Search results for: optical density
4647 Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion
Authors: Ömer Tamer, Davut Avcı, Yusuf Atalay
Abstract:
Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms.Keywords: DFT, picolinate, IR, Raman, nonlinear optic
Procedia PDF Downloads 5004646 Surveillance of Super-Extended Objects: Bimodal Approach
Authors: Andrey V. Timofeev, Dmitry Egorov
Abstract:
This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.Keywords: C-OTDR monitoring system, bimodal processing, LPboost, SVM
Procedia PDF Downloads 4714645 Characterization and Modification of the Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations
Authors: R. A. Shahmiri, O. Standard, J. Hart, C. C. Sorrell
Abstract:
Yttrium stabilized tetragonal zirconium polycrystalline (Y-TZP) has been used as a dental biomaterial. The strength and toughness of zirconia can be accounted for by its toughening mechanisms, such as crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucency of Y-TZP means that it may not meet the aesthetic requirements due to its white/grey appearance in polycrystalline form. To improve optical property of the Zirconia, precise evaluation of its refractive index is of significance. Zirconia`s optical properties need to be studied more in depth. Number of studies assumed, scattered light is isotropically distributed over all angles from biological media when defining optical parameters. Nevertheless, optical behaviour of real biological material depends on angular scattering of light by anisotropy material. Therefore, the average cosine of the scattering angle (which represent recovery phase function in the scattering angular distribution) usually characterized by anisotropy material. It has been identified that yttrium anti-sites present in the space charge layer have no significant role in the absorption of light in the visible range. Addition of cation dopant to polycrystalline zirconia results in segregate to grain boundaries and grain growth. Intrinsic and extrinsic properties of ZrO2 and their effect on optical properties need to be investigated. Intrinsic properties such as chemical composition, defect structure (oxygen vacancy), phase configuration (porosity, second phase) and distribution of phase need to be studied to comprehend their effect on refraction index, absorption/reflection and scattering. Extrinsic properties such as surface structure, thickness, underlying tooth structure, cement layer (type, thickness), and light source (natural, curing, artificial) of ZrO2 need to be studied to understand their effect on colour and translucency of material. This research reviewed effect of stabilization of tetragonal zirconia on optical property of zirconia for dental application.Keywords: optical properties, zirconia dental biomaterial, chemical composition, phase composition
Procedia PDF Downloads 3954644 Quality-Of-Service-Aware Green Bandwidth Allocation in Ethernet Passive Optical Network
Authors: Tzu-Yang Lin, Chuan-Ching Sue
Abstract:
Sleep mechanisms are commonly used to ensure the energy efficiency of each optical network unit (ONU) that concerns a single class delay constraint in the Ethernet Passive Optical Network (EPON). How long the ONUs can sleep without violating the delay constraint has become a research problem. Particularly, we can derive an analytical model to determine the optimal sleep time of ONUs in every cycle without violating the maximum class delay constraint. The bandwidth allocation considering such optimal sleep time is called Green Bandwidth Allocation (GBA). Although the GBA mechanism guarantees that the different class delay constraints do not violate the maximum class delay constraint, packets with a more relaxed delay constraint will be treated as those with the most stringent delay constraint and may be sent early. This means that the ONU will waste energy in active mode to send packets in advance which did not need to be sent at the current time. Accordingly, we proposed a QoS-aware GBA using a novel intra-ONU scheduling to control the packets to be sent according to their respective delay constraints, thereby enhancing energy efficiency without deteriorating delay performance. If packets are not explicitly classified but with different packet delay constraints, we can modify the intra-ONU scheduling to classify packets according to their packet delay constraints rather than their classes. Moreover, we propose the switchable ONU architecture in which the ONU can switch the architecture according to the sleep time length, thus improving energy efficiency in the QoS-aware GBA. The simulation results show that the QoS-aware GBA ensures that packets in different classes or with different delay constraints do not violate their respective delay constraints and consume less power than the original GBA.Keywords: Passive Optical Networks, PONs, Optical Network Unit, ONU, energy efficiency, delay constraint
Procedia PDF Downloads 2854643 Investigation on Electronic and Magnetic Properties of Transition Metals Doped Zinc Selenide
Authors: S. Bentata, W. Benstaali, A. Abbad, H. A. Bentounes, B. Bouadjemi
Abstract:
The full potential linear augmented plane wave (FPLAPW) based on density-functional theory (DFT) is employed to study the electronic, magnetic and optical properties of some transition metals doped ZnSe. Calculations are carried out by varying the doped atoms. Four 3D transition elements were used as a dopant: Cr, Mn, Co and Cu in order to induce spin polarization. Our results show that, Mn and Cu-doped ZnSe could be used in spintronic devices only if additional dopants are introduced, on the contrary, transition elements showing delocalized quality such as Cr, and Co doped ZnSe might be promising candidates for application in spintronic.Keywords: spin-up, spin-down, magnetic properties, transition metal, composite materials
Procedia PDF Downloads 2734642 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators
Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi
Abstract:
The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.Keywords: automatic bias control, optical fiber communication, optical modulation, optical devices
Procedia PDF Downloads 1904641 Optical Properties of Tetrahydrofuran Clathrate Hydrates at Terahertz Frequencies
Authors: Hyery Kang, Dong-Yeun Koh, Yun-Ho Ahn, Huen Lee
Abstract:
Terahertz time-domain spectroscopy (THz-TDS) was used to observe the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different average molecular weights (10,000 g/mol, 40,000 g/mol, 360,000 g/mol). Distinct footprints of phase transition in the THz region (0.4 - 2.2 THz) were analyzed and absorption coefficients and complex refractive indices are obtained and compared in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy.Keywords: clathrate hydrate, terahertz, polyvinylpyrrolidone (PVP), THz-TDS, inhibitor
Procedia PDF Downloads 3804640 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing
Authors: Abdullah Bal, Sevdenur Bal
Abstract:
This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware
Procedia PDF Downloads 5074639 Optical Vortex in Asymmetric Arcs of Rotating Intensity
Authors: Mona Mihailescu, Rebeca Tudor, Irina A. Paun, Cristian Kusko, Eugen I. Scarlat, Mihai Kusko
Abstract:
Specific intensity distributions in the laser beams are required in many fields: optical communications, material processing, microscopy, optical tweezers. In optical communications, the information embedded in specific beams and the superposition of multiple beams can be used to increase the capacity of the communication channels, employing spatial modulation as an additional degree of freedom, besides already available polarization and wavelength multiplexing. In this regard, optical vortices present interest due to their potential to carry independent data which can be multiplexed at the transmitter and demultiplexed at the receiver. Also, in the literature were studied their combinations: 1) axial or perpendicular superposition of multiple optical vortices or 2) with other laser beam types: Bessel, Airy. Optical vortices, characterized by stationary ring-shape intensity and rotating phase, are achieved using computer generated holograms (CGH) obtained by simulating the interference between a tilted plane wave and a wave passing through a helical phase object. Here, we propose a method to combine information through the reunion of two CGHs. One is obtained using the helical phase distribution, characterized by its topological charge, m. The other is obtained using conical phase distribution, characterized by its radial factor, r0. Each CGH is obtained using plane wave with different tilts: km and kr for CGH generated from helical phase object and from conical phase object, respectively. These reunions of two CGHs are calculated to be phase optical elements, addressed on the liquid crystal display of a spatial light modulator, to optically process the incident beam for investigations of the diffracted intensity pattern in far field. For parallel reunion of two CGHs and high values of the ratio between km and kr, the bright ring from the first diffraction order, specific for optical vortices, is changed in an asymmetric intensity pattern: a number of circle arcs. Both diffraction orders (+1 and -1) are asymmetrical relative to each other. In different planes along the optical axis, it is observed that this asymmetric intensity pattern rotates around its centre: in the +1 diffraction order the rotation is anticlockwise and in the -1 diffraction order, the rotation is clockwise. The relation between m and r0 controls the diameter of the circle arcs and the ratio between km and kr controls the number of arcs. For perpendicular reunion of the two CGHs and low values of the ratio between km and kr, the optical vortices are multiplied and focalized in different planes, depending on the radial parameter. The first diffraction order contains information about both phase objects. It is incident on the phase masks placed at the receiver, computed using the opposite values for topological charge or for the radial parameter and displayed successively. In all, the proposed method is exploited in terms of constructive parameters, for the possibility offered by the combination of different types of beams which can be used in robust optical communications.Keywords: asymmetrical diffraction orders, computer generated holograms, conical phase distribution, optical vortices, spatial light modulator
Procedia PDF Downloads 3124638 The Effect of Hydrogen on the Magnetic Properties of ZnO: A Density Functional Tight Binding Study
Authors: M. A. Lahmer, K. Guergouri
Abstract:
The ferromagnetic properties of carbon-doped ZnO (ZnO:CO) and hydrogenated carbon-doped ZnO (ZnO:CO+H) are investigated using the density functional tight binding (DFTB) method. Our results reveal that CO-doped ZnO is a ferromagnetic material with a magnetic moment of 1.3 μB per carbon atom. The presence of hydrogen in the material in the form of CO-H complex decreases the total magnetism of the material without suppressing ferromagnetism. However, the system in this case becomes quickly antiferromagnetic when the C-C separation distance was increased.Keywords: ZnO, carbon, hydrogen, ferromagnetism, density functional tight binding
Procedia PDF Downloads 2874637 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution
Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary
Abstract:
The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.Keywords: chemical deposition, CdS, optical properties, surface, thin film
Procedia PDF Downloads 1624636 Active Surface Tracking Algorithm for All-Fiber Common-Path Fourier-Domain Optical Coherence Tomography
Authors: Bang Young Kim, Sang Hoon Park, Chul Gyu Song
Abstract:
A conventional optical coherence tomography (OCT) system has limited imaging depth, which is 1-2 mm, and suffers unwanted noise such as speckle noise. The motorized-stage-based OCT system, using a common-path Fourier-domain optical coherence tomography (CP-FD-OCT) configuration, provides enhanced imaging depth and less noise so that we can overcome these limitations. Using this OCT systems, OCT images were obtained from an onion, and their subsurface structure was observed. As a result, the images obtained using the developed motorized-stage-based system showed enhanced imaging depth than the conventional system, since it is real-time accurate depth tracking. Consequently, the developed CP-FD-OCT systems and algorithms have good potential for the further development of endoscopic OCT for microsurgery.Keywords: common-path OCT, FD-OCT, OCT, tracking algorithm
Procedia PDF Downloads 3804635 Exploring the Intrinsic Ecology and Suitable Density of Historic Districts Through a Comparative Analysis of Ancient and Modern Ecological Smart Practices
Authors: Hu Changjuan, Gong Cong, Long Hao
Abstract:
Although urban ecological policies and the public's aspiration for livable environments have expedited the pace of ecological revitalization, historic districts that have evolved through natural ecological processes often become obsolete and less habitable amid rapid urbanization. This raises a critical question about historic districts inherently incapable of being ecological and livable. The thriving concept of ‘intrinsic ecology,’ characterized by its ability to transform city-district systems into healthy ecosystems with diverse environments, stable functions, and rapid restoration capabilities, holds potential for guiding the integration of ancient and modern ecological wisdom while supporting the dynamic involvement of cultures. This study explores the intrinsic ecology of historic districts from three aspects: 1) Population Density: By comparing the population density before urban population expansion to the present day, determine the reasonable population density for historic districts. 2) Building Density: Using the ‘Space-mate’ tool for comparative analysis, form a spatial matrix to explore the intrinsic ecology of building density in Chinese historic districts. 3) Green Capacity Ratio: By using ecological districts as control samples, conduct dual comparative analyses (related comparison and upgraded comparison) to determine the intrinsic ecological advantages of the two-dimensional and three-dimensional green volume in historic districts. The study inform a density optimization strategy that supports cultural, social, natural, and economic ecology, contributing to the creation of eco-historic districts.Keywords: eco-historic districts, intrinsic ecology, suitable density, green capacity ratio.
Procedia PDF Downloads 264634 All-Silicon Raman Laser with Quasi-Phase-Matched Structures and Resonators
Authors: Isao Tomita
Abstract:
The principle of all-silicon Raman lasers for an output wavelength of 1.3 μm is presented, which employs quasi-phase-matched structures and resonators to enhance the output power. 1.3-μm laser beams for GE-PONs in FTTH systems generated from a silicon device are very important because such a silicon device can be monolithically integrated with the silicon planar lightwave circuits (Si PLCs) used in the GE-PONs. This reduces the device fabrication processes and time and also optical losses at the junctions between optical waveguides of the Si PLCs and Si laser devices when compared with 1.3-μm III-V semiconductor lasers set on the Si PLCs employed at present. We show that the quasi-phase-matched Si Raman laser with resonators can produce about 174 times larger laser power at 1.3 μm (at maximum) than that without resonators for a Si waveguide of Raman gain 20 cm/GW and optical loss 1.2 dB/cm, pumped at power 10 mW, where the length of the waveguide is 3 mm and its cross-section is (1.5 μm)2.Keywords: All-Silicon Raman Laser, FTTH, GE-PON, Quasi-Phase-Matched Structure, resonator
Procedia PDF Downloads 2544633 Characterization of Chemically Deposited CdS Thin Films Annealed in Different Atmospheres
Authors: J. Pantoja Enríquez, G. P. Hernández, G. I. Duharte, X. Mathew, J. Moreira, P. J. Sebastian
Abstract:
Cadmium sulfide films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in air, argon, hydrogen and nitrogen for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film.Keywords: cds, thin films, annealing, optical, electrical properties
Procedia PDF Downloads 5104632 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data
Authors: Tiee-Jian Wu, Chih-Yuan Hsu
Abstract:
Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method
Procedia PDF Downloads 2854631 Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields
Authors: Bing-Bing E. Goh
Abstract:
Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management.Keywords: winter wheat, remote sensing, crop monitoring, multivariate analysis
Procedia PDF Downloads 1614630 Application of Strong Optical Feedback to Enhance the Modulation Bandwidth of Semiconductor Lasers to the Millimeter-Wave Band
Authors: Moustafa Ahmed, Ahmed Bakry, Fumio Koyama
Abstract:
We report on the use of strong external optical feedback to enhance the modulation response of semiconductor lasers over a frequency passband around modulation frequencies higher than 60 GHz. We show that this modulation enhancement is a type of photon-photon resonance (PPR) of oscillating modes in the external cavity formed between the laser and the external reflector. The study is based on a time-delay rate equation model that takes into account both the strong feedback and multiple reflections in the external cavity. We examine the harmonic and intermodulation distortions associated with single and two-tone modulations in the mm-wave band of the resonant modulation. We show that compared with solitary lasers modulated around the carrier-photon resonance frequency, the present mm-wave modulated signal has lower distortions.Keywords: semiconductor laser, optical feedback, modulation, harmonic distortion
Procedia PDF Downloads 7494629 Soliton Solutions in (3+1)-Dimensions
Authors: Magdy G. Asaad
Abstract:
Solitons are among the most beneficial solutions for science and technology for their applicability in physical applications including plasma, energy transport along protein molecules, wave transport along poly-acetylene molecules, ocean waves, constructing optical communication systems, transmission of information through optical fibers and Josephson junctions. In this talk, we will apply the bilinear technique to generate a class of soliton solutions to the (3+1)-dimensional nonlinear soliton equation of Jimbo-Miwa type. Examples of the resulting soliton solutions are computed and a few solutions are plotted.Keywords: Pfaffian solutions, N-soliton solutions, soliton equations, Jimbo-Miwa
Procedia PDF Downloads 4534628 Non-Invasive Imaging of Human Tissue Using NIR Light
Authors: Ashwani Kumar
Abstract:
Use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function.Keywords: NIR light, tissue, blurring, Monte Carlo simulation
Procedia PDF Downloads 4954627 Quantum Localization of Vibrational Mirror in Cavity Optomechanics
Authors: Madiha Tariq, Hena Rabbani
Abstract:
Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.Keywords: dynamical localization, cavity optomechanics, Hamiltonian chaos, probe field
Procedia PDF Downloads 1504626 Optical Heterodyning of Injection-Locked Laser Sources: A Novel Technique for Millimeter-Wave Signal Generation
Authors: Subal Kar, Madhuja Ghosh, Soumik Das, Antara Saha
Abstract:
A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal.Keywords: FM sideband injection locking, master-slave injection locking, millimetre-wave signal generation, optical heterodyning
Procedia PDF Downloads 3924625 Optical Breather in Phosphorene Monolayer
Authors: Guram Adamashvili
Abstract:
Surface plasmon polariton is a surface optical wave which undergoes a strong enhancement and spatial confinement of its wave amplitude near an interface of two-dimensional layered structures. Phosphorene (single-layer black phosphorus) and other two-dimensional anisotropic phosphorene-like materials are recognized as promising materials for potential future applications of surface plasmon polariton. A theory of an optical breather of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene is developed. A theory of an optical soliton of self-induced transparency for surface plasmon polariton propagating in monolayer or few-layer phosphorene have been investigated earlier Starting from the optical nonlinear wave equation for surface TM-modes interacting with a two-dimensional layer of atomic systems or semiconductor quantum dots and a phosphorene monolayer (or other two-dimensional anisotropic material), we have obtained the evolution equations for the electric field of the breather. In this case, one finds that the evolution of these pulses become described by the damped Bloch-Maxwell equations. For surface plasmon polariton fields, breathers are found to occur. Explicit relations of the dependence of breathers on the local media, phosphorene anisotropic conductivity, transition layer properties and transverse structures of the SPP, are obtained and will be given. It is shown that the phosphorene conductivity reduces exponentially the amplitude of the surface breather of SIT in the process of propagation. The direction of propagation corresponding to the maximum and minimum damping of the amplitude are assigned along the armchair and zigzag directions of black phosphorus nano-film, respectively. The most rapid damping of the intensity occurs when the polarization of breather is along the armchair direction.Keywords: breathers, nonlinear waves, solitons, surface plasmon polaritons
Procedia PDF Downloads 1494624 Cell Biomass and Lipid Productivities of Meyerella planktonica under Autotrophic and Heterotrophic Growth Conditions
Authors: Rory Anthony Hutagalung, Leonardus Widjaja
Abstract:
Microalgae Meyerella planktonica is a potential biofuel source because it can grow in bulk in either autotrophic or heterotrophic condition. However, the quantitative growth of this algal type is still low as it tends to precipitates on the bottom. Beside, the lipid concentration is still low when grown in autotrophic condition. In contrast, heterotrophic condition can enhance the lipid concentration. The combination of autotrophic condition and agitation treatment was conducted to increase the density of the culture. On the other hand, a heterotrophic condition was set up to raise the lipid production. A two-stage experiment was applied to increase the density at the first step and to increase the lipid concentration in the next step. The autotrophic condition resulted higher density but lower lipid concentration compared to heterotrophic one. The agitation treatment produced higher density in both autotrophic and heterotrophic conditions. The two-stage experiment managed to enhance the density during the autotrophic stage and the lipid concentration during the heterotrophic stage. The highest yield was performed by using 0.4% v/v glycerol as a carbon source (2.9±0.016 x 106 cells w/w) attained 7 days after the heterotrophic stage began. The lipid concentration was stable starting from day 7.Keywords: agitation, glycerol, heterotrophic, lipid productivity, Meyerella planktonica
Procedia PDF Downloads 3394623 Nafion Nanofiber Mat in a Single Fuel Cell Test
Authors: Chijioke Okafor, Malik Maaza, Touhami Mokrani
Abstract:
Proton exchange membrane, PEM was developed and tested for potential application in fuel cell. Nafion was electrospun to nanofiber network with the aid of poly(ethylene oxide), PEO, as a carrier polymer. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV after compacting and annealing. The welded nanofiber mat was characterized for morphology, proton conductivity, and methanol permeability, then tested in a single cell test station. The results of the fabricated nanofiber membrane showed a proton conductivity of 0.1 S/cm at 25 oC and higher fiber volume fraction; methanol permeability of 3.6x10^-6 cm2/s and power density of 96.1 and 81.2 mW/cm2 for 5M and 1M methanol concentration respectively.Keywords: fuel cell, nafion, nanofiber, permeability
Procedia PDF Downloads 4824622 Optimize Study and Optical Characterization of Bilayer Structures from Silicon Nitride
Authors: Beddiaf Abdelaziz
Abstract:
The optical characteristics of thin films of silicon oxynitride SiOₓNy prepared by the Low-Pressure Chemical Vapor Deposition (LPCVD) technique have been studied. The films are elaborated from the SiH₂Cl₂, N₂O and NH₃ gaseous mixtures. The flows of SiH₂Cl₂ and (N₂O+NH₃) are 200 sccm and 160 sccm respectively. The deposited films have been characterized by ellipsometry, to model our silicon oxynitride SiOₓNy films. We have suggested two theoretical models (Maxwell Garnett and Bruggeman effective medium approximation (BEMA)). These models have been applied on silicon oxynitride considering the material as a heterogeneous medium formed by silicon oxide and silicon nitride. The model's validation was justified by the confrontation of theoretical spectra and those measured by ellipsometry. This result permits us to obtain the optical refractive coefficient of these films and their thickness. Ellipsometry analysis of the optical properties of the SiOₓNy films shows that the SiO₂ fraction decreases when the gaseous ratio NH₃/N₂O increases. Whereas the increase of this ratio leads to an increase of the silicon nitride Si3N4 fraction. The study also shows that the increasing gaseous ratio leads to a strong incorporation of nitrogen atoms in films. Also, the increasing of the SiOₓNy refractive coefficient until the SiO₂ value shows that this insulating material has good dielectric quality.Keywords: ellipsometry, silicon oxynitrde, model, refractive coefficient, effective medium
Procedia PDF Downloads 194621 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method
Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad
Abstract:
ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.Keywords: Gd doped ZnO, electric, optics, microstructure
Procedia PDF Downloads 4744620 Living at Density: Resident Perceptions in Auckland, New Zealand
Authors: Errol J. Haarhoff
Abstract:
Housing in New Zealand, particularly in Auckland, is dominated by low-density suburbs. Over the past 20 years, housing intensification policies aimed to curb outward low-density sprawl and to concentrate development within an urban boundary have been implemented. This requires the greater deployment of attached housing typologies such apartments, duplexes and terrace housing. There has been strong market response and uptake for higher density development, with the number of building approvals received by the Auckland Council for attached housing units increasing from around 15 percent in 2012/13, to 54 percent in 2017/18. A key question about intensification and strong market uptake in a city where lower density has been the norm, is whether higher density neighborhoods will deliver necessary housing satisfaction? This paper reports on the findings to a questionnaire survey and focus group discussions probing resident perceptions to living at higher density in relation to their dwellings, the neighborhood and their sense of community. The findings reveal strong overall housing satisfaction, including key aspects such as privacy, noise and living in close proximity to neighbors. However, when residents are differentiated in terms of length of tenure, age or whether they are bringing up children, greater variation in satisfaction is detected. For example, residents in the 65-plus age cohort express much higher levels of satisfaction, when compared to the 18-44 year cohorts who more likely to be binging up children. This suggests greater design sensitivity to better accommodate the range of household types. Those who have live in the area longer express greater satisfaction than those with shorter duration, indicating time for adaption to living at higher density. Findings strongly underpin the instrumental role that the public amenities play in overall housing satisfaction and the emergence of a strong sense of community. This underscores the necessity for appropriate investment in the public amenities often lacking in market-led higher density housing development. We conclude with an evaluation of the PPP model, and its part in delivering housing satisfaction. The findings should be of interest to cities, housing developers and built environment professional pursuing housing policies promoting intensification and higher density.Keywords: medium density, housing satisfaction, neighborhoods, sense of community
Procedia PDF Downloads 1384619 Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles
Authors: Shivani Singla, Om Prakash Pandey, Gopi Sharma
Abstract:
Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system.Keywords: bismuth borate glass, different size, gold nanoparticles, nonlinearity
Procedia PDF Downloads 1234618 Seven Years Assessment on the Suitability of Cocoa Clones Cultivation in High-Density Planting and Its Management in Malaysia
Authors: O. Rozita, N. M. Nik Aziz
Abstract:
High-density planting is usually recommended for a small area of planting in order to increase production. The normal planting distance for cocoa (Theobroma cacao L.) in Malaysia is 3 m x 3 m. The study was conducted at Cocoa Research and Development Centre, Malaysia Cocoa Board, Jengka, Pahang with the objectives to evaluate the suitability of seven cocoa clones under four different planting densities and to study the interaction between cocoa clones and planting densities. The study was arranged in the split plot with randomized complete block design and replicated three times. The cocoa clone was assigned as the main plot and planting density was assigned as a subplot. The clones used in this study were PBC 123, PBC 112, MCBC4, MCBC 5, QH 1003, QH 22, and BAL 244. The planting distance were 3 m x 3 m (1000 stands/ha), 3 m x 1.5 m (2000 stands/ha), 3 m x 1 m (3000 stands/ha) and (1.5 m x 1.5 m) x 3 m (3333 stands/ha). Evaluation on yield performance was carried out for seven years. Clones of PBC 123, QH 1003, and QH 22 obtained the higher yield, meanwhile MCBC 4, MCBC 5, and BAL 244 obtained the lowest yield. In general, high-density planting can increase cocoa production with good management practices. Among the cocoa management practices, the selection of suitable clones with small branching habits and moderately vigorous and proper pruning activity were the most important factor in high-density planting.Keywords: clones, management, planting density, Theobroma cacao, yield
Procedia PDF Downloads 376