Search results for: principal component
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3114

Search results for: principal component

2784 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India

Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar

Abstract:

This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.

Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies

Procedia PDF Downloads 418
2783 Improved Pattern Matching Applied to Surface Mounting Devices Components Localization on Automated Optical Inspection

Authors: Pedro M. A. Vitoriano, Tito. G. Amaral

Abstract:

Automated Optical Inspection (AOI) Systems are commonly used on Printed Circuit Boards (PCB) manufacturing. The use of this technology has been proven as highly efficient for process improvements and quality achievements. The correct extraction of the component for posterior analysis is a critical step of the AOI process. Nowadays, the Pattern Matching Algorithm is commonly used, although this algorithm requires extensive calculations and is time consuming. This paper will present an improved algorithm for the component localization process, with the capability of implementation in a parallel execution system.

Keywords: AOI, automated optical inspection, SMD, surface mounting devices, pattern matching, parallel execution

Procedia PDF Downloads 299
2782 Iris Cancer Detection System Using Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.

Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera

Procedia PDF Downloads 503
2781 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five

Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz

Abstract:

Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.

Keywords: hydroxyl, global model, model maintenance, near infrared, polyol

Procedia PDF Downloads 135
2780 A Quantitative Survey Research on the Development and Assessment of Attitude toward Mathematics Instrument

Authors: Soofia Malik

Abstract:

The purpose of this study is to develop an instrument to measure undergraduate students’ attitudes toward mathematics (MAT) and to assess the data collected from the instrument for validity and reliability. The instrument is developed using five subscales: anxiety, enjoyment, self-confidence, value, and technology. The technology dimension is added as the fifth subscale of attitude toward mathematics because of the recent trend of incorporating online homework in mathematics courses as well as due to heavy reliance of higher education on using online learning management systems, such as Blackboard and Moodle. The sample consists of 163 (M = 82, F = 81) undergraduates enrolled in College Algebra course in the summer 2017 semester at a university in the USA. The data is analyzed to answer the research question: if and how do undergraduate students’ attitudes toward mathematics load using Principal Components Analysis (PCA)? As a result of PCA, three subscales emerged namely: anxiety/self-confidence scale, enjoyment, and value scale. After deleting the last five items or the last two subscales from the initial MAT scale, the Cronbach’s alpha was recalculated using the scores from 20 items and was found to be α = .95. It is important to note that the reliability of the initial MAT form was α = .93. This means that employing the final MAT survey form would yield consistent results in repeated uses. The final MAT form is, therefore, more reliable as compared to the initial MAT form.

Keywords: college algebra, Cronbach's alpha reliability coefficient, Principal Components Analysis, PCA, technology in mathematics

Procedia PDF Downloads 123
2779 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network

Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal

Abstract:

This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.

Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography

Procedia PDF Downloads 143
2778 Automated Resin Transfer Moulding of Carbon Phenolic Composites

Authors: Zhenyu Du, Ed Collings, James Meredith

Abstract:

The high cost of composite materials versus conventional materials remains a major barrier to uptake in the transport sector. This is exacerbated by a shortage of skilled labour which makes the labour content of a hand laid composite component (~40 % of total cost) an obvious target for reduction. Automation is a method to remove labour cost and improve quality. This work focuses on the challenges and benefits to automating the manufacturing process from raw fibre to trimmed component. It will detail the experimental work required to complete an automation cell, the control strategy used to integrate all machines and the final benefits in terms of throughput and cost.

Keywords: automation, low cost technologies, processing and manufacturing technologies, resin transfer moulding

Procedia PDF Downloads 292
2777 Revisiting Pedestrians’ Appraisals of Urban Streets

Authors: Norhaslina Hassan, Sherina Rezvanipour, Amirhosein Ghaffarian Hoseini, Ng Siew Cheok

Abstract:

The walkability features of urban streets are prominent factors that are often focused on achieving a pedestrian-friendly environment. The limited attention that walkability enhancements devote to pedestrians' experiences or perceptions, on the other hand, raises the question of whether walkability enhancement is sufficient for pedestrians to enjoy using the streets. Thus, this paper evaluates the relationship between the socio-physical components of urban streets and pedestrians’ perceptions. A total of 1152 pedestrians from five urban streets in two major Malaysian cities, Kuala Lumpur, and George Town, Penang, participated in this study. In particular, this study used pedestrian preference scores towards socio-physical attributes that exist in urban streets to assess their impact on pedestrians’ appraisals of street likeability, comfort, and safety. Through analysis, the principal component analysis extracted eight socio-physical components, which were then tested via an ordinal regression model to identify their impact on pedestrian street likeability, comfort (visual, auditory, haptic and olfactory), and safety (physical safety, environmental safety, and security). Furthermore, a non-parametric Kruskal Wallis test was used to identify whether the results were subjected to any socio-demographic differences. The results found that all eight components had some degree of effect on the appraisals. It was also revealed that pedestrians’ preferences towards the attributes as well as their appraisals significantly varied based on their age, gender, ethnicity and education. These results and their implications for urban planning are further discussed in this paper.

Keywords: pedestrian appraisal, pedestrian perception, street sociophysical attributes, walking experience

Procedia PDF Downloads 124
2776 Identification of Superior Cowpea Mutant Genotypes, Their Adaptability, and Stability Under South African Conditions

Authors: M. Ntswane, N. Mbuma, M. Labuschagne, A. Mofokeng, M. Rantso

Abstract:

Cowpea is an essential legume for the nutrition and health of millions of people in different regions. The production and productivity of the crop are very limited in South Africa due to a lack of adapted and stable genotypes. The improvement of nutritional quality is made possible by manipulating the genes of diverse cowpea genotypes available around the world. Assessing the adaptability and stability of the cowpea mutant genotypes for yield and nutritional quality requires examining them in different environments. The objective of the study was to determine the adaptability and stability of cowpea mutant genotypes under South African conditions and to identify the superior genotypes that combine grain yield components, antioxidants, and nutritional quality. Thirty-one cowpea genotypes were obtained from the Agricultural Research Council grain crops (ARC-GC) and were planted in Glen, Mafikeng, Polokwane, Potchefstroom, Taung, and Vaalharts during the 2021/22 summer cropping season. Significant genotype by location interactions indicated the possibility of genetic improvement of these traits. The genotype plus genotype by environment indicated broad adaptability and stability of mutant genotypes. The principal component analysis identified the association of the genotypes with the traits. Phenotypic correlation analysis showed that Zn and protein content were significant and positively correlated and suggested the possibility of indirect selection of these traits. Results from this study could be used to help plant breeders in making informed decisions and developing nutritionally improved cowpea genotypes with the aim of addressing the challenges of poor nutritional quality.

Keywords: cowpea seeds, adaptability, stability, mineral elements, protein content

Procedia PDF Downloads 111
2775 Urban Change Detection and Pattern Analysis Using Satellite Data

Authors: Shivani Jha, Klaus Baier, Rafiq Azzam, Ramakar Jha

Abstract:

In India, generally people migrate from rural area to the urban area for better infra-structural facilities, high standard of living, good job opportunities and advanced transport/communication availability. In fact, unplanned urban development due to migration of people causes seriou damage to the land use, water pollution and available water resources. In the present work, an attempt has been made to use satellite data of different years for urban change detection of Chennai metropolitan city along with pattern analysis to generate future scenario of urban development using buffer zoning in GIS environment. In the analysis, SRTM (30m) elevation data and IRS-1C satellite data for the years 1990, 2000, and 2014, are used. The flow accumulation, aspect, flow direction and slope maps developed using SRTM 30 m data are very useful for finding suitable urban locations for industrial setup and urban settlements. Normalized difference vegetation index (NDVI) and Principal Component Analysis (PCA) have been used in ERDAS imagine software for change detection in land use of Chennai metropolitan city. It has been observed that the urban area has increased exponentially in Chennai metropolitan city with significant decrease in agriculture and barren lands. However, the water bodies located in the study regions are protected and being used as freshwater for drinking purposes. Using buffer zone analysis in GIS environment, it has been observed that the development has taken place in south west direction significantly and will do so in future.

Keywords: urban change, satellite data, the Chennai metropolis, change detection

Procedia PDF Downloads 408
2774 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism

Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng

Abstract:

Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.

Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition

Procedia PDF Downloads 183
2773 Processes Controlling Release of Phosphorus (P) from Catchment Soils and the Relationship between Total Phosphorus (TP) and Humic Substances (HS) in Scottish Loch Waters

Authors: Xiaoyun Hui, Fiona Gentle, Clemens Engelke, Margaret C. Graham

Abstract:

Although past work has shown that phosphorus (P), an important nutrient, may form complexes with aqueous humic substances (HS), the principal component of natural organic matter, the nature of such interactions is poorly understood. Humic complexation may not only enhance P concentrations but it may change its bioavailability within such waters and, in addition, influence its transport within catchment settings. This project is examining the relationships and associations of P, HS, and iron (Fe) in Loch Meadie, Sutherland, North Scotland, a mesohumic freshwater loch which has been assessed as reference condition with respect to P. The aim is to identify characteristic spectroscopic parameters which can enhance the performance of the model currently used to predict reference condition TP levels for highly-coloured Scottish lochs under the Water Framework Directive. In addition to Loch Meadie, samples from other reference condition lochs in north Scotland and Shetland were analysed. By including different types of reference condition lochs (clear water, mesohumic and polyhumic water) this allowed the relationship between total phosphorus (TP) and HS to be more fully explored. The pH, [TP], [Fe], UV/Vis absorbance/spectra, [TOC] and [DOC] for loch water samples have been obtained using accredited methods. Loch waters were neutral to slightly acidic/alkaline (pH 6-8). [TP] in loch waters were lower than 50 µg L-1, and in Loch Meadie waters were typically <10 µg L-1. [Fe] in loch waters were mainly <0.6 mg L-1, but for some loch water samples, [Fe] were in the range 1.0-1.8 mg L-1and there was a positive correlation with [TOC] (r2=0.61). Lochs were classified as clear water, mesohumic or polyhumic based on water colour. The range of colour values of sampled lochs in each category were 0.2–0.3, 0.2–0.5 and 0.5–0.8 a.u. (10 mm pathlength), respectively. There was also a strong positive correlation between [DOC] and water colour (R2=0.84). The UV/Vis spectra (200-700 nm) for water samples were featureless with only a slight “shoulder” observed in the 270–290 nm region. Ultrafiltration was then used to separate colloidal and truly dissolved components from the loch waters and, since it contained the majority of aqueous P and Fe, the colloidal component was fractionated by gel filtration chromatography method. Gel filtration chromatographic fractionation of the colloids revealed two brown-coloured bands which had distinctive UV/Vis spectral features. The first eluting band had larger and more aromatic HS molecules than the second band, and in addition both P and Fe were primarily associated with the larger, more aromatic HS. This result demonstrated that P was able to form complexes with Fe-rich components of HS, and thus provided a scientific basis for the significant correlation between [Fe] and [TP] that the previous monitoring data of reference condition lochs from Scottish Environment Protection Agency (SEPA) showed. The distinctive features of the HS will be used as the basis for an improved spectroscopic tool.

Keywords: total phosphorus, humic substances, Scottish loch water, WFD model

Procedia PDF Downloads 546
2772 Reasons of Change in Security Prices and Price Volatility: An Analysis of the European Carbon Futures Market

Authors: Boulis M. Ibrahim, Iordanis A. Kalaitzoglou

Abstract:

A micro structural pricing model is proposed in which price components account for learning by incorporating changing expectations of the trading intensity and the risk level of incoming trades. An analysis of European carbon futures transactions finds expected trading intensity to increase the information component and decrease the liquidity component of price changes, but at different rates. Among the results, the expected persistence in trading intensity explains the majority of the auto correlations in the level and the conditional volatility of price changes, helps predict hourly patterns in the bid–ask spread and differentiates between the impact of buy versus sell and continuing versus reversing trades.

Keywords: CO2 emission allowances, market microstructure, duration, price discovery

Procedia PDF Downloads 407
2771 An Empirical Study Comparing Industry Segments as Regards Organisation Management in Open Innovation - Based on a Questionnaire of the Pharmaceutical Industry and IT Component Industry Segment

Authors: Fumihiko Isada, Yuriko Isada

Abstract:

The aim of this research is to clarify the difference by industry segment or product characteristics as regards organisation management for an open innovation to raise R&D performance. In particular, the trait of the pharmaceutical industry is defined in comparison with IT component industry segment. In considering open innovation, both inter-organisational relation and the management in an organisation are important issues. As methodology, a questionnaire was conducted. In conclusion, suitable organisation management according to the difference in industry segment or product characteristics became clear.

Keywords: empirical study, industry segment, open innovation, product-development organisation pattern

Procedia PDF Downloads 426
2770 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows

Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang

Abstract:

We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.

Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis

Procedia PDF Downloads 46
2769 Strategic Asset Allocation Optimization: Enhancing Portfolio Performance Through PCA-Driven Multi-Objective Modeling

Authors: Ghita Benayad

Abstract:

Asset allocation, which affects the long-term profitability of portfolios by distributing assets to fulfill a range of investment objectives, is the cornerstone of investment management in the dynamic and complicated world of financial markets. This paper offers a technique for optimizing strategic asset allocation with the goal of improving portfolio performance by addressing the inherent complexity and uncertainty of the market through the use of Principal Component Analysis (PCA) in a multi-objective modeling framework. The study's first section starts with a critical evaluation of conventional asset allocation techniques, highlighting how poorly they are able to capture the intricate relationships between assets and the volatile nature of the market. In order to overcome these challenges, the project suggests a PCA-driven methodology that isolates important characteristics influencing asset returns by decreasing the dimensionality of the investment universe. This decrease provides a stronger basis for asset allocation decisions by facilitating a clearer understanding of market structures and behaviors. Using a multi-objective optimization model, the project builds on this foundation by taking into account a number of performance metrics at once, including risk minimization, return maximization, and the accomplishment of predetermined investment goals like regulatory compliance or sustainability standards. This model provides a more comprehensive understanding of investor preferences and portfolio performance in comparison to conventional single-objective optimization techniques. While applying the PCA-driven multi-objective optimization model to historical market data, aiming to construct portfolios better under different market situations. As compared to portfolios produced from conventional asset allocation methodologies, the results show that portfolios optimized using the proposed method display improved risk-adjusted returns, more resilience to market downturns, and better alignment with specified investment objectives. The study also looks at the implications of this PCA technique for portfolio management, including the prospect that it might give investors a more advanced framework for navigating financial markets. The findings suggest that by combining PCA with multi-objective optimization, investors may obtain a more strategic and informed asset allocation that is responsive to both market conditions and individual investment preferences. In conclusion, this capstone project improves the field of financial engineering by creating a sophisticated asset allocation optimization model that integrates PCA with multi-objective optimization. In addition to raising concerns about the condition of asset allocation today, the proposed method of portfolio management opens up new avenues for research and application in the area of investment techniques.

Keywords: asset allocation, portfolio optimization, principle component analysis, multi-objective modelling, financial market

Procedia PDF Downloads 47
2768 An Inherent Risk to Damage the Popliteus Tendon by Some Femoral Component Designs: A Pilot Study in Indian Knees

Authors: Rajendra Kanojia

Abstract:

Femoral components with inbuilt rotation require thicker flexion resection of the lateral femoral condyle and could potential risk to damage the popliteus tendon especially in the smaller Asian knees. We prospectively evaluated 10 patients with bilateral varus osteoarthritis knee to size the cuts and their location in relation to the popliteus tendon. Two different types of implant were used on either side, one side requires resection in 3° external rotation (group A) and other side femoral component with inbuilt external roation (group B). We had popliteus tendon injury in 3 knees all from group B. Risk of damaging the popliteus tendon was found higher in group B.

Keywords: popliteaus tendon injury, TKA, orthopaedic surgery, biomechanics and clinical applications

Procedia PDF Downloads 334
2767 Streaming Communication Component for Multi-Robots

Authors: George Oliveira, Luana D. Fronza, Luiza Medeiros, Patricia D. M. Plentz

Abstract:

The research presented in this article is part of a wide project that proposes a scheduling system for multi-robots in intelligent warehouses employing multi-robot path-planning (MPP) and multi-robot task allocation (MRTA) to reconcile multiple restrictions (task delivery time, task priorities, charging capacity, and robots battery capacity). We present the software component capable of interconnecting an open streaming processing architecture and robot operating system (ROS), ensuring communication and message exchange between robots and the environment in which they are inserted. Simulation results show the good performance of our proposed technique for connecting ROS and streaming platforms.

Keywords: complex distributed systems, mobile robots, smart warehouses, streaming platforms

Procedia PDF Downloads 193
2766 Comparison of Anthropometric Measurements Between Handball and Basketball Female Players

Authors: Jasmina Pluncevic Gligoroska, Sanja Manchevska, Vaska Antevska, Lidija Todorovska, Beti Dejanova, Sunchica Petrovska, Ivanka Karagjozova, Elizabeta Sivevska

Abstract:

Introduction: Anthropometric measurements are integral part of regular medical examinations of athletes. In addition to the quantification of the size of the body, these measurements indicate the quality of the physical status, because of its association with sports performance. The purpose of this study was to examine whether there are differences in anthropometric parameters and body mass components in female athletes who participate in two different types of sports. Methods: A total of 27 athletes, 15 handball players and 12 basketball players, at the average age of 22.7 years (age span from 17 to 30 years) entered the study. Anthropometric method by Matiegka was used for determination of body components. Sixteen anthropometric measures were taken: height, weight, four diameters of joints, four circumferences of limbs and six skin folds. Results: Handball players were 169.6±6.7 cm tall and 63,75±7.5 kg heavy. Their average relative muscle mass (absolute mass in kg) was 51% (32.5kg), while bone component was 16.8% (10.7kg) and fat component was 14.3% (7.74kg). The basketball players were 177.4±8.2cm tall and 70.37±12.1kg heavy. Their average relative muscle mass (absolute mass in kg) was 51.9 % (36.6kg), bone component was 16.37% (11.5kg) and fat component was 15.36% (9.4kg). The comparison of anthropometric values showed that basketball players were statistically significantly higher and heavier than handball players (p<0.05). Statistically significant difference (p<0.05) was observed in the range of upper leg circumference (higher in basketball players) and the forearm skin fold (higher in the basketball players). Conclusion: Handball players and basketball players significantly differed in basic anthropometric measures (height and weight), but the body components had almost identical values. The anthropometric measurements that have been taken did not show significant difference between handball and basketball female players despite the different physical demands of the games.

Keywords: anthropometry, body components, basketball, handball female players

Procedia PDF Downloads 463
2765 The Determinants of Customer’s Purchase Intention of Islamic Credit Card: Evidence from Pakistan

Authors: Nasir Mehmood, Muhammad Yar Khan, Anam Javeed

Abstract:

This study aims to scrutinize the dynamics which tend to impact customer’s purchasing intention of Islamic credit card and nexus of product’s knowledge and religiosity with the attitude of potential Islamic credit card’s customer. The theory of reasoned action strengthened the idea that intentions due to its proven predictive power are most likely to instigate intended consumer behavior. Particularly, the study examines the relationships of perceived financial cost (PFC), subjective norms (SN), and attitude (ATT) with the intention to purchase Islamic credit cards. Using a convenience sampling approach, data have been collected from 450 customers of banks located in Rawalpindi and Islamabad. A five-point Likert scale self-administered questionnaire was used to collect the data. The data were analyzed using the Statistical Package of Social Sciences (SPSS) through the procedures of principal component and multiple regression analysis. The results suggested that customer’s religiosity and product knowledge are strong indicators of attitude towards buying Islamic credit cards. Likewise, subjective norms, attitude, and perceived financial cost have a significant positive impact on customers’ purchase intent of Islamic bank’s credit cards. This study models a useful path for future researchers to further investigate the underlined phenomenon along with a variety of psychodynamic factors which are still in its infancy, at least in the Pakistani banking sector. The study also provides an insight to the practitioners and Islamic bank managers for directing their efforts toward educating customers regarding the use of Islamic credit cards and other financial products.

Keywords: attitude, Islamic credit card, religiosity, subjective norms

Procedia PDF Downloads 144
2764 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 174
2763 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 229
2762 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Keywords: concrete, FEM, pavement, sensitivity, simulation

Procedia PDF Downloads 330
2761 Properties of Concrete with Wood Ashes in Construction Engineering

Authors: Piotr-Robert Lazik, Lena Teichmann, Harald Garrecht

Abstract:

Many concrete technologists are looking for a solution to replace fly ashes as a component that occurs as a major component of many types of concrete. The importance of such a component is clear -it saves cement and reduces the amount of CO₂ in the atmosphere that occurs during cement production. For example, the amount of cement in ultrahigh strength concrete (UHPC) is approximately 700-800 kg/m³ in normal concrete up to 350 kg/m³. For this reason, it is easy to follow that the use of components like fly ashes or wood ashes protect the environment. The newest investigations carried out at the University of Stuttgart have clearly shown that the use of wood ashes with appropriate pre-treatment in concrete has a positive effect. German-wide, there are hundreds of tons of wood ashes, which can be used in a wide range of construction materials. The strengths of the concrete with different types of cement and with wood ashes have given the same or, in some cases, better results than those with the use of fly ashes. There are many areas in building construction, where the clays of wood ashes can be used as a by-product. This does not only require a strength test but also, for example, an examination of structural-physical parameters. Especially the heat and moisture characteristics have an important role in times of energy-efficient construction. These are therefore determined and then compared with the characteristics of the concretes with fly ashes. The University of Stuttgart has decided to investigate the buildings' physical properties of different types of concrete with wood ashes to find their application in construction. After the examination of the buildings' physical properties in combination with strength tests, it is possible to determine in which field of civil engineering, this type of concrete can be used.

Keywords: fly ashes, wood ashes, structural-physical parameters, UHPC

Procedia PDF Downloads 143
2760 Proton Nuclear Magnetic Resonance Based Metabolomics and 13C Isotopic Ratio Evaluation to Differentiate Conventional and Organic Soy Sauce

Authors: Ghulam Mustafa Kamal, Xiaohua Wang, Bin Yuan, Abdullah Ijaz Hussain, Jie Wang, Shahzad Ali Shahid Chatha, Xu Zhang, Maili Liu

Abstract:

Organic food products are becoming increasingly popular in recent years, as consumers have turned more health conscious and environmentally aware. A lot of consumers have understood that the organic foods are healthier than conventionally produced food stuffs. Price difference between conventional and organic foods is very high. So, it is very common to cheat the consumers by mislabeling and adulteration. Our study describes the 1H NMR based approach to characterize and differentiate soy sauce prepared from organically and conventionally grown raw materials (wheat and soybean). Commercial soy sauce samples fermented from organic and conventional raw materials were purchased from local markets. Principal component analysis showed clear separation among organic and conventional soy sauce samples. Orthogonal partial least squares discriminant analysis showed a significant (p < 0.01) separation among two types of soy sauce yielding leucine, isoleucine, ethanol, glutamate, lactate, acetate, β-glucose, sucrose, choline, valine, phenylalanine and tyrosine as important metabolites contributing towards this separation. Abundance ratio of 13C to 12C was also evaluated by 1H NMR spectroscopy which showed an increased ratio of 13C isotope in organic soy sauce samples indicating the organically grown wheat and soybean used for the preparation of organic soy sauce. Results of the study can be helpful to the end users to select the soy sauce of their choice. This information could also pave the way to further trace and authenticate the raw materials used in production of soy sauce.

Keywords: 1H NMR, multivariate analysis, organic, conventional, 13C isotopic ratio, soy sauce

Procedia PDF Downloads 262
2759 MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field

Authors: Yue Yan, Chang Nyung Kim

Abstract:

The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field.

Keywords: curved duct, flow channel insert, liquid-metal, magnetohydrodynamic

Procedia PDF Downloads 496
2758 A Piebald Cladistic Portray of Mitochondrial DNA Control Region Haplogroups in Khyber Pakhtunkhwa, Pakistan

Authors: Shahzad Bhatti, M. Aslamkhan, Sana Abbas, Marcella Attimonelli, Hikmet Hakan Aydin, Erica Martinha Silva de Souza,

Abstract:

Despite being situated at the crossroad of Asia, Pakistan has gained crucial importance because of its pivotal role in subsequent migratory events. To highlight the genetic footprints and to contribute an enigmatic picture of the relative population expansion pattern among four major Pashtun tribes in Khyber Pakhtunkhwa viz., Bangash, Khattak, Mahsuds and Orakzai, the complete mitochondrial control region of 100 Pashtun were analyzed. All Pashtun tribes studied here revealed high genetic diversity; that was comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis, and phylogenetic analysis. The results revealed that the Pashtun is a composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasions and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroup M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Herein we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) point to a genetic connection of Jewish conglomeration with Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.

Keywords: mtDNA haplogroups, control region, Pakistan, KPK, ethnicity

Procedia PDF Downloads 480
2757 A Quantitative Assessment of the Social Marginalization in Romania

Authors: Andra Costache, Rădiţa Alexe

Abstract:

The analysis of the spatial disparities of social marginalization is a requirement in the present-day socio-economic and political context of Romania, an East-European state, member of the European Union since 2007, at present faced with the imperatives of the growth of its territorial cohesion. The main objective of this article is to develop a methodology for the assessment of social marginalization, in order to understand the intensity of the marginalization phenomenon at different spatial scales. The article proposes a social marginalization index (SMI), calculated through the integration of ten indicators relevant for the two components of social marginalization: the material component and the symbolical component. The results highlighted a strong connection between the total degree of social marginalization and the dependence on social benefits, unemployment rate, non-inclusion in the compulsory education, criminality rate, and the type of pension insurance.

Keywords: Romania, social marginalization index, territorial disparities, EU

Procedia PDF Downloads 345
2756 Development of Patient Satisfaction Questionnaire for Diabetes Management in Thailand and Lao People Democratic Republic

Authors: Phoutsathaphone Sibounheuang, Phayom Sookaneknun Olson, Chanuttha Ploylearmsang, Santiparp Sookaneknun, Chanthanom Manithip

Abstract:

Patient satisfaction is an outcome that can be measured and used to improve diabetes care and management. There are limited instruments for assessing patient satisfaction covering the whole process of diabetes management. In this study, the questionnaire was developed with items pooled from a systematic review of qualitative studies of patients’ and healthcare providers’ perspectives in diabetes management. The questionnaire consists of 11 domains with 45 items. The Thai version was translated to Lao and then checked by back-translating it into Thai. We tested the questionnaire on 150 diabetes patients in Thailand and 150 in Lao People Democratic Republic (PDR). Validity was performed by factor analysis and Pearson correlation. Internal consistency reliability was estimated by calculating Cronbach’s alpha. The study was approved by the Mahasarakham University Ethics Committee, and the National Ethics Committee for Health Research, Lao PDR. The Thai and Lao versions showed the construct validity by principal component analysis. This consisted of 11 domains which account for 71.23% of the variance (Thai version) and 71.66% of the variance (Lao version) in the total patient satisfaction scores. The Kaiser-Meyer-Olkin (KMO) measures were 0.85 for the Thai version and 0.75 for the Lao version. The Bartlett tests of sphericity of both versions were significant (p < 0.001). The factor loadings of all items in both versions were > 0.40. The convergent validity of the Thai and Lao versions was 93.63% and 79.54% respectively. The discriminant validity for the Thai and Lao versions was 92.68% and 88.68% respectively. Cronbach’s alpha was 0.95 in both versions. The Patient Satisfaction Questionnaire (PSQ) in both versions had acceptable properties. This study has yielded evidence supporting the validity and reliability of both versions.

Keywords: construct validity, diabetes management, patient satisfaction, questionnaire development, reliability

Procedia PDF Downloads 140
2755 Spatio-Temporal Variation of Gaseous Pollutants and the Contribution of Particulate Matters in Chao Phraya River Basin, Thailand

Authors: Samart Porncharoen, Nisa Pakvilai

Abstract:

The elevated levels of air pollutants in regional atmospheric environments is a significant problem that affects human health in Thailand, particularly in the Chao Phraya River Basin. Of concern are issues surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the river. Therefore, the spatio-temporal study of air pollution in this real environment can gain more accurate air quality data for making formalized environmental policy in river basins. In order to inform such a policy, a study was conducted over a period of January –December, 2015 to continually collect measurements of various pollutants in both urban and regional locations in the Chao Phraya River Basin. This study investigated the air pollutants in many diverse environments along the Chao Phraya River Basin, Thailand in 2015. Multivariate Analysis Techniques such as Principle Component Analysis (PCA) and Path analysis were utilised to classify air pollution in the surveyed location. Measurements were collected in both urban and rural areas to see if significant differences existed between the two locations in terms of air pollution levels. The meteorological parameters of various particulates were collected continually from a Thai pollution control department monitoring station over a period of January –December, 2015. Of interest to this study were the readings of SO2, CO, NOx, O3, and PM10. Results showed a daily arithmetic mean concentration of SO2, CO, NOx, O3, PM10 reading at 3±1 ppb, 0.5± 0.5 ppm, 30±21 ppb, 19±16 ppb, and 40±20 ug/m3 in urban locations (Bangkok). During the same time period, the readings for the same measurements in rural areas, Ayutthaya (were 1±0.5 ppb, 0.1± 0.05 ppm, 25±17 ppb, 30±21 ppb, and 35±10 ug/m3respectively. This show that Bangkok were located in highly polluted environments that are dominated source emitted from vehicles. Further, results were analysed to ascertain if significant seasonal variation existed in the measurements. It was found that levels of both gaseous pollutants and particle matter in dry season were higher than the wet season. More broadly, the results show that levels of pollutants were measured highest in locations along the Chao Phraya. River Basin known to have a large number of vehicles and biomass burning. This correlation suggests that the principle pollutants were from these anthropogenic sources. This study contributes to the body of knowledge surrounding ambient air pollution such as particulate matter, gaseous pollutants and more specifically concerning air pollution along the Chao Phraya River Basin. Further, this study is one of the first to utilise continuous mobile monitoring along a river in order to gain accurate measurements during a data collection period. Overall, the results of this study can be used for making formalized environmental policy in river basins in order to reduce the physical effects on human health.

Keywords: air pollution, Chao Phraya river basin, meteorology, seasonal variation, principal component analysis

Procedia PDF Downloads 285