Search results for: power electronic cooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8330

Search results for: power electronic cooling

8000 Design and Thermal Analysis of a Concrete House in Libya Using BEopt

Authors: Gamal Alamri, Tariq Iqbal

Abstract:

This paper presents an optimum designs and thermal analysis of concrete house in the hot climate of Libya. For this goal we have used BEopt software (building energy optimization) that provides capabilities for estimating residential building design and thermal analysis. The most area of the house that is exposed to the sunlight’s is the roof leading to heat gain. Therefore, house cooling consumes high energy. The cooling energy consumption is three times the heating energy consumption. In order to maintain comfortable indoor conditions in a low-energy house, the entire building envelope needs to be perfectly insulated and prevented from air leakages. Insulated roof is selected to reduce cooling demand, and the paper presents details and BEopt simulation results. Designed house needs 12.02mmbtus/year. Furthermore, the modeling indicates that the designed house is close to achieving the Passive standard.

Keywords: concrete house design, thermal analysis, hot climate, BEopt software

Procedia PDF Downloads 388
7999 Carrier Communication through Power Lines

Authors: Pavuluri Gopikrishna, B. Neelima

Abstract:

Power line carrier communication means audio power transmission via power line and reception of the amplified audio power at the receiver as in the form of speaker output signal using power line as the channel medium. The main objective of this suggested work is to transmit our message signal after frequency modulation by the help of FM modulator IC LM565 which gives output proportional to the input voltage of the input message signal. And this audio power is received from the power line by the help of isolation circuit and demodulated from IC LM565 which uses the concept of the PLL and produces FM demodulated signal to the listener. Message signal will be transmitted over the carrier signal that will be generated from the FM modulator IC LM565. Using this message signal will not damage because of no direct contact of message signal from the power line, but noise can disturb our information.

Keywords: amplification, fm demodulator ic 565, fm modulator ic 565, phase locked loop, power isolation

Procedia PDF Downloads 524
7998 Computer Self-Efficacy, Study Behaviour and Use of Electronic Information Resources in Selected Polytechnics in Ogun State, Nigeria

Authors: Fredrick Olatunji Ajegbomogun, Bello Modinat Morenikeji, Okorie Nancy Chituru

Abstract:

Electronic information resources are highly relevant to students' academic and research needs but are grossly underutilized, despite the institutional commitment to making them available. The under-utilisation of these resources could be attributed to a low level of study behaviour coupled with a low level of computer self-efficacy. This study assessed computer self-efficacy, study behaviour, and the use of electronic information resources by students in selected polytechnics in Ogun State. A simple random sampling technique using Krejcie and Morgan's (1970) Table was used to select 370 respondents for the study. A structured questionnaire was used to collect data on respondents. Data were analysed using frequency counts, percentages, mean, standard deviation, Pearson Product Moment Correlation (PPMC) and multiple regression analysis. Results reveal that the internet (= 1.94), YouTube (= 1.74), and search engines (= 1.72) were the common information resources available to the students, while the Internet (= 4.22) is the most utilized resource. Major reasons for using electronic information resources were to source materials and information (= 3.30), for research (= 3.25), and to augment class notes (= 2.90). The majority (91.0%) of the respondents have a high level of computer self-efficacy in the use of electronic information resources through selecting from screen menus (= 3.12), using data files ( = 3.10), and efficient use of computers (= 3.06). Good preparation for tests (= 3.27), examinations (= 3.26), and organization of tutorials (= 3.11) are the common study behaviours of the respondents. Overall, 93.8% have good study behaviour. Inadequate computer facilities to access information (= 3.23), and poor internet access (= 2.87) were the major challenges confronting students’ use of electronic information resources. According to the PPMC results, study behavior (r = 0.280) and computer self-efficacy (r = 0.304) have significant (p 0.05) relationships with the use of electronic information resources. Regression results reveal that self-efficacy (=0.214) and study behavior (=0.122) positively (p 0.05) influenced students' use of electronic information resources. The study concluded that students' use of electronic information resources depends on the purpose, their computer self-efficacy, and their study behaviour. Therefore, the study recommended that the management should encourage the students to improve their study habits and computer skills, as this will enhance their continuous and more effective utilization of electronic information resources.

Keywords: computer self-efficacy, study behaviour, electronic information resources, polytechnics, Nigeria

Procedia PDF Downloads 95
7997 Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance.

Keywords: heat transfer coefficient, laser processing, micro structured surface, pool boiling

Procedia PDF Downloads 61
7996 Simulation Based Performance Comparison of Different Control Methods of ZSI Feeding Industrial Drives

Authors: Parag Nihawan, Ravinder Singh Bhatia, Dinesh Kumar Jain

Abstract:

Industrial drives are source of serious power quality problems. In this, two typical industrial drives have been dealt with, namely, FOC induction motor drives and DTC induction motor drive. The Z-source inverter is an emerging topology of power electronic converters which is capable of buck boost characteristics. The performances of different control methods based Z-source inverters feeding these industrial drives have been investigated, in this work. The test systems have been modeled and simulated in MATLAB/SIMULINK. The results obtained after carrying out these simulations have been used to draw the conclusions.

Keywords: Z-source inverter, total harmonic distortion, direct torque control, field orientation control

Procedia PDF Downloads 556
7995 Investigation of Magnetic Resonance Wireless Charger Efficiency for Mobile Device

Authors: SeungHee Ryu, Junil Moon

Abstract:

The magnetic resonance wireless power transfer system is widely researched due to its benefits such as spatial freedom. In this paper, power transmitting unit and power receiving unit of wireless battery charger for mobile devices is presented. Power transmitting unit efficiency is measured under different test conditions with power receiving units.

Keywords: magnetic resonance coupling, wireless power transfer, power transfer efficiency.

Procedia PDF Downloads 485
7994 Review on Low Actuation Voltage RF Mems Switches

Authors: Hassan Saffari;, Reza Askari Moghadam

Abstract:

In modern communication systems, it is highly demanded to achieve high performance with minimal power consumption. Low actuation voltage RF MEMS (Micro-Electro-Mechanical Systems) switches represent a significant advancement in this regard. These switches, with their ability to operate at lower voltages, offer promising solutions for enhancing connectivity while minimizing energy consumption. Microelectromechanical switches are good alternatives for electronic and mechanical switches due to their low insertion loss, high isolation, and fast switching speeds. They have attracted more attention in recent years. Most of the presented RF MEMS switches use electrostatic actuators due to their low power consumption. Low actuation voltage RF MEMS switches are among the important issues that have been investigated in research articles. The actuation voltage can be reduced by different methods. One usually implemented method is low spring constant structures. However, despite their numerous benefits, challenges remain in the widespread adoption of low-actuation voltage RF MEMS switches. Issues related to reliability, durability, and manufacturing scalability need to be addressed to realize their full potential in commercial applications. While overcoming certain challenges, their exceptional performance characteristics and compatibility with miniaturized electronic systems make them a promising choice for next-generation wireless communication and RF applications. In this paper, some previous works that proposed low-voltage actuation RF MEMS switches are investigated and analyzed.

Keywords: RF MEMS switches, low actuation voltage, small spring constant structures, electrostatic actuation

Procedia PDF Downloads 21
7993 Power Quality Audit Using Fluke Analyzer

Authors: N. Ravikumar, S. Krishnan, B. Yokeshkumar

Abstract:

In present days, the power quality issues are increases due to non-linear loads like fridge, AC, washing machines, induction motor, etc. This power quality issues will affects the output voltages, output current, and output power of the total performance of the generator. This paper explains how to test the generator using the Fluke 435 II series power quality analyser. This Fluke 435 II series power quality analyser is used to measure the voltage, current, power, energy, total harmonic distortion (THD), current harmonics, voltage harmonics, power factor, and frequency. The Fluke 435 II series power quality analyser have several advantages. They are i) it will records output in analog and digital format. ii) the fluke analyzer will records at every 0.25 sec. iii) it will also measure all the electrical parameter at a time.

Keywords: THD, harmonics, power quality, TNEB, Fluke 435

Procedia PDF Downloads 157
7992 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. AL-Dadah

Abstract:

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

Keywords: adsorption, desalination, refrigeration, seawater

Procedia PDF Downloads 469
7991 Diabatic Flow of Sub-Cooled R-600a Inside a Capillary Tube: Concentric Configuration

Authors: Ravi Kumar, Santhosh Kumar Dubba

Abstract:

This paper presents an experimental study of a diabatic flow of R-600a through a concentric configured capillary tube suction line heat exchanger. The details of experimental facility for testing the diabatic capillary tube with different inlet sub-cooling degree and pressure are discussed. The effect of coil diameter, capillary length, capillary tube diameter, sub-cooling degree and inlet pressure on mass flow rate are presented. The degree of sub-cooling at the inlet of capillary tube is varied from 3-20°C. The refrigerant mass flow rate is scattered up with rising of pressure. A semi-empirical correlation to predict the mass flow rate of R-600a flowing through a diabatic capillary tube is proposed for sub-cooled inlet conditions. The proposed correlation predicts measured data with an error band of ±20 percent.

Keywords: diabatic, capillary tube, concentric, R-600a

Procedia PDF Downloads 186
7990 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 339
7989 High-Efficiency Comparator for Low-Power Application

Authors: M. Yousefi, N. Nasirzadeh

Abstract:

In this paper, dynamic comparator structure employing two methods for power consumption reduction with applications in low-power high-speed analog-to-digital converters have been presented. The proposed comparator has low consumption thanks to power reduction methods. They have the ability for offset adjustment. The comparator consumes 14.3 μW at 100 MHz which is equal to 11.8 fJ. The comparator has been designed and simulated in 180 nm CMOS. Layouts occupy 210 μm2.

Keywords: efficiency, comparator, power, low

Procedia PDF Downloads 329
7988 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 136
7987 Ab Initio Study of Electronic Structure and Transport of Graphyne and Graphdiyne

Authors: Zeljko Crljen, Predrag Lazic

Abstract:

Graphene has attracted a tremendous interest in the field of nanoelectronics and spintronics due to its exceptional electronic properties. However, pristine graphene has no band gap, a feature needed in building some of the electronic elements. Recently, a growing attention has been given to a class of carbon allotropes of graphene with honeycomb structures, in particular to graphyne and graphdiyne. They are characterized with a single and double acetylene bonding chains respectively, connecting the nearest-neighbor hexagonal rings. With an electron density comparable to that of graphene and a prominent gap in electronic band structures they appear as promising materials for nanoelectronic components. We studied the electronic structure and transport of infinite sheets of graphyne and graphdiyne and compared them with graphene. The method based on the non-equilibrium Green functions and density functional theory has been used in order to obtain a full ab initio self-consistent description of the transport current with different electrochemical bias potentials. The current/voltage (I/V) characteristics show a semi-conducting behavior with prominent nonlinearities at higher voltages. The calculated band gaps are 0.52V and 0.59V, respectively, and the effective masses are considerably smaller compared to typical semiconductors. We analyzed the results in terms of transmission eigenchannels and showed that the difference in conductance is directly related to the difference of the internal structure of the allotropes.

Keywords: electronic transport, graphene-like structures, nanoelectronics, two-dimensional materials

Procedia PDF Downloads 162
7986 Curbing Abuses of Legal Power in the Society

Authors: Tajudeen Ojo Ibraheem

Abstract:

In a world characterized by greed and the lust for power and its attendant trappings, abuse of legal power is nothing new to most of us. Legal abuses of power abound in all fields of human endeavour. Accounts of such abuses dominate the mass media and for the average individual, no single day goes by without his getting to hear about at least one such occurrence. This paper briefly looks at the meaning of legal power, what legal abuse is all about, its causes, and some of its manifestations in the society. Its consequences will also be discussed and some suggestions for reform will be made. In the course of the paper, references will be made to various jurisdictions around the world.

Keywords: abuse, legal, power, society

Procedia PDF Downloads 419
7985 Evaluating Electronic Service Quality in Banking Iran

Authors: Vahid Bairami Rad

Abstract:

With the rapid growth of the Internet and the globalization of the market, most enterprises are trying to attract and win customers in the highly competitive electronic market. Better e-service quality will enhance the relationship with customers and their satisfaction. So the measurement of eservice quality is very important but it is a complex process due to the complex nature of services. Literature predicts that there is a lack of universal definition of e-service quality. The e-service quality measures in banking have great importance in achieving high customer base. This paper proposes a conceptual model for measuring e-service quality in Iranian Banking Iran. Nine dimensions reliability, ease of use, personalization, security and trust, website aesthetic, responsiveness, contact and speed of delivery had been identified. The results of this paper may help to develop a proper scale to measure the e-service quality in Iranian Banking Industry, which may assist to maintain and improve the performance and effectiveness of e-service quality to retain customers.

Keywords: electronic banking, Dimensions, customer service quality, electronic, communication

Procedia PDF Downloads 472
7984 A Three Phase Shunt Active Power Filter for Currents Harmonics Elimination and Reactive Power Compensation

Authors: Amar Omeiri

Abstract:

This paper presents a three-phase shunt active power filter for current harmonics suppression and reactive power compensation using the supply current as reference. The proposed APF has a simple control circuit; it consists of detecting the supply current instead of the load current. The advantages of this APF are simplicity of control circuits and low implementation cost. The simulation results show that the proposed APF can compensate the reactive power and suppress current harmonics with two types of non-linear loads.

Keywords: active power filter, current harmonics and reactive power compensation, PWM inverter, Total Harmonic Distortion, power quality

Procedia PDF Downloads 560
7983 Heat Exchanger Optimization of a Domestic Refrigerator with Separate Cooling Circuits

Authors: Tugba Tosun, Mert Tosun

Abstract:

Cooling system performance and energy consumption in the bypass two-circuit cycle have been studied experimentally to find optimum evaporator type and geometry, capillary tube diameter and capillary length. Two types of evaporators, such as wire on the tube and finned tube evaporators were used for the experiments in the fresh food compartment. As capillary tube inner diameter and total length; 0.66 mm and 0.8mm, and 3000 mm and 3500 mm were selected as parameters, respectively. Experiments were performed at the 25⁰C ambient temperature while the average temperature of the fresh food compartment is kept at 5⁰C and the highest package temperature of the freezer compartment is kept at -18⁰C, which are defined in IEC 62552 European standard. The Design of Experiments (DOE) technique which is six sigma method has been used to indicate of effective parameters in the bypass two-circuit cycle. The experimental results revealed that the most effective parameter of the system is the evaporator type. Finned tube evaporator with 12 tube passes was found as the best option for the bypass two-circuit refrigeration cycle among the 8 different opportunities. The optimum cooling performance and the lowest energy consumption were provided with 0.66 mm capillary tube inner diameter and 3500 mm capillary tube length.

Keywords: capillary tube, energy consumption, heat exchanger, refrigerator, separate cooling circuits

Procedia PDF Downloads 137
7982 [Keynote Speech]: Competitive Evaluation of Power Plants in Energy Policy

Authors: Beril Tuğrul

Abstract:

Electrical energy is the most important form of energy and electrical power plants have highest impact factor in energy policy. This study is in relation with evaluation of various power plants including fossil fuels, nuclear and renewable energy based power plants. The power plants evaluated with regard to their overall impact that considered for establishing of the plants. Both positive and negative impacts of power plant operation are compared view of different arguments. Then calculate the impact factor by using variation linear extrapolation for each argument. With this study, power plants assessed with the different point of view and clarified objectively.

Keywords:

Procedia PDF Downloads 505
7981 Design and Implementation of an Efficient Solar-Powered Pumping System

Authors: Mennatallah M. Fouad, Omar Hussein, Lamia A. Shihata

Abstract:

The main problem in many rural areas is the absence of electricity and limited access to water. The novelty of this work lies in implementing a small-scale experimental setup for a solar-powered water pumping system with a battery back-up system. Cooling and cleaning of the PV panel are implemented to enhance its overall efficiency and output. Moreover, a simulation for a large scale solar-powered pumping system is performed using PVSyst software. Results of the experimental setup show that the PV system with a battery backup proved to be a feasible and viable system to operate the water pumping system. Excess water from the pumping system is used to cool and clean the PV panel and achieved an average percentage increase in the PV output by 21.8%. Simulation results have shown that the system provides adequate output to power the solar-powered system and saves 0.3 tons of CO₂ compared to conventional fossil fuels. It is recommended for hot countries to adopt this system, which would help in decreasing the dependence on the depleting fossil fuels, provide access to electricity to areas where there is no electricity supply and also provide a source of water for crop growth as well as decrease the carbon emissions.

Keywords: efficient solar pumping, PV cleaning, PV cooling, PV-operated water pump

Procedia PDF Downloads 108
7980 Fuzzy Expert Systems Applied to Intelligent Design of Data Centers

Authors: Mario M. Figueroa de la Cruz, Claudia I. Solorzano, Raul Acosta, Ignacio Funes

Abstract:

This technological development project seeks to create a tool that allows companies, in need of implementing a Data Center, intelligently determining factors for allocating resources support cooling and power supply (UPS) in its conception. The results should show clearly the speed, robustness and reliability of a system designed for deployment in environments where they must manage and protect large volumes of data.

Keywords: telecommunications, data center, fuzzy logic, expert systems

Procedia PDF Downloads 319
7979 Electronic Nose Based on Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Oat Milk

Authors: A. Deswal, N. S. Deora, H. N. Mishra

Abstract:

The aim of the present study was to develop a rapid method for electronic nose for online quality control of oat milk. Analysis by electronic nose and bacteriological measurements were performed to analyse spoilage kinetics of oat milk samples stored at room temperature and refrigerated conditions for up to 15 days. Principal component analysis (PCA), discriminant factorial analysis (DFA) and soft independent modelling by class analogy (SIMCA) classification techniques were used to differentiate the samples of oat milk at different days. The total plate count (bacteriological method) was selected as the reference method to consistently train the electronic nose system. The e-nose was able to differentiate between the oat milk samples of varying microbial load. The results obtained by the bacteria total viable counts showed that the shelf-life of oat milk stored at room temperature and refrigerated conditions were 20 hours and 13 days, respectively. The models built classified oat milk samples based on the total microbial population into “unspoiled” and “spoiled”.

Keywords: electronic-nose, bacteriological, shelf-life, classification

Procedia PDF Downloads 236
7978 Emperical Correlation for Measurement of Thermal Diffusivity of Spherical Shaped Food Products under Forced Convection Environment

Authors: M. Riaz, Inamur Rehman, Abhishek Sharma

Abstract:

The present work is the development of an experimental method for determining the thermal diffusivity variations with temperature of selected regular shaped solid fruits and vegetables subjected to forced convection cooling. Experimental investigations were carried on the sample chosen (potato and brinjal), which is approximately of spherical geometry. The variation of temperature within the food product is measured at several locations from centre to skin, under forced convection environment using a deep freezer, maintained at -10°C.This method uses one dimensional Fourier equation applied to regular shapes. For this, the experimental temperature data obtained from cylindrical and spherical shaped products during pre-cooling was utilised. Such temperature and thermal diffusivity profiles can be readily used with other information such as degradation rate, etc. to evaluate thermal treatments based on cold air cooling methods for storage of perishable food products.

Keywords: thermal diffusivity, skin temperature, precooling, forced convection, regular shaped

Procedia PDF Downloads 427
7977 Full-Potential Investigation of the Electronic and Magnetic Properties of CdCoTe and CdMnTe Diluted Magnetic Semiconductors

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid

Abstract:

We investigate the structural, electronic and magnetic properties of the diluted magnetic semiconductors (DMSs) CdCoTe and CdMnTe in the zinc blende phase with 25% of Co and Mn. The calculations are performed by the recent ab initio full potential augmented plane waves (FP_L/APW) method within the spin polarized density-functional theory (DFT) and the generalized gradient approximation GGA. Structural properties are determined from the total energy calculations and we found that these compounds are stable in the ferromagnetic phase. We discuss the electronic structures, total and partial densities of states and total magnetic moments. The calculated densities of states presented in this study identify the half-metallic of CdCoTe and CdMnTe.

Keywords: electronic structure, half-metallic, magnetic moment, total and partial densities of states

Procedia PDF Downloads 473
7976 Model Organic Ranikin Cycle Power Plant for Waste Heat Recovery in Olkaria-I Geothermal Power Plant

Authors: Haile Araya Nigusse, Hiram M. Ndiritu, Robert Kiplimo

Abstract:

Energy consumption is an indispensable component for the continued development of the human population. The global energy demand increases with development and population rise. The increase in energy demand, high cost of fossil fuels and the link between energy utilization and environmental impacts have resulted in the need for a sustainable approach to the utilization of the low grade energy resources. The Organic Rankine Cycle (ORC) power plant is an advantageous technology that can be applied in generation of power from low temperature brine of geothermal reservoirs. The power plant utilizes a low boiling organic working fluid such as a refrigerant or a hydrocarbon. Researches indicated that the performance of ORC power plant is highly dependent upon factors such as proper organic working fluid selection, types of heat exchangers (condenser and evaporator) and turbine used. Despite a high pressure drop, shell-tube heat exchangers have satisfactory performance for ORC power plants. This study involved the design, fabrication and performance assessment of the components of a model Organic Rankine Cycle power plant to utilize the low grade geothermal brine. Two shell and tube heat exchangers (evaporator and condenser) and a single stage impulse turbine have been designed, fabricated and the performance assessment of each component has been conducted. Pentane was used as a working fluid and hot water simulating the geothermal brine. The results of the experiment indicated that the increase in mass flow rate of hot water by 0.08 kg/s caused a rise in overall heat transfer coefficient of the evaporator by 17.33% and the heat transferred was increased by 6.74%. In the condenser, the increase of cooling water flow rate from 0.15 kg/s to 0.35 kg/s increased the overall heat transfer coefficient by 1.21% and heat transferred was increased by 4.26%. The shaft speed varied from 1585 to 4590 rpm as inlet pressure was varied from 0.5 to 5.0 bar and power generated was varying from 4.34 to 14.46W. The results of the experiments indicated that the performance of each component of the model Organic Rankine Cycle power plant operating at low temperature heat resources was satisfactory.

Keywords: brine, heat exchanger, ORC, turbine

Procedia PDF Downloads 622
7975 Soft Power in International Politics: Defense and Continued Relevance

Authors: Shivani Yadav

Abstract:

The paper will first elaborate on the concept of soft power as formulated by Joseph Nye, who argues that soft power is as important as hard power in international politics as it replaces coercion with non-coercive forms of co-optation and attraction. The central tenet of the paper is to extrapolate the continued relevance of soft power in international relations in the 21st century. It is argued that the relevance of soft power, in concurrence with hard power, is on the rise in the international system. This is found to be emanating out of two factors. First, the state-centric practice of international relations has expanded to allow other actors to participate in policymaking. This has led to the resources for power generation to become varied, largely move away from the control of governments, and to produce both hard and soft power attributes. Second, as the currency of coercive power seems to be devaluing in global politics, the role of intangible factors like soft power is getting more important in policymaking. The paper will then go on to elaborate on the critiques of the formulation of soft power from various perspectives, as well as the defenses to these critiques presented by soft power proponents. The paper will reflect on the continued relevance of soft power in international politics by giving the example of India, and how soft power has continued to serve its policy objectives over the years. It is observed that even as India is recognized as a rising superpower today, yet it has made a continuous effort in cultivating its soft power resources, which have proven to be its assets in furthering its foreign policy interests. In conclusion, the paper makes the point that soft power, in conjunction with hard power, will shape international politics in the coming times.

Keywords: foreign policy, India’s soft power, international politics, smart power, soft power

Procedia PDF Downloads 233
7974 The Use of Information and Communication Technologies in Electoral Procedures: Comments on Electronic Voting Security

Authors: Magdalena Musiał-Karg

Abstract:

The expansion of telecommunication and progress of electronic media constitute important elements of our times. The recent worldwide convergence of information and communication technologies (ICT) and dynamic development of the mass media is leading to noticeable changes in the functioning of contemporary states and societies. Currently, modern technologies play more and more important roles and filter down to almost every field of contemporary human life. It results in the growth of online interactions that can be observed by the inconceivable increase in the number of people with home PCs and Internet access. The proof of it is undoubtedly the emergence and use of concepts such as e-society, e-banking, e-services, e-government, e-government, e-participation and e-democracy. The newly coined word e-democracy evidences that modern technologies have also been widely used in politics. Without any doubt in most countries all actors of political market (politicians, political parties, servants in political/public sector, media) use modern forms of communication with the society. Most of these modern technologies progress the processes of getting and sending information to the citizens, communication with the electorate, and also – which seems to be the biggest advantage – electoral procedures. Thanks to implementation of ICT the interaction between politicians and electorate are improved. The main goal of this text is to analyze electronic voting (e-voting) as one of the important forms of electronic democracy in terms of security aspects. The author of this paper aimed at answering the questions of security of electronic voting as an additional form of participation in elections and referenda.

Keywords: electronic democracy, electronic voting, security of e-voting, information and communication technology (ICT)

Procedia PDF Downloads 210
7973 Numerical Investigation of Thermal Energy Storage Panel Using Nanoparticle Enhanced Phase Change Material for Micro-Satellites

Authors: Jelvin Tom Sebastian, Vinod Yeldho Baby

Abstract:

In space, electronic devices are constantly attacked with radiation, which causes certain parts to fail or behave in unpredictable ways. To advance the thermal controllability for microsatellites, we need a new approach and thermal control system that is smaller than that on conventional satellites and that demand no electric power. Heat exchange inside the microsatellites is not that easy as conventional satellites due to the smaller size. With slight mass gain and no electric power, accommodating heat using phase change materials (PCMs) is a strong candidate for solving micro satellites' thermal difficulty. In other words, PCMs can absorb or produce heat in the form of latent heat, changing their phase and minimalizing the temperature fluctuation around the phase change point. The main restriction for these systems is thermal conductivity weakness of common PCMs. As PCM is having low thermal conductivity, it increases the melting and solidification time, which is not suitable for specific application like electronic cooling. In order to increase the thermal conductivity nanoparticles are introduced. Adding the nanoparticles in base PCM increases the thermal conductivity. Increase in weight concentration increases the thermal conductivity. This paper numerically investigates the thermal energy storage panel with nanoparticle enhanced phase change material. Silver nanostructure have increased the thermal properties of the base PCM, eicosane. Different weight concentration (1, 2, 3.5, 5, 6.5, 8, 10%) of silver enhanced phase change material was considered. Both steady state and transient analysis was performed to compare the characteristics of nanoparticle enhanced phase material at different heat loads. Results showed that in steady state, the temperature near the front panel reduced and temperature on NePCM panel increased as the weight concentration increased. With the increase in thermal conductivity more heat was absorbed into the NePCM panel. In transient analysis, it was found that the effect of nanoparticle concentration on maximum temperature of the system was reduced as the melting point of the material reduced with increase in weight concentration. But for the heat load of maximum 20W, the model with NePCM did not attain the melting point temperature. Therefore it showed that the model with NePCM is capable of holding more heat load. In order to study the heat load capacity double the load is given, maximum of 40W was given as first half of the cycle and the other is given constant OW. Higher temperature was obtained comparing the other heat load. The panel maintained a constant temperature for a long duration according to the NePCM melting point. In both the analysis, the uniformity of temperature of the TESP was shown. Using Ag-NePCM it allows maintaining a constant peak temperature near the melting point. Therefore, by altering the weight concentration of the Ag-NePCM it is possible to create an optimum operating temperature required for the effective working of the electronics components.

Keywords: carbon-fiber-reinforced polymer, micro/nano-satellite, nanoparticle phase change material, thermal energy storage

Procedia PDF Downloads 187
7972 Evaluation of Thermal Barrier Coating Applied to the Gas Turbine Blade According to the Thermal Gradient

Authors: Jeong-Min Lee, Hyunwoo Song, Yonseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

The Thermal Barrier Coating (TBC) prevents heat directly transferring from the high-temperature flame to the substrate. Top coat and bond coat compose the TBC and top coat consists of a ceramic and bond coat increases adhesion between the top coat and the substrate. The TBC technology drops the substrate surface temperature by about 150~200°C. In addition, the TBC system has a cooling system to lower the blade temperature by the air flow inside the blade. Then, as a result, the thermal gradient occurs inside the blade by cooling. Also, the internal stress occurs due to the difference in thermal expansion. In this paper, the finite element analyses (FEA) were performed and stress changes were derived according to the thermal gradient of the TBC system. The stress was increased due to the cooling, but difference of the stress between the top coat and bond coat was decreased. So, delamination in the interface between top coat and bond coat.

Keywords: gas turbine blade, Thermal Barrier Coating (TBC), thermal gradient, Finite Element Analysis (FEA)

Procedia PDF Downloads 584
7971 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability

Procedia PDF Downloads 485