Search results for: lattice architectures
318 Overview of Development of a Digital Platform for Building Critical Infrastructure Protection Systems in Smart Industries
Authors: Bruno Vilić Belina, Ivan Župan
Abstract:
Smart industry concepts and digital transformation are very popular in many industries. They develop their own digital platforms, which have an important role in innovations and transactions. The main idea of smart industry digital platforms is central data collection, industrial data integration, and data usage for smart applications and services. This paper presents the development of a digital platform for building critical infrastructure protection systems in smart industries. Different service contraction modalities in service level agreements (SLAs), customer relationship management (CRM) relations, trends, and changes in business architectures (especially process business architecture) for the purpose of developing infrastructural production and distribution networks, information infrastructure meta-models and generic processes by critical infrastructure owner demanded by critical infrastructure law, satisfying cybersecurity requirements and taking into account hybrid threats are researched.Keywords: cybersecurity, critical infrastructure, smart industries, digital platform
Procedia PDF Downloads 106317 Spin-Polarized Investigation of Ferromagnetism on Magnetic Semiconductors MnxCa1-xS in the Rock-salt Phase
Authors: B. Ghebouli, M. A. Ghebouli, H. Choutri, M. Fatmi, L. Louail
Abstract:
The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors MnxCa1-xS in the rock-salt phase have been investigated using first-principles calculations. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of MnxCa1-xS is 4.4µB and is independent of the Mn concentration. The unfilled Mn -3d levels reduce the local magnetic moment of Mn from its free space charge value of 5µB to 4.4µB due to 3p–3d hybridization.Keywords: semiconductors, Ab initio calculations, band-structure, magnetic properties
Procedia PDF Downloads 354316 Enhancement Dynamic Cars Detection Based on Optimized HOG Descriptor
Authors: Mansouri Nabila, Ben Jemaa Yousra, Motamed Cina, Watelain Eric
Abstract:
Research and development efforts in intelligent Advanced Driver Assistance Systems (ADAS) seek to save lives and reduce the number of on-road fatalities. For traffic and emergency monitoring, the essential but challenging task is vehicle detection and tracking in reasonably short time. This purpose needs first of all a powerful dynamic car detector model. In fact, this paper presents an optimized HOG process based on shape and motion parameters fusion. Our proposed approach mains to compute HOG by bloc feature from foreground blobs using configurable research window and pathway in order to overcome the shortcoming in term of computing time of HOG descriptor and improve their dynamic application performance. Indeed we prove in this paper that HOG by bloc descriptor combined with motion parameters is a very suitable car detector which reaches in record time a satisfactory recognition rate in dynamic outside area and bypasses several popular works without using sophisticated and expensive architectures such as GPU and FPGA.Keywords: car-detector, HOG, motion, computing time
Procedia PDF Downloads 323315 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 88314 X-Ray Diffraction and Precision Dilatometer Study of Neutron-Irradiated Nuclear Graphite Recovery Process up to 1673K
Authors: Yuhao Jin, Zhou Zhou, Katsumi Yoshida, Zhengcao Li, Tadashi Maruyama, Toyohiko Yano
Abstract:
Four kinds of nuclear graphite, IG-110U, ETP-10, CX-2002U and IG-430U were neutron-irradiated at different fluences and temperatures, ranged from 1.38 x 1024 to 7.4 x 1025 n/m2 (E > 1.0 MeV) at 473K, 573K and 673K. To take into account the disorder in the microstructure, such as stacking faults and anisotropic coherent lengths, the X-ray diffraction patterns were interpreted using a comprehensive structural model and a refinement program CARBONXS. The deduced structural parameters show the changes of lattice parameters, coherent lengths along the c-axis and the basal plane, and the degree of turbostratic disorder as a function of the irradiation dose. Our results reveal neutron irradiation effects on the microstructure and macroscopic dimension, which are consistent with previous work. The methodology used in this work enables the quantification of the damage on the microstructure of nuclear graphite induced by neutron irradiation.Keywords: nuclear graphite, neutron irradiation, thermal annealing, recovery behavior, dimensional change, CARBONX, XRD analysis
Procedia PDF Downloads 400313 An Interlock Model of Friction and Superlubricity
Authors: Azadeh Malekan, Shahin Rouhani
Abstract:
Superlubricity is a phenomenon where two surfaces in contact show negligible friction;this may be because the asperities of the two surfaces do not interlock. Two rough surfaces, when pressed against each other, can get into a formation where the summits of asperities of one surface lock into the valleys of the other surface. The amount of interlock depends on the geometry of the two surfaces. We suggest the friction force may then be proportional to the amount of interlock; this explains Superlubricity as the situation where there is little interlock. Then the friction force will be directly proportional to the normal force as it is related to the work necessary to lift the upper surface in order to clear the interlock. To investigate this model, we simulate the contact of two surfaces. In order to validate our model, we first investigate Amontons‘ law. Assuming that asperities retain deformations in the time scale while the top asperity moves across the lattice spacing Amonton’s law is observed. Structural superlubricity is examined by the hypothesis that surfaces are very rigid and there is no deformation in asperities. This may happen at small normal forces. When two identical surfaces come into contact, rotating the top surface we observe a peak in friction force near the angle of orientation where the two surfaces can interlock.Keywords: friction, amonton`s law, superlubricity, contact model
Procedia PDF Downloads 147312 System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids
Authors: Yiyang Su, Jörg Neumann, Jan Wetzlich, Florian Thiel
Abstract:
Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.Keywords: cyber security, performance, protocols, security standards, smart grid
Procedia PDF Downloads 323311 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks
Abstract:
Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence
Procedia PDF Downloads 421310 Synthesis, Characterization and Application of Undoped and Fe Doped TiO₂ (Ti₁₋ₓFeₓO₂; X=0.01, 0.02, 0.03) Nanoparticles
Authors: Sudhakar Saroj, Satya Vir Singh
Abstract:
Undoped and Fe doped TiO₂, Ti₁₋ₓFeₓO₂ (x=0.00, 0.01, 0.03, 0.05, 0.07 and 0.09) have been synthesized by solution combustion method using Titanium (IV) oxide as a precursor, and also were characterized by XRD, DRS, FTIR, XPS, SEM, and EDX. The formation of anatase phase of undoped and Fe TiO₂ nanoparticles were confirmed by XRD, and the average crystallite size was determined by Debye-Scherer's equation. The DRS analysis indicates the shifting of light absorbance in visible region from UV region with increasing the doping concentration in TiO₂. The vibrational band of the Ti-O lattice was confirmed by the FT-IR spectrum. The XPS results confirm the presence of elements of titanium, oxygen and iron in the synthesized samples and determine the binding energy of elements. SEM image of the above-synthesized nanoparticles showed the spherical shape of nanoparticles. The purities of the synthesized nanoparticles were confirmed by EDX analysis. The photocatalytic activities of the synthesized nanoparticles were tested by studying the degradation of dye (Direct Blue 199) in the photocatalytic reactor. The Ti₀.₉₇Fe₀.₀₃O₂ photocatalyst shows highest photodegradation activity among all the synthesized undoped and Fe doped TiO₂ photocatalyst.Keywords: direct blue 199, nanoparticles, TiO₂, photodegradation
Procedia PDF Downloads 236309 X-Ray Crystallographic, Hirshfeld Surface Analysis and Docking Study of Phthalyl Sulfacetamide
Authors: Sanjay M. Tailor, Urmila H. Patel
Abstract:
Phthalyl Sulfacetamide belongs to well-known member of antimicrobial sulfonamide family. It is a potent antitumor drug. Structural characteristics of 4-amino-N-(2quinoxalinyl) benzene-sulfonamides (Phthalyl Sulfacetamide), C14H12N4O2S has been studied by method of X-ray crystallography. The compound crystallizes in monoclinic space group P21/n with unit cell parameters a= 7.9841 Ǻ, b= 12.8208 Ǻ, c= 16.6607 Ǻ, α= 90˚, β= 93.23˚, γ= 90˚and Z=4. The X-ray based three-dimensional structure analysis has been carried out by direct methods and refined to an R-value of 0.0419. The crystal structure is stabilized by intermolecular N-H…N, N-H…O and π-π interactions. The Hirshfeld surfaces and consequently the fingerprint analysis have been performed to study the nature of interactions and their quantitative contributions towards the crystal packing. An analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions, which are the key elements in building different supramolecular architectures. Docking is used for virtual screening for the prediction of the strongest binders based on various scoring functions. Docking studies are carried out on Phthalyl Sulfacetamide for better activity, which is important for the development of a new class of inhibitors.Keywords: phthalyl sulfacetamide, crystal structure, hirshfeld surface analysis, docking
Procedia PDF Downloads 346308 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection
Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari
Abstract:
In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs
Procedia PDF Downloads 364307 Temperature-Dependent Structural Characterization of Type-II Dirac Semi-Metal nite₂ From Bulk to Exfoliated Thin Flakes Using Raman Spectroscopy
Authors: Minna Theres James, Nirmal K Sebastian, Shoubhik Mandal, Pramita Mishra, R Ganesan, P S Anil Kumar
Abstract:
We report the temperature-dependent evolution of Raman spectra of type-II Dirac semimetal (DSM) NiTe2 (001) in the form of bulk single crystal and a nanoflake (200 nm thick) for the first time. A physical model that can quantitatively explain the evolution of out of plane A1g and in-plane E1g Raman modes is used. The non-linear variation of peak positions of the Raman modes with temperature is explained by anharmonic three-phonon and four-phonon processes along with thermal expansion of the lattice. We also observe prominent effect of electron-phonon coupling from the variation of FWHM of the peaks with temperature, indicating the metallicity of the samples. Raman mode E1 1g corresponding to an in plane vibration disappears on decreasing the thickness from bulk to nanoflake.Keywords: raman spectroscopy, type 2 dirac semimetal, nickel telluride, phonon-phonon coupling, electron phonon coupling, transition metal dichalcogonide
Procedia PDF Downloads 114306 Analysis of Process for Solution of Fiber-Ends after Biopolishing on the Surface of Cotton Knit Fabric
Authors: P. Altay, G. Kartal, B. Kizilkaya, S. Kahraman, N. C. Gursoy
Abstract:
Biopolishing is applied to remove the fuzz or pills on the fiber or fabric surface which will reduce its tendency to pill or fuzz after repetitive launderings. After biopolishing process, the fuzzes ripped by cellulase enzymes cannot be thoroughly removed from fabric surface, they remain on the fabric or fiber surface; accordingly disturb the user and lead to decrease in productivity of drying process. The main objective of this study is to develop a method for removing weakened fuzz fibers and surface pills from biofinished fabric surface before drying process. Fuzzes in the lattice structure of fabric were completely removed from the internal structure of the fabric by air blowing. The presence of fuzzes leads to problems with formation of pilling and faded appearance; the removal of fuzzes from the fabric results in reduced tendency to pill formation, cleaner, smoother and softer surface, improved handling properties of fabric with maintaining original color.Keywords: biopolishing, fuzz fiber, weakened fiber, biofinished cotton fabric
Procedia PDF Downloads 379305 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure
Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail
Abstract:
We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon
Procedia PDF Downloads 540304 Applying Epistemology to Artificial Intelligence in the Social Arena: Exploring Fundamental Considerations
Authors: Gianni Jacucci
Abstract:
Epistemology traditionally finds its place within human research philosophies and methodologies. Artificial intelligence methods pose challenges, particularly given the unresolved relationship between AI and pivotal concepts in social arenas such as hermeneutics and accountability. We begin by examining the essential criteria governing scientific rigor in the human sciences. We revisit the three foundational philosophies underpinning qualitative research methods: empiricism, hermeneutics, and phenomenology. We elucidate the distinct attributes, merits, and vulnerabilities inherent in the methodologies they inspire. The integration of AI, e.g., deep learning algorithms, sparks an interest in evaluating these criteria against the diverse forms of AI architectures. For instance, Interpreted AI could be viewed as a hermeneutic approach, relying on a priori interpretations, while straight AI may be perceived as a descriptive phenomenological approach, processing original and uncontaminated data. This paper serves as groundwork for such explorations, offering preliminary reflections to lay the foundation and outline the initial landscape.Keywords: artificial intelligence, deep learning, epistemology, qualitative research, methodology, hermeneutics, accountability
Procedia PDF Downloads 38303 Spin-Polarized Structural, Electronic, and Magnetic Properties of Co and Mn-Doped CdTe in Zinc-Blende Phase
Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir
Abstract:
Structural, electronic, and magnetic properties of Co and Mn-doped CdTe have been studied by employing the full potential linear augmented plane waves (FP-LAPW) method within the spin-polarized density functional theory (DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA) as exchange–correlation (XC) potential. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, spin-polarized band structures, and total and local densities of states. The value of calculated magnetic moment per Co and Mn impurity atoms is found to be 2.21 µB for CdCoTe and 3.20 µB for CdMnTe. The calculated densities of states presented in this study identify the half-metallic of Co and Mn-doped CdTe.Keywords: electronic structure, density functional theory, band structures, half-metallic, magnetic moment
Procedia PDF Downloads 465302 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations
Authors: S. Meziane, H. I. Faraoun, C. Esling
Abstract:
Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.Keywords: Ab initio, High efficiency, Power generation devices, Transition metal dichalcogenides
Procedia PDF Downloads 197301 Nice Stadium: Design of a Flat Single Layer ETFE Roof
Authors: A. Escoffier, A. Albrecht, F. Consigny
Abstract:
In order to host the Football Euro in 2016, many French cities have launched architectural competitions in recent years to improve the quality of their stadiums. The winning project in Nice was designed by Wilmotte architects together with Elioth structural engineers. It has a capacity of 35,000 seats. Its roof structure consists of a complex 3D shape timber and steel lattice and is covered by 25,000m² of ETFE, 10,500m² of PES-PVC fabric and 8,500m² of photovoltaic panels. This paper focuses on the ETFE part of the cover. The stadium is one of the first constructions to use flat single layer ETFE on such a big area. Due to its relatively recent appearance in France, ETFE structures are not yet covered by any regulations and the existing codes for fabric structures cannot be strictly applied. Rather, they are considered as cladding systems and therefore have to be approved by an “Appréciation Technique d’Expérimentation” (ATEx), during which experimental tests have to be performed. We explain the method that we developed to justify the ETFE, which eventually led to bi-axial tests to clarify the allowable stress in the film.Keywords: biaxial test, creep, ETFE, single layer, stadium roof
Procedia PDF Downloads 244300 Removal of VOCs from Gas Streams with Double Perovskite-Type Catalyst
Authors: Kuan Lun Pan, Moo Been Chang
Abstract:
Volatile organic compounds (VOCs) are one of major air contaminants, and they can react with nitrogen oxides (NOx) in atmosphere to form ozone (O3) and peroxyacetyl nitrate (PAN) with solar irradiation, leading to environmental hazards. In addition, some VOCs are toxic at low concentration levels and cause adverse effects on human health. How to effectively reduce VOCs emission has become an important issue. Thermal catalysis is regarded as an effective way for VOCs removal because it provides oxidation route to successfully convert VOCs into carbon dioxide (CO2) and water (H2O(g)). Single perovskite-type catalysts are promising for VOC removal, and they are of good potential to replace noble metals due to good activity and high thermal stability. Single perovskites can be generally described as ABO3 or A2BO4, where A-site is often a rare earth element or an alkaline. Typically, the B-site is transition metal cation (Fe, Cu, Ni, Co, or Mn). Catalytic properties of perovskites mainly rely on nature, oxidation states and arrangement of B-site cation. Interestingly, single perovskites could be further synthesized to form double perovskite-type catalysts which can simply be represented by A2B’B”O6. Likewise, A-site stands for an alkaline metal or rare earth element, and the B′ and B′′ are transition metals. Double perovskites possess unique surface properties. In structure, three-dimensional of B-site with ordered arrangement of B’O6 and B”O6 is presented alternately, and they corner-share octahedral along three directions of the crystal lattice, while cations of A-site position between the void of octahedral. It has attracted considerable attention due to specific arrangement of alternating B-site structure. Therefore, double perovskites may have more variations than single perovskites, and this greater variation may promote catalytic performance. It is expected that activity of double perovskites is higher than that of single perovskites toward VOC removal. In this study, double perovskite-type catalyst (La2CoMnO6) is prepared and evaluated for VOC removal. Also, single perovskites including LaCoO3 and LaMnO3 are tested for the comparison purpose. Toluene (C7H8) is one of the important VOCs which are commonly applied in chemical processes. In addition to its wide application, C7H8 has high toxicity at a low concentration. Therefore, C7H8 is selected as the target compound in this study. Experimental results indicate that double perovskite (La2CoMnO6) has better activity if compared with single perovskites. Especially, C7H8 can be completely oxidized to CO2 at 300oC as La2CoMnO6 is applied. Characterization of catalysts indicates that double perovskite has unique surface properties and is of higher amounts of lattice oxygen, leading to higher activity. For durability test, La2CoMnO6 maintains high C7H8 removal efficiency of 100% at 300oC and 30,000 h-1, and it also shows good resistance to CO2 (5%) and H2O(g) (5%) of gas streams tested. For various VOCs including isopropyl alcohol (C3H8O), ethanal (C2H4O), and ethylene (C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalyst operated at 300℃, indicating that double perovskites are promising catalysts for VOCs removal, and possible mechanisms will be elucidated in this paper.Keywords: volatile organic compounds, Toluene (C7H8), double perovskite-type catalyst, catalysis
Procedia PDF Downloads 165299 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training
Procedia PDF Downloads 89298 Structural and Vibrational Studies of Ni Alx Fe2-x O4 Ferrites
Authors: Kamel Taıbı, Abdelmadjid Rais
Abstract:
Nickel–Aluminium ferrites with the general formula Ni Alx Fe2-x O4 (0 ≤ x ≤ 1) were studied using X-ray diffraction, Infra Red and Raman spectroscopy. XRD diffraction patterns and their Reitveld refinements show that all samples have a pure single-phase cubic spinel structure. From these patterns, the lattice parameters of these samples have been calculated and compared with those predicted theoretically. Most of the values were found to decrease with increasing Al content. Infra Red spectra showed two significant absorption bands. The high band corresponds to tetrahedral (A) sites and the lower band to octahedral [B] sites, thus confirming the single phase spinel structure. For all compositions, Raman spectra show the five active modes A1g + E1g + 3 T2g of the motion of O2- ions and both the A-site and B-site ions. The Raman frequencies trend with aluminium concentration show a blue shift for all modes consistent with the replacement of Fe3+ by lower mass Al3+. Composition dependence of the Raman frequency modes is discussed in relationship with the cations distribution among the A-sites and B-sites.Keywords: Ni-Al ferrites, spinel structure, XRD, Raman spectroscopy
Procedia PDF Downloads 374297 Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: transformers, generative ai, gene expression design, classification
Procedia PDF Downloads 59296 Synthesis, Spectroscopic and XRD Study of Transition Metal Complex Derived from Low-Schiff Acyl-Hydrazone Ligand
Authors: Mohamedou El Boukhary, Farba Bouyagui Tamboura, A. Hamady Barry, T. Moussa Seck, Mohamed L. Gaye
Abstract:
Nowadays, low-schiff acyl-hydrazone ligands are highly sought after due to their wide applications in various fields of biology, coordination chemistry, and catalysis. They are studied for their antioxidant, antibacterial and antiviral properties. The complexes of transition metals and the lanthanide they derive are well known for their magnetic, optical, and catalytic properties. In this work, we present the synthesis of an acyl-hydrazone (H2L) schiff base and their 3d transition complexes. The ligand (H2L) is characterized by IR, NMR (1H; 13C) spectroscopy. The complexes are characterized by different physic-chemical techniques such as IR, UV-visible, conductivity, measurement of magnetic susceptibility. The study of XRD allowed us to elucidate the crystalline structure of the manganese (Mn) complex. The asymmetric unit of the complex is composed of two molecules of the ligand, one manganese (II) ion, and two coordinate chloride ions; the environment around Mn is described as a pentagonal base bipyramid. In the crystal lattice, the asymmetric unit is bound by hydrogen bonds.Keywords: synthene, acyl-hydrazone, 3D transition metal complex, application
Procedia PDF Downloads 52295 Flexural Response of Glass Fiber Reinforced Polymer Sandwich Panels with 3D Woven Honeycomb Core
Authors: Elif Kalkanli, Constantinos Soutis
Abstract:
The use of textile preform in the advanced fields including aerospace, automotive and marine has exponentially grown in recent years. These preforms offer excellent advantages such as being lightweight and low-cost, and also, their suitability for creating different fiber architectures with different materials whilst improved mechanical properties in certain aspects. In this study, a novel honeycomb core is developed by a 3Dweaving process. The assembly of the layers is achieved thanks to innovative weaving design. Polyester yarn is selected for the 3D woven honeycomb core (3DWHC). The core is used to manufacture a sandwich panel with 2x2 twill glass fiber composite face sheets. These 3DWHC sandwich panels will be tested in three-point bending. The in-plane and out-of-plane (through-the-thickness) mechanical response of the core will be examined as a function of cell size in addition to the flexural response of the sandwich panel. The failure mechanisms of the core and the sandwich skins will be reported in addition to flexural strength and stiffness. Possible engineering applications will be identified.Keywords: 3D woven, assembly, failure modes, honeycomb sandwich panel
Procedia PDF Downloads 205294 Functions and Effects of Green Facades in the Developing Countries: Case Study of Tehran
Authors: S. Jahani, V. Choopankareh
Abstract:
Many people lost their life caused by environmental pollution every year. The negative effects of environmental crises appear to be much higher in Asian countries. The most important environmental issue in the developing countries and especially in Tehran, to our best knowledge, is air pollution that has affected many aspects of life in society. Environmental topics related to technology’s development have been salient issues among the main concerns of designers. Green facades are the most considerable solutions which designers and architectures are focused on, all over the world. But there are lots of behavioral and psychological problems about this point. In this line, this excavation has tried to reveal the cultural and psychological influences of green façade in developing countries like Tehran. Green façades in developing countries are so useless, although they are so expensive. As a matter of fact, users consider green facade as a decorative item. This research is an attempt to recognize the reasons which show green façades as worthless element. Also, some solutions are presented to promote green façades in the developing countries as an intrinsic solution. There are so many environmental threats, especially about air pollution, for a city as Tehran, which might be solved by green facades.Keywords: air pollution, developing countries, effects, green facades
Procedia PDF Downloads 276293 Survey on Fiber Optic Deployment for Telecommunications Operators in Ghana: Coverage Gap, Recommendations and Research Directions
Authors: Francis Padi, Solomon Nunoo, John Kojo Annan
Abstract:
The paper "Survey on Fiber Optic Deployment for Telecommunications Operators in Ghana: Coverage Gap, Recommendations and Research Directions" presents a comprehensive survey on the deployment of fiber optic networks for telecommunications operators in Ghana. It addresses the challenges encountered by operators using microwave transmission systems for backhauling traffic and emphasizes the advantages of deploying fiber optic networks. The study delves into the coverage gap, provides recommendations, and outlines research directions to enhance the telecommunications infrastructure in Ghana. Additionally, it evaluates next-generation optical access technologies and architectures tailored to operators' needs. The paper also investigates current technological solutions and regulatory, technical, and economical dimensions related to sharing mobile telecommunication networks in emerging countries. Overall, this paper offers valuable insights into fiber optic network deployment for telecommunications operators in Ghana and suggests strategies to meet the increasing demand for data and mobile applications.Keywords: survey on fiber optic deployment, coverage gap, recommendations, research directions
Procedia PDF Downloads 21292 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem
Procedia PDF Downloads 72291 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 60290 Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks
Authors: Mehdi Assefi, Keihan Hataminezhad
Abstract:
One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM.Keywords: wireless ad-hoc networks, contact selection, method for CARD, energy-efficient
Procedia PDF Downloads 290289 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3
Authors: Meriem Harmel, Houari Khachai
Abstract:
We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.Keywords: DFT, fluoroperovskite, electronic structure, optical properties
Procedia PDF Downloads 477