequately protected from the harmful effect of radiation exposure during the treatment procedures using Linac. The project was experimental Research, also including an analysis of resource documents obtained from the literature and international organizations. The critical findings of the work revealed that the key elements of protection of occupationally exposed workers and patients include a comprehensive quality Management system governing all planned activities from siting, safety, and design of the Facility, construction, acceptance testing, commissioning, operation, and decommissioning of the Facility; Government empowering the Regulatory Authority to license Medical Linear facilities and to enforce the applicable regulations to ensure adequate protection; A comprehensive Radiation Protection and Safety program must be established to ensure adequate safety and protection of workers and patients during treatment planning and treatment delivery of patients and categories of staff associated with the Facility must be well educated and trained to perform professionally with a commitment to sound safety culture. Relevant recommendations from the findings are shared with the Medical Linear Accelerator facilities and the regulatory authority to provide guidance and continuous improvement of protection and safety to improve regulatory oversight.

Keywords: oncology, radiotherapy, protection, staff

Procedia PDF Downloads 78
4724 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 440
4723 The Effect of Hesperidin on Troponin's Serum Level Changes as a Heart Tissue Damage Biomarker Due to Gamma Irradiation of Rat's Mediastinum

Authors: G. H. Haddadi, S. Sajadi, R. Fardid, Z. Haddadi

Abstract:

The heart is a radiosensitive organ, and its damage is a dose-limiting factor in radiotherapy. Different side effects including vascular plaque and heart fibrosis occur in patients with thorax irradiation. The present study aimed to evaluate the radioprotective efficacy of Hesperidin (HES), a naturally occurring citrus flavanoglycone, against γ-radiation induced tissue damage in the heart of male rats. Sixty-eight rats were divided into four groups. The rats in group 1 received PBS, and those in group 2 received HES. Also, the rats in group 3 received PBS and underwent γ-irradiation, and those in group 4 received HES and underwent γ-irradiation. They were exposed to 20 Gy γ-radiation using a single fraction cobalt-60 unit, and the dose of Hesperidin was (100 mg/kg/d, orally) for 7 days prior irradiation. Each group was divided into two subgroups. Samplings of rats in subgroup A was done 4-6 hours after irradiation. The samples were sent to laboratory for determination of Troponin’s I (TnI) serum level changes as a cardiac biomarker. The remaining animals (subgroups B) were sacrificed 8 weeks after radiotherapy for histopathological evaluation. In group 3, TnI obviously increased in comparison with group 1 (p < 0.05). The comparison of groups 1 and 4 showed no significant difference. Evaluation of histopathological parameters in subgroup B showed significant differences between groups 1 and 3 in some of the cases. Inflammation (p=0.008), pericardial effusion (p=0.001) and vascular plaque (p=0.001) increased in the rats exposed to 20 Gy γ-irradiation. Using oral administration of HES significantly decreased all the above factors when compared to group 4 (P > 0.016). Administration of 100 mg/kg/day Hesperidin for 7 days resulted in decreased Troponin I and radiation heart injury. This agent may have protective effects against radiation-induced heart damage.

Keywords: hesperidin, radioprotector, troponin I, cardiac inflammation, vascular plaque

Procedia PDF Downloads 254
4722 Performance Evaluation of Thermosiphon Based Solar Water Heater in India

Authors: Dnyandip K. Bhamare, Manish K Rathod, Jyotirmay Banerjee

Abstract:

This paper aims to study performance of a thermosiphon solar water heating system with the help of the proposed analytical model. This proposed model predicts the temperature and mass flow rate in a thermosiphon solar water heating system depending on radiation intensity and ambient temperature. The performance of the thermosiphon solar water heating system is evaluated in the Indian context. For this, eight cities in India are selected considering radiation intensity and geographical positions. Predicted performance at various cities reveals the potential for thermosiphon solar water in India.

Keywords: solar water heater, collector outlet temperature, thermosyphon, India

Procedia PDF Downloads 261
4721 Dynamic Store Procedures in Database

Authors: Muhammet Dursun Kaya, Hasan Asil

Abstract:

In recent years, different methods have been proposed to optimize question processing in database. Although different methods have been proposed to optimize the query, but the problem which exists here is that most of these methods destroy the query execution plan after executing the query. This research attempts to solve the above problem by using a combination of methods of communicating with the database (the present questions in the programming code and using store procedures) and making query processing adaptive in database, and proposing a new approach for optimization of query processing by introducing the idea of dynamic store procedures. This research creates dynamic store procedures in the database according to the proposed algorithm. This method has been tested on applied software and results shows a significant improvement in reducing the query processing time and also reducing the workload of DBMS. Other advantages of this algorithm include: making the programming environment a single environment, eliminating the parametric limitations of the stored procedures in the database, making the stored procedures in the database dynamic, etc.

Keywords: relational database, agent, query processing, adaptable, communication with the database

Procedia PDF Downloads 373
4720 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 527
4719 Nondestructive Acoustic Microcharacterisation of Gamma Irradiation Effects on Sodium Oxide Borate Glass X2Na2O-X2B2O3 by Acoustic Signature

Authors: Ibrahim Al-Suraihy, Abdellaziz Doghmane, Zahia Hadjoub

Abstract:

We discuss in this work the elastic properties by using acoustic microscopes to measure Rayleigh and longitudinal wave velocities in a no radiated and radiated sodium borate glasses X2Na2O-X2B2O3 with 0 ≤ x ≤ 27 (mol %) at microscopic resolution. The acoustic material signatures were first measured, from which the characteristic surface velocities were determined.Longitudinal and shear ultrasonic velocities were measured in a different composition of sodium borate glass samples before and after irradiation with γ-rays. Results showed that the effect due to increasing sodium oxide content on the ultrasonic velocity appeared more clearly than due to γ-radiation. It was found that as Na2O composition increases, longitudinal velocities vary from 3832 to 5636 m/s in irradiated sample and it vary from 4010 to 5836 m/s in high radiated sample by 10 dose whereas shear velocities vary from 2223 to 3269 m/s in irradiated sample and it vary from 2326 m/s in low radiation to 3385 m/s in high radiated sample by 10 dose. The effect of increasing sodium oxide content on ultrasonic velocity was very clear. The increase of velocity was attributed to the gradual increase in the rigidity of glass and hence strengthening of network due to gradual change of boron atoms from the three-fold to the four-fold coordination of oxygen atoms. The ultrasonic velocities data of glass samples have been used to find the elastic modulus. It was found that ultrasonic velocity, elastic modulus and microhardness increase with increasing barium oxide content and increasing γ-radiation dose.

Keywords: mechanical properties X2Na2O-X2B2O3, acoustic signature, SAW velocities, additives, gamma-radiation dose

Procedia PDF Downloads 397
4718 Use of GIS and Remote Sensing for Calculating the Installable Photovoltaic and Thermal Power on All the Roofs of the City of Aix-en-Provence, France

Authors: Sofiane Bourchak, Sébastien Bridier

Abstract:

The objective of this study is to show how to calculate and map solar energy’s quantity (instantaneous and accumulated global solar radiation during the year) available on roofs in the city Aix-en-Provence which has a population of 140,000 inhabitants. The result is a geographic information system (GIS) layer, which represents hourly and monthly the production of solar energy on roofs throughout the year. Solar energy professionals can use it to optimize implementations and to size energy production systems. The results are presented as a set of maps, tables and histograms in order to determine the most effective costs in Aix-en-Provence in terms of photovoltaic power (electricity) and thermal power (hot water).

Keywords: geographic information system, photovoltaic, thermal, solar potential, solar radiation

Procedia PDF Downloads 437
4717 Power and Efficiency of Photovoltaic Module: Effect of Cell Temperature

Authors: R. Nasrin, M. Ferdows

Abstract:

Among the renewable energy sources, photovoltaic (PV) is a high potential, effective, and sustainable system. Irradiation intensity from 200 W/m2 to 1000 W/m2 has been considered to observe the performance of PV module. Generally, this module converts only about 15% - 20% of incident irradiation into electrical energy and the rest part is converted into heat energy. Finite element method has been used to solve the problem numerically. Simulation has been performed by considering the ambient temperature 30°C. Higher irradiation increase solar cell temperature and electrical power. The electrical efficiency of PV module decreases with the variation of solar radiation. The efficiency of PV module can be increased if cell temperature is reduced. Thus the effect of irradiation is significant to enhance the efficiency of PV module if the solar cell temperature is kept at a certain level.

Keywords: PV module, solar radiation, efficiency, cell temperature

Procedia PDF Downloads 363
4716 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria

Authors: Aminu Yakubu Umar

Abstract:

X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.

Keywords: radiation, X-ray output, quality control, half-value layer, mA linearity, KVp variation

Procedia PDF Downloads 610
4715 UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite

Authors: A. Evcin, N. Çiçek Bezir, R. Duman, N. Duman

Abstract:

Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites.

Keywords: electrospinning, carbon nanofiber, characterization, composites, nanofiber, ultraviolet radiation

Procedia PDF Downloads 226
4714 EMI Radiation Prediction and Final Measurement Process Optimization by Neural Network

Authors: Hussam Elias, Ninovic Perez, Holger Hirsch

Abstract:

The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we introduce a novel method to perform the final phase of Electromagnetic compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the conventional neural network(CNN). The neural network was trained using real EMC measurements, which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen, Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meets the maximum radiation value.

Keywords: conventional neural network, electromagnetic compatibility measurement, mean absolute error, position error

Procedia PDF Downloads 201
4713 Effect of Sub Supercritical CO2 Processing on Microflora and Shelf Life Tempe

Authors: M. Kustyawati, F. Pratama, D. Saputra, A. Wijaya

Abstract:

Tempe composes of not only molds but also bacteria and yeasts. The structure of microorganisms needs to be in balance number in order the tempe to be an acceptable quality for an extended time. Sub supercritical carbon dioxide can be a promising preservation method for tempe as it induces microbial inactivation avoiding alterations of its quality attributes. Fresh tempe were processed using supercritical and sub supercritical CO2 for a defined holding times, then the growth ability of molds and bacteria were analyzed. The results showed that the supercritical CO2 processing for 5 minutes reduced the number of bacteria and molds to 0.30 log cycle and 1.17 log cycles, respectively. In addition, sub supercritical CO2 processing for 20 minutes had fungicidal effect against mold tempe; whereas, the sub supercritical CO2 for 10 minutes had reducing effect against bacteria tempe, and had fungistatic affect against mold tempe. It suggested that sub-supercritical CO2 processing for 10 min could be useful alternative technique for preservation of tempe.

Keywords: tempe, sub supercritical CO2, fungistatic effect, preservation

Procedia PDF Downloads 271
4712 Radiological Assessment of Fish Samples Due to Natural Radionuclides in River Yobe, North Eastern Nigeria

Authors: H. T. Abba, Abbas Baba Kura

Abstract:

Assessment of natural radioactivity of some fish samples in river Yobe was conducted, using gamma spectroscopy method with NaI(TI) detector. Radioactivity is phenomenon that leads to production of radiations, whereas radiation is known to trigger or induce cancer. The fish were analyzed to estimate the radioactivity (activity) concentrations due to natural radionuclides (Radium 222(226Ra), Thorium 232 (232Th) and Potassium 40 (40K)). The obtained result show that the activity concentration for (226Ra), in all the fish samples collected ranges from 15.23±2.45 BqKg-1 to 67.39±2.13 BqKg-1 with an average value of 34.13±1.34 BqKg-1. That of 232Th, ranges from 42.66±0.81 BqKg-1 to 201.18±3.82 BqKg-1, and the average value stands at 96.01±3.82 BqKg-1. The activity concentration for 40K, ranges between 243.3±1.56 BqKg-1 to 618.2±2.81 BqKg-1 and the average is 413.92±1.7 BqKg-1. This study indicated that average daily intake due to natural activity from the fish is valued at 0.913 Bq/day, 2.577Bq/day and 11.088 Bq/day for 226Ra, 232Th and 40K respectively. This shows that the activity concentration values for fish, shows a promising result with most of the fish activity concentrations been within the acceptable limits. However locations (F02, F07 and F12) fish, became outliers with significant values of 112.53μSvy-1, 121.11μSvy-1 and 114.32μSvy-1 effective Dose. This could be attributed to variation in geological formations within the river as while as the feeding habits of these fish. The work shows that consumers of fish from River Yobe have no risk of radioactivity ingestion, even though no amount of radiation is assumed to be totally safe.

Keywords: radiation, radio-activity, dose, radionuclides, river Yobe

Procedia PDF Downloads 319
4711 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites

Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash

Abstract:

Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.

Keywords: gamma ray irradiation, hard ferrite, magnetic coefficient, magnetic material, radiation dose

Procedia PDF Downloads 239