Search results for: mode locking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2058

Search results for: mode locking

1728 Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements

Authors: Igor Bilenko, Artem Shitikov, Michael Gorodetsky

Abstract:

Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed.

Keywords: optical quality factor, silicon optical losses, silicon optical resonator, whispering gallery modes

Procedia PDF Downloads 493
1727 Prioritization in a Maintenance, Repair and Overhaul (MRO) System Based on Fuzzy Logic at Iran Khodro (IKCO)

Authors: Izadi Banafsheh, Sedaghat Reza

Abstract:

Maintenance, Repair, and Overhaul (MRO) of machinery are a key recent issue concerning the automotive industry. It has always been a debated question what order or priority should be adopted for the MRO of machinery. This study attempts to examine several criteria including process sensitivity, average time between machine failures, average duration of repair, availability of parts, availability of maintenance personnel and workload through a literature review and experts survey so as to determine the condition of the machine. According to the mentioned criteria, the machinery were ranked in four modes below: A) Need for inspection, B) Need for minor repair, C) Need for part replacement, and D) Need for major repair. The Fuzzy AHP was employed to determine the weighting of criteria. At the end, the obtained weights were ranked through the AHP for each criterion, three groups were specified: shaving machines, assembly and painting in four modes. The statistical population comprises the elite in the Iranian automotive industry at IKCO covering operation managers, CEOs and maintenance professionals who are highly specialized in MRO and perfectly knowledgeable in how the machinery function. The information required for this study were collected from both desk research and field review, which eventually led to construction of a questionnaire handed out to the sample respondents in order to collect information on the subject matter. The results of the AHP for weighting the criteria revealed that the availability of maintenance personnel was the top priority at coefficient of 0.206, while the process sensitivity took the last priority at coefficient of 0.066. Furthermore, the results of TOPSIS for prioritizing the IKCO machinery suggested that at the mode where there is need for inspection, the assembly machines took the top priority while paining machines took the third priority. As for the mode where there is need for minor repairs, the assembly machines took the top priority while the third priority belonged to the shaving machines. As for the mode where there is need for parts replacement, the assembly machines took the top priority while the third belonged to the paining machinery. Finally, as for the mode where there is need for major repair, the assembly machines took the top priority while the third belonged to the paining machinery.

Keywords: maintenance, repair, overhaul, MRO, prioritization of machinery, fuzzy logic, AHP, TOPSIS

Procedia PDF Downloads 286
1726 The Effect of a Saturated Kink on the Dynamics of Tungsten Impurities in the Plasma Core

Authors: H. E. Ferrari, R. Farengo, C. F. Clauser

Abstract:

Tungsten (W) will be used in ITER as one of the plasma facing components (PFCs). The W could migrate to the plasma center. This could have a potentially deleterious effect on plasma confinement. Electron cyclotron resonance heating (ECRH) can be used to prevent W accumulation. We simulated a series of H mode discharges in ASDEX U with PFC containing W, where central ECRH was used to prevent W accumulation in the plasma center. The experiments showed that the W density profiles were flat after a sawtooth crash, and become hollow in between sawtooth crashes when ECRH has been applied. It was also observed that a saturated kink mode was active in these conditions. We studied the effect of saturated kink like instabilities on the redistribution of W impurities. The kink was modeled as the sum of a simple analytical equilibrium (large aspect ratio, circular cross section) plus the perturbation produced by the kink. A numerical code that follows the exact trajectories of the impurity ions in the total fields and includes collisions was employed. The code is written in Cuda C and runs in Graphical Processing Units (GPUs), allowing simulations with a large number of particles with modest resources. Our simulations show that when the W ions have a thermal velocity distribution, the kink has no effect on the W density. When we consider the plasma rotation, the kink can affect the W density. When the average passing frequency of the W particles is similar to the frequency of the kink mode, the expulsion of W ions from the plasma core is maximum, and the W density shows a hollow structure. This could have implications for the mitigation of W accumulation.

Keywords: impurity transport, kink instability, tungsten accumulation, tungsten dynamics

Procedia PDF Downloads 171
1725 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?

Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang

Abstract:

Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.

Keywords: creativity, default mode network, neural activation, SCAMPER

Procedia PDF Downloads 100
1724 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial

Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew

Abstract:

Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.

Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration

Procedia PDF Downloads 272
1723 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple

Authors: Hasan Basaran, Emre Unal

Abstract:

Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.

Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode

Procedia PDF Downloads 105
1722 A CMOS-Integrated Hall Plate with High Sensitivity

Authors: Jin Sup Kim, Min Seo

Abstract:

An improved cross-shaped hall plate with high sensitivity is described in this paper. Among different geometries that have been simulated and measured using Helmholtz coil. The paper describes the physical hall plate design and implementation in a 0.18-µm CMOS technology. In this paper, the biasing is a constant voltage mode. In the voltage mode, magnetic field is converted into an output voltage. The output voltage is typically in the order of micro- to millivolt and therefore, it must be amplified before being transmitted to the outside world. The study, design and performance optimization of hall plate has been carried out with the COMSOL Multiphysics. It is used to estimate the voltage distribution in the hall plate with and without magnetic field and to optimize the geometry. The simulation uses the nominal bias current of 1mA. The applied magnetic field is in the range from 0 mT to 20 mT. Measured results of the one structure over the 10 available samples show for the best sensitivity of 2.5 %/T at 20mT.

Keywords: cross-shaped hall plate, sensitivity, CMOS technology, Helmholtz coil

Procedia PDF Downloads 197
1721 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes

Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze

Abstract:

A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.

Keywords: decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation

Procedia PDF Downloads 311
1720 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)

Authors: David Hasurungan

Abstract:

This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.

Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system

Procedia PDF Downloads 360
1719 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic

Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin

Abstract:

In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.

Keywords: binary cat swarm optimization, binarization methods, metaheuristic, set covering problem

Procedia PDF Downloads 396
1718 A Problem on Homogeneous Isotropic Microstretch Thermoelastic Half Space with Mass Diffusion Medium under Different Theories

Authors: Devinder Singh, Rajneesh Kumar, Arvind Kumar

Abstract:

The present investigation deals with generalized model of the equations for a homogeneous isotropic microstretch thermoelastic half space with mass diffusion medium. Theories of generalized thermoelasticity Lord-Shulman (LS) Green-Lindsay (GL) and Coupled Theory (CT) theories are applied to investigate the problem. The stresses in the considered medium have been studied due to normal force and tangential force. The normal mode analysis technique is used to calculate the normal stress, shear stress, couple stresses and microstress. A numerical computation has been performed on the resulting quantity. The computed numerical results are shown graphically.

Keywords: microstretch, thermoelastic, normal mode analysis, normal and tangential force, microstress force

Procedia PDF Downloads 535
1717 The Capacity of Bolted and Screw Connections in Cold-Formed Steel Truss Structure through Analytical and Experimental Method

Authors: Slamet Setioboro, Rahutami Kusumaningsih, Prabowo Setiyawan, Danna Darmayadi

Abstract:

Designing of cold-formed steel capacity connections often based on the formula used for hot rolled steel. It makes the result of the actual capacity connection doesn’t accurate anymore. When the hot rolled steel receives the axial load pull, it will have different characteristics. As the result, there will be failure result when designing Truss structure made of hot rolled steel. This research aims to determine the capacity of actual cold-formed steel connections section which is loaded by the axial tensile force. It will test the appeal of the connection using bolt grafting tool and screw grafting tool. The variations of the test will be on the type of connection (single and double slap), the number of the connection tools and connection configuration. Bold and screw connections failure mode observed in this research are different each other. Failure mode of bolted connections includes sliding pivot plate, tearing at the plate and cutting of the bolt head. While the failure mode of screw connections includes tilting, hole-bearing, pull over and cutting the screw body out. This research was conducted using a laboratory test of HW2-600S Universal Testing Machine model with ASTM E8. It has done in the materials testing laboratory of Mechanical Engineering Department, Faculty of Engineering UNNES. The results obtained through the laboratory diversification towards theoretical calculations using the standards specified in ISO 7971-2013 Cold-Rolled Steel Structures. Based on the research, it can be concluded that the effective connection in receiving force strength is bolted connections neither single nor double plate. The method used is by applying 4 bolts through 2 parallel lines configuration. Furthermore, this connection deals with the consequences of holding the highest Pmaks, lowest failure risk and getting a little kind of mode of failure.

Keywords: axial load, cold-formed steel, capacity connections, bolted connections, screw connections

Procedia PDF Downloads 276
1716 E-Hailing Taxi Industry Management Mode Innovation Based on the Credit Evaluation

Authors: Yuan-lin Liu, Ye Li, Tian Xia

Abstract:

There are some shortcomings in Chinese existing taxi management modes. This paper suggests to establish the third-party comprehensive information management platform and put forward an evaluation model based on credit. Four indicators are used to evaluate the drivers’ credit, they are passengers’ evaluation score, driving behavior evaluation, drivers’ average bad record number, and personal credit score. A weighted clustering method is used to achieve credit level evaluation for taxi drivers. The management of taxi industry is based on the credit level, while the grade of the drivers is accorded to their credit rating. Credit rating determines the cost, income levels, the market access, useful period of license and the level of wage and bonus, as well as violation fine. These methods can make the credit evaluation effective. In conclusion, more credit data will help to set up a more accurate and detailed classification standard library.

Keywords: credit, mobile internet, e-hailing taxi, management mode, weighted cluster

Procedia PDF Downloads 325
1715 Broadband Optical Plasmonic Antennas Using Fano Resonance Effects

Authors: Siamak Dawazdah Emami, Amin Khodaei, Harith Bin Ahmad, Hairul A. Adbul-Rashid

Abstract:

The Fano resonance effect on plasmonic nanoparticle materials results in such materials possessing a number of unique optical properties, and the potential applicability for sensing, nonlinear devices and slow-light devices. A Fano resonance is a consequence of coherent interference between superradiant and subradiant hybridized plasmon modes. Incident light on subradiant modes will initiate excitation that results in superradiant modes, and these superradient modes possess zero or finite dipole moments alongside a comparable negligible coupling with light. This research work details the derivation of an electrodynamics coupling model for the interaction of dipolar transitions and radiation via plasmonic nanoclusters such as quadrimers, pentamers and heptamers. The directivity calculation is analyzed in order to qualify the redirection of emission. The geometry of a configured array of nanostructures strongly influenced the transmission and reflection properties, which subsequently resulted in the directivity of each antenna being related to the nanosphere size and gap distances between the nanospheres in each model’s structure. A well-separated configuration of nanospheres resulted in the structure behaving similarly to monomers, with spectra peaks of a broad superradiant mode being centered within the vicinity of 560 nm wavelength. Reducing the distance between ring nanospheres in pentamers and heptamers to 20~60 nm caused the coupling factor and charge distributions to increase and invoke a subradiant mode centered within the vicinity of 690 nm. Increasing the outside ring’s nanosphere distance from the centered nanospheres caused the coupling factor to decrease, with the coupling factor being inversely proportional to cubic of the distance between nanospheres. This phenomenon led to a dramatic decrease of the superradiant mode at a 200 nm distance between the central nanosphere and outer rings. Effects from a superradiant mode vanished beyond a 240 nm distance between central and outer ring nanospheres.

Keywords: fano resonance, optical antenna, plasmonic, nano-clusters

Procedia PDF Downloads 429
1714 Effect an Axial Magnetic Field in Co-rotating Flow Heated from Below

Authors: B. Mahfoud, A. Bendjagloli

Abstract:

The effect of an axial magnetic field on the flow produced by co-rotation of the top and bottom disks in a vertical cylindrical heated from below is numerically analyzed. The governing Navier-Stokes, energy, and potential equations are solved by using the finite-volume method. It was observed that the Reynolds number is increased, the axisymmetric basic state loses stability to circular patterns of axisymmetric vortices and spiral waves. In mixed convection case the axisymmetric mode disappears giving an asymmetric mode m=1. It was also found that the primary thresholds Recr corresponding to the modes m=1and 2, increase with increasing of the Hartmann number (Ha). Finally, stability diagrams have been established according to the numerical results of this investigation. These diagrams giving the evolution of the primary thresholds as a function of the Hartmann number for various values of the Richardson number.

Keywords: bifurcation, co-rotating end disks, magnetic field, stability diagrams, vortices

Procedia PDF Downloads 348
1713 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: axial loading, computational mechanics, energy absorption performance, crashworthiness behavior, deformation mode

Procedia PDF Downloads 441
1712 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells

Authors: Yingjeng James Li, Lung-Yu Sung, Huan-Jyun Ciou

Abstract:

Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA / cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV / hr. Accelerated mode was carried out by switching the voltage of the single cell between OCV and 0.2V. The durations held at OCV and 0.2V were 20 and 40 seconds, respectively, meaning one minute per cycle. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.

Keywords: durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells

Procedia PDF Downloads 589
1711 Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads

Authors: Barenten Suciu

Abstract:

Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles.

Keywords: bullet train, creep, cylindrical wheels, damping, dynamical hunting, stability, vibration analysis

Procedia PDF Downloads 153
1710 Experimental Research on Ductility of Regional Confined Concrete Beam

Authors: Qinggui Wu, Xinming Cao, Guyue Guo, Jiajun Ding

Abstract:

In efforts to study the shear ductility of regional confined concrete beam, 5 reinforced concrete beams were tested to examine its shear performance. These beams has the same shear span ratio, concrete strength, different ratios of tension reinforcement and shapes of stirrup. The purpose of the test is studying the effects of stirrup shape and tension reinforcement ratio on failure mode and shear ductility. The test shows that the regional confined part can be used as an independent part and the rest of the beam is good to work together so that the ductility of the beam is more one time higher than that of the normal confined concrete beam. The related laws of the effect of tension reinforcement ratio and stirrup shapes on beam’s shear ductility are founded.

Keywords: ratio of tension reinforcement, stirrup shapes, shear ductility, failure mode

Procedia PDF Downloads 334
1709 Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors

Authors: Ji-Seok Hong, Hee-Jang Moon, Hong-Gye Sung

Abstract:

The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque.

Keywords: large eddy simulation, proper orthogonal decomposition, SRM instability, flow-acoustic coupling

Procedia PDF Downloads 566
1708 Bandwidth Control Using Reconfigurable Antenna Elements

Authors: Sudhina H. K, Ravi M. Yadahalli, N. M. Shetti

Abstract:

Reconfigurable antennas represent a recent innovation in antenna design that changes from classical fixed-form, Fixed function antennas to modifiable structures that can be adapted to fit the requirements of a time varying system. The ability to control the operating band of an antenna system can have many useful applications. Systems that operate in an acquire-and-track configuration would see a benefit from active bandwidth control. In such systems a wide band search mode is first employed to find a desired signal, Then a narrow band track mode is used to follow only that signal. Utilizing active antenna bandwidth control, A single antenna would function for both the wide band and narrow band configurations providing the rejection of unwanted signals with the antenna hardware. This ability to move a portion of the RF filtering out of the receiver and onto the antenna itself will also aid in reducing the complexity of the often expensive RF processing subsystems.

Keywords: designing methods, mems, stack, reconfigurable elements

Procedia PDF Downloads 272
1707 Performance Evaluation and Comparison between the Empirical Mode Decomposition, Wavelet Analysis, and Singular Spectrum Analysis Applied to the Time Series Analysis in Atmospheric Science

Authors: Olivier Delage, Hassan Bencherif, Alain Bourdier

Abstract:

Signal decomposition approaches represent an important step in time series analysis, providing useful knowledge and insight into the data and underlying dynamics characteristics while also facilitating tasks such as noise removal and feature extraction. As most of observational time series are nonlinear and nonstationary, resulting of several physical processes interaction at different time scales, experimental time series have fluctuations at all time scales and requires the development of specific signal decomposition techniques. Most commonly used techniques are data driven, enabling to obtain well-behaved signal components without making any prior-assumptions on input data. Among the most popular time series decomposition techniques, most cited in the literature, are the empirical mode decomposition and its variants, the empirical wavelet transform and singular spectrum analysis. With increasing popularity and utility of these methods in wide ranging applications, it is imperative to gain a good understanding and insight into the operation of these algorithms. In this work, we describe all of the techniques mentioned above as well as their ability to denoise signals, to capture trends, to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the underlying dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and compared

Keywords: denoising, empirical mode decomposition, singular spectrum analysis, time series, underlying dynamics, wavelet analysis

Procedia PDF Downloads 116
1706 Effects of Cold Treatments on Methylation Profiles and Reproduction Mode of Diploid and Tetraploid Plants of Ranunculus kuepferi (Ranunculaceae)

Authors: E. Syngelaki, C. C. F. Schinkel, S. Klatt, E. Hörandl

Abstract:

Environmental influence can alter the conditions for plant development and can trigger changes in epigenetic variation. Thus, the exposure to abiotic environmental stress can lead to different DNA methylation profiles and may have evolutionary consequences for adaptation. Epigenetic control mechanisms may further influence mode of reproduction. The alpine species R. kuepferi has diploid and tetraploid cytotypes, that are mostly sexual and facultative apomicts, respectively. Hence, it is a suitable model system for studying the correlations of mode of reproduction, ploidy, and environmental stress. Diploid and tetraploid individuals were placed in two climate chambers and treated with low (+7°C day/+2°C night, -1°C cold shocks for three nights per week) and warm (control) temperatures (+15°C day/+10°C night). Subsequently, methylation sensitive-Amplified Fragment-Length Polymorphism (AFPL) markers were used to screen genome-wide methylation alterations triggered by stress treatments. The dataset was analyzed for four groups regarding treatment (cold/warm) and ploidy level (diploid/tetraploid), and also separately for full methylated, hemi-methylated and unmethylated sites. Patterns of epigenetic variation suggested that diploids differed significantly in their profiles from tetraploids independent from treatment, while treatments did not differ significantly within cytotypes. Furthermore, diploids are more differentiated than the tetraploids in overall methylation profiles of both treatments. This observation is in accordance with the increased frequency of apomictic seed formation in diploids and maintenance of facultative apomixis in tetraploids during the experiment. Global analysis of molecular variance showed higher epigenetic variation within groups than among them, while locus-by-locus analysis of molecular variance showed a high number (54.7%) of significantly differentiated un-methylated loci. To summarise, epigenetic variation seems to depend on ploidy level, and in diploids may be correlated to changes in mode of reproduction. However, further studies are needed to elucidate the mechanism and possible functional significance of these correlations.

Keywords: apomixis, cold stress, DNA methylation, Ranunculus kuepferi

Procedia PDF Downloads 160
1705 Neural Nets Based Approach for 2-Cells Power Converter Control

Authors: Kamel Laidi, Khelifa Benmansour, Ouahid Bouchhida

Abstract:

Neural networks-based approach for 2-cells serial converter has been developed and implemented. The approach is based on a behavioural description of the different operating modes of the converter. Each operating mode represents a well-defined configuration, and for which is matched an operating zone satisfying given invariance conditions, depending on the capacitors' voltages and the load current of the converter. For each mode, a control vector whose components are the control signals to be applied to the converter switches has been associated. Therefore, the problem is reduced to a classification task of the different operating modes of the converter. The artificial neural nets-based approach, which constitutes a powerful tool for this kind of task, has been adopted and implemented. The application to a 2-cells chopper has allowed ensuring efficient and robust control of the load current and a high capacitors voltages balancing.

Keywords: neural nets, control, multicellular converters, 2-cells chopper

Procedia PDF Downloads 834
1704 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique

Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido

Abstract:

The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.

Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant

Procedia PDF Downloads 131
1703 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element

Procedia PDF Downloads 163
1702 The Effect of Opening on Mode Shapes and Frequencies of Composite Shear Wall

Authors: A. Arabzadeh, H. R. Kazemi Nia Korrani

Abstract:

Composite steel plate shear wall is a lateral loading resistance system, which is used especially in tall buildings. This wall is made of a thin steel plate with reinforced a concrete cover, which is attached to one or both sides of the steel plate. This system is similar to stiffened steel plate shear wall, in which reinforced concrete replaces the steel stiffeners. Composite shear wall have in-plane and out-plane significant strength. Also, they have appropriate ductility. The present numerical investigations were focused on the effects of opening on wall mode shapes. In addition, frequencies of composite shear wall with and without opening are compared. For analyzing composite shear wall, a new program will be developed using of finite element theory and the effects of shape, size and position openings on the behavior of composite shear wall will be studied. Results indicated that the existence of opening decreases wall frequency.

Keywords: composite shear wall, opening, finite element method, modal analysis

Procedia PDF Downloads 540
1701 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam

Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood

Abstract:

The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.

Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB

Procedia PDF Downloads 271
1700 Application of Terminal Sliding Mode Control to the Stabilization of the Indoor Temperature in Buildings

Authors: Pawel Skruch, Marek Dlugosz

Abstract:

The paper starts with a general model of the temperature dynamics in buildings. The modelling approach relies on thermodynamics, in particular heat transfer, principles. The model considers heat loses by conduction and ventilation and internal heat gains. The parameters of the model can be determined uniquely from the geometry of the building and from thermal properties of construction materials. The model is presented using state space notation and this form is used in the control design procedure. A sliding surface is defined by the system output and the desired trajectory. The control law is designed to force the trajectory of the system from any initial condition to the sliding surface in finite time. The trajectory of the system after reaching the sliding surface remains on it. A simulation example is included to verify the approach and to demonstrate the achievable performance improvement by the proposed solution in the temperature control in buildings.

Keywords: modelling, building, temperature dynamics, sliding-mode control, sliding surface

Procedia PDF Downloads 549
1699 Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum

Authors: Li Li, Lei Wang, Chenglin Du, Mengxin Ren, Xinzheng Zhang, Wei Cai, Jingjun Xu

Abstract:

Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies.

Keywords: breathing mode, plasmonics, quantum dot, strong coupling, ultraviolet

Procedia PDF Downloads 199