Search results for: fluorescence microscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2256

Search results for: fluorescence microscopy

1926 Thermally Stable Crystalline Triazine-Based Organic Polymeric Nanodendrites for Mercury(2+) Ion Sensing

Authors: Dimitra Das, Anuradha Mitra, Kalyan Kumar Chattopadhyay

Abstract:

Organic polymers, constructed from light elements like carbon, hydrogen, nitrogen, oxygen, sulphur, and boron atoms, are the emergent class of non-toxic, metal-free, environmental benign advanced materials. Covalent triazine-based polymers with a functional triazine group are significant class of organic materials due to their remarkable stability arising out of strong covalent bonds. They can conventionally form hydrogen bonds, favour π–π contacts, and they were recently revealed to be involved in interesting anion–π interactions. The present work mainly focuses upon the development of a single-crystalline, highly cross-linked triazine-based nitrogen-rich organic polymer with nanodendritic morphology and significant thermal stability. The polymer has been synthesized through hydrothermal treatment of melamine and ethylene glycol resulting in cross-polymerization via condensation-polymerization reaction. The crystal structure of the polymer has been evaluated by employing Rietveld whole profile fitting method. The polymer has been found to be composed of monoclinic melamine having space group P21/a. A detailed insight into the chemical structure of the as synthesized polymer has been elucidated by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopic analysis. X-Ray Photoelectron Spectroscopic (XPS) analysis has also been carried out for further understanding of the different types of linkages required to create the backbone of the polymer. The unique rod-like morphology of the triazine based polymer has been revealed from the images obtained from Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Interestingly, this polymer has been found to selectively detect mercury (Hg²⁺) ions at an extremely low concentration through fluorescent quenching with detection limit as low as 0.03 ppb. The high toxicity of mercury ions (Hg²⁺) arise from its strong affinity towards the sulphur atoms of biological building blocks. Even a trace quantity of this metal is dangerous for human health. Furthermore, owing to its small ionic radius and high solvation energy, Hg²⁺ ions remain encapsulated by water molecules making its detection a challenging task. There are some existing reports on fluorescent-based heavy metal ion sensors using covalent organic frameworks (COFs) but reports on mercury sensing using triazine based polymers are rather undeveloped. Thus, the importance of ultra-trace detection of Hg²⁺ ions with high level of selectivity and sensitivity has contemporary significance. A plausible sensing phenomenon by the polymer has been proposed to understand the applicability of the material as a potential sensor. The impressive sensitivity of the polymer sample towards Hg²⁺ is the very first report in the field of highly crystalline triazine based polymers (without the introduction of any sulphur groups or functionalization) towards mercury ion detection through photoluminescence quenching technique. This crystalline metal-free organic polymer being cheap, non-toxic and scalable has current relevance and could be a promising candidate for Hg²⁺ ion sensing at commercial level.

Keywords: fluorescence quenching , mercury ion sensing, single-crystalline, triazine-based polymer

Procedia PDF Downloads 128
1925 The Anti-Angiogenic Effect of Tectorigenin in a Mouse Model of Retinopathy of Prematurity

Authors: KuiDong Kang, Hye Bin Yim, Su Ah Kim

Abstract:

Purpose: Tectorigenin is an isoflavone derived from the rhizome of Belamacanda chinensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of tectorigenin in mice. Methods: ICR neonatal mice were exposed to 75% oxygen from postnatal day P7 until P12 and returned to room air (21% oxygen) for five days (P12 to P17). Mice were subjected to daily intraperitoneal injection of tectorigenin (1 mg/kg, 10 mg/kg) and vehicle from P12 to P17. Retro-orbital injection of FITC-dextran was performed and retinal flat mounts were viewed by fluorescence microscopy. The Central avascular area was quantified from the digital images in a masked fashion using image analysis software (NIH ImageJ). Neovascular tufts were quantified by using SWIFT_NV and neovascular lumens were quantified from a histologic section in a masked fashion. Immunohistochemistry and Western blot analysis were also performed to demonstrate the anti-angiogenic activity of this compound in vivo. Results: In the retina of tectorigenin injected mouse (10mg/kg), the central non-perfusion area was significantly decreased compared to the vehicle injected group (1.76±0.5 mm2 vs 2.85±0.6 mm2, P<0.05). In vehicle-injected group, 33.45 ± 5.51% of the total retinal area was avascular, whereas the retinas of pups treated with high-dose (10 mg/kg) tectorigenin showed avascular retinal areas of 21.25 ±4.34% (P<0.05). High dose of tectorigenin also significantly reduced the number of vascular lumens in the histologic section. Tectorigenin (10 mg/kg) significantly reduced the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), MMP-9, and angiotensin II compared to the vehicle injected group. Tectorigenin did not affect CD31 abundance at any tested dose. Conclusions: Our results show that tectorigenin possesses powerful anti-angiogenic properties and can attenuate new vessel formation in the retina after systemic administration. These results imply that this compound can be considered as a candidate substance for therapeutic inhibition of retinal angiogenesis.

Keywords: tectorigenin, anti-angiogenic, retinopathy, Belamacanda chinensis

Procedia PDF Downloads 259
1924 Quantitative Polymerase Chain Reaction Analysis of Phytoplankton Composition and Abundance to Assess Eutrophication: A Multi-Year Study in Twelve Large Rivers across the United States

Authors: Chiqian Zhang, Kyle D. McIntosh, Nathan Sienkiewicz, Ian Struewing, Erin A. Stelzer, Jennifer L. Graham, Jingrang Lu

Abstract:

Phytoplankton plays an essential role in freshwater aquatic ecosystems and is the primary group synthesizing organic carbon and providing food sources or energy to ecosystems. Therefore, the identification and quantification of phytoplankton are important for estimating and assessing ecosystem productivity (carbon fixation), water quality, and eutrophication. Microscopy is the current gold standard for identifying and quantifying phytoplankton composition and abundance. However, microscopic analysis of phytoplankton is time-consuming, has a low sample throughput, and requires deep knowledge and rich experience in microbial morphology to implement. To improve this situation, quantitative polymerase chain reaction (qPCR) was considered for phytoplankton identification and quantification. Using qPCR to assess phytoplankton composition and abundance, however, has not been comprehensively evaluated. This study focused on: 1) conducting a comprehensive performance comparison of qPCR and microscopy techniques in identifying and quantifying phytoplankton and 2) examining the use of qPCR as a tool for assessing eutrophication. Twelve large rivers located throughout the United States were evaluated using data collected from 2017 to 2019 to understand the relation between qPCR-based phytoplankton abundance and eutrophication. This study revealed that temporal variation of phytoplankton abundance in the twelve rivers was limited within years (from late spring to late fall) and among different years (2017, 2018, and 2019). Midcontinent rivers had moderately greater phytoplankton abundance than eastern and western rivers, presumably because midcontinent rivers were more eutrophic. The study also showed that qPCR- and microscope-determined phytoplankton abundance had a significant positive linear correlation (adjusted R² 0.772, p-value < 0.001). In addition, phytoplankton abundance assessed via qPCR showed promise as an indicator of the eutrophication status of those rivers, with oligotrophic rivers having low phytoplankton abundance and eutrophic rivers having (relatively) high phytoplankton abundance. This study demonstrated that qPCR could serve as an alternative tool to traditional microscopy for phytoplankton quantification and eutrophication assessment in freshwater rivers.

Keywords: phytoplankton, eutrophication, river, qPCR, microscopy, spatiotemporal variation

Procedia PDF Downloads 93
1923 Microstructural Evolution of Maraging Steels from Powder Particles to Additively Manufactured Samples

Authors: Seyedamirreza Shamsdini, Mohsen Mohammadi

Abstract:

In this research, 18Ni-300 maraging steel powder particles are investigated by studying particle size distribution along with their morphology and grain structure. The powder analysis shows mostly spherical morphologies with cellular structures. A laser-based additive manufacturing process, selective laser melting (SLM) is used to produce samples for further investigation of mechanical properties and microstructure. Several uniaxial tensile tests are performed on the as-built parts to evaluate the mechanical properties. The macroscopic properties, as well as microscopic studies, are then investigated on the printed parts. Hardness measurements, as well as porosity levels, are measured for each sample and are correlated with microstructures through electron microscopy techniques such as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The grain structure is studied for the as-printed specimens and compared to the powder particle microstructure. The cellular structure of the printed samples is observed to have dendritic forms with dendrite width dimensions similar to the powder particle cells. The process parameter is changed, and the study is performed for different powder layer thickness, and the resultant mechanical properties and grain structure are shown to be similar. A phase study is conducted both on the powder and the printed samples using X-Ray Diffraction (XRD) techniques, and the austenite phase is observed to at first decrease due to the manufacturing process and again during the uniaxial tensile deformation. The martensitic structure is formed in the first stage based on the heating cycles of the manufacturing process and the remaining austenite is shown to be transformed to martensite due to different deformation mechanisms.

Keywords: additive manufacturing, maraging steel, mechanical properties, microstructure

Procedia PDF Downloads 152
1922 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition

Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla

Abstract:

This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.

Keywords: characterization, DLC, mechanical properties, pulsed laser deposition

Procedia PDF Downloads 146
1921 3D Linear and Cyclic Homo-Peptide Crystals Forged by Supramolecular Swelling Self-Assembly

Authors: Wenliang Song, Yu Zhang, Hua Jin, Il Kim

Abstract:

The self-assembly of the polypeptide (PP) into well-defined structures at different length scales is both biomimetic relevant and fundamentally interesting. Although there are various reports of nanostructures fabricated by the self-assembly of various PPs, directed self-assembly of PP into three-dimensional (3D) hierarchical structure has proven to be difficult, despite their importance for biological applications. Herein, an efficient method has been developed through living polymerization of phenylalanine N-Carboxy anhydride (NCA) towards the linear and cyclic polyphenylalanine, and the new invented swelling methodology can form diverse hierarchical polypeptide crystals. The solvent-dependent self-assembly behaviors of these homopolymers were characterized by high-resolution imaging tools such as atomic force microscopy, transmission electron microscopy, scanning electron microscope. The linear and cyclic polypeptide formed 3D nano hierarchical shapes, such as a sphere, cubic, stratiform and hexagonal star in different solvents. Notably, a crystalline packing model was proposed to explain the formation of 3D nanostructures based on the various diffraction patterns, looking forward to give an insight for their dissimilar shape inflection during the self-assembly process.

Keywords: self-assembly, polypeptide, bio-polymer, crystalline polymer

Procedia PDF Downloads 234
1920 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel

Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma

Abstract:

The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.

Keywords: atomic force microscopy (AFM), nanochannel, specific down force energy (SDFE), Y shape, burr, silicon

Procedia PDF Downloads 400
1919 Studies on Physico-Chemical Properties of Indium Sulfide Films Deposited under Different Deposition Conditions by Chemical Bath Deposition

Authors: S. B. Bansode, V. G. Wagh, R. S. Kapadnis, S. S. Kale, M. Pathan Habib

Abstract:

Indium sulfide films have been deposited using chemical bath deposition onto glass and indium tin oxide coated glass substrates. The influences of different deposition parameters viz. substrate and pH have been studied. The films were characterized by different techniques with respect to their crystal structure, surface morphology and compositional property by means of X-ray diffraction, scanning electron microscopy, Energy dispersive spectroscopy and optical absorption. X-ray diffraction studies revealed that amorphous nature of the films. The scanning electron microscopy of as deposited indium sulfide film on ITO coated glass substrate shows random orientation of grains where as those on glass substrates show dumbbell shape. Optical absorption study revealed that band gap varies from 2.29 to 2.79 eV for the deposited film.

Keywords: chemical bath deposition, optical properties, structural property, Indium sulfide

Procedia PDF Downloads 470
1918 Synthesis, Characterization, Optical and Photophysical Properties of Pyrene-Labeled Ruthenium(Ii) Trisbipyridine Complex Cored Dendrimers

Authors: Mireille Vonlanthen, Pasquale Porcu, Ernesto Rivera

Abstract:

Dendritic macromolecules are presenting unique physical and chemical properties. One of them is the faculty of transferring energy from a donor moiety introduced at the periphery to an acceptor moiety at the core, mimicking the antenna effect of the process of photosynthesis. The mechanism of energy transfer is based on the Förster resonance energy exchange and requires some overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor. Since it requires a coupling of transition dipole but no overlap of the physical wavefunctions, the energy transfer by Förster mechanism can occur over quite long distances from 1 to a maximum of 10 nm. However, the efficiency of the transfer depends strongly on distance. The Förster radius is the distance at which 50% of the donor’s emission is deactivated by FRET. In this work, we synthesized and characterized a novel series of dendrimers bearing pyrene moieties at the periphery and a Ru (II) complex at the core. The optical and photophysical properties of these compounds were studied by absorption and fluorescence spectroscopy. Pyrene is a well-studied chromophore that has the particularity to present monomer as well as excimer fluorescence emission. The coordination compounds of Ru (II) are red emitters with low quantum yield and long excited lifetime. We observed an efficient singulet to singulet energy transfer in such constructs. Moreover, it is known that the energy of the MLCT emitting state of Ru (II) can be tuned to become almost isoenegetic with respect to the triplet state of pyrene, leading to an extended phosphorescence lifetime. Using dendrimers bearing pyrene moieties as ligands for Ru (II), we could combine the antenna effect of dendrimers as well as its protection effect to the quenching by dioxygen with lifetime increase due to triplet-triplet equilibrium.

Keywords: dendritic molecules, energy transfer, pyrene, ru-trisbipyridine complex

Procedia PDF Downloads 273
1917 Development of a Humanized Anti-CEA Antibody for the Near Infrared Optical Imaging of Cancer

Authors: Paul J Yazaki, Michael Bouvet, John Shively

Abstract:

Surgery for solid gastrointestinal (GI) cancers such as pancreatic, colorectal, and gastric adenocarcinoma remains the mainstay of curative therapy. Complete resection of the primary tumor with negative margins (R0 resection), its draining lymph nodes, and distant metastases offers the optimal surgical benefit. Real-time fluorescence guided surgery (FGS) promises to improve GI cancer outcomes and is rapidly advancing with tumor-specific antibody conjugated fluorophores that can be imaged using near infrared (NIR) technology. Carcinoembryonic Antigen (CEA) is a non-internalizing tumor antigen validated as a surface tumor marker expressed in >95% of colorectal, 80% of gastric, and 60% of pancreatic adenocarcinomas. Our humanized anti-CEA hT84.66-M5A (M5A) monoclonal antibody (mAb)was conjugated with the NHS-IRDye800CW fluorophore and shown it can rapidly and effectively NIRoptical imageorthotopically implanted human colon and pancreatic cancer in mouse models. A limitation observed is that these NIR-800 dye conjugated mAbs have a rapid clearance from the blood, leading to a narrow timeframe for FGS and requiring high doses for effective optical imaging. We developed a novel antibody-fluorophore conjugate by incorporating a PEGylated sidearm linker to shield or mask the IR800 dye’s hydrophobicity which effectively extended the agent’s blood circulation half-life leading to increased tumor sensitivity and lowered normal hepatic uptake. We hypothesized that our unique anti-CEA linked to the fluorophore, IR800 by PEGylated sidewinder, M5A-SW-IR800 will become the next generation optical imaging agent, safe, effective, and widely applicable for intraoperative image guided surgery in CEA expressing GI cancers.

Keywords: optical imaging, anti-CEA, cancer, fluorescence-guided surgery

Procedia PDF Downloads 144
1916 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions

Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka

Abstract:

Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.

Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68

Procedia PDF Downloads 130
1915 Synthesis and Characterization of Fluorine-Free, Hydrophobic and Highly Transparent Coatings

Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne

Abstract:

This research work concerns the synthesis of hydrophobic and self-cleaning coatings as an alternative to fluorine-based coatings used on glass. The developed, highly transparent coatings are produced by a chemical route (sol-gel method) using two silica-based precursors, hexamethyldisilazane and tetraethoxysilane (HMDS/TEOS). The addition of zinc oxide nanoparticles (ZnO NPs) within the gel provides a photocatalytic property to the final coating. The prepared gels were deposited on glass slides using different methods. The properties of the coatings were characterized by optical microscopy, scanning electron microscopy, UV-VIS-NIR spectrophotometer, and water contact angle method. The results show that the obtained coatings are homogeneous and have a hydrophobic character. In particular, after thermal treatment, the HMDS/TEOS@ZnO charged gel deposited on glass constitutes a coating capable of degrading methylene blue (MB) under UV irradiation. Optical transmission reaches more than 90% in most of the visible light spectrum. Synthetized coatings have also demonstrated their mechanical durability and self-cleaning ability.

Keywords: coating, durability, hydrophobicity, sol-gel, self-cleaning, transparence

Procedia PDF Downloads 156
1914 Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy

Authors: Fuad Abdullah Alatawi

Abstract:

Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans.

Keywords: ficus microcarpa, iron oxide, antibacterial activity, cytotoxicity

Procedia PDF Downloads 111
1913 Ceiba Speciosa Nanocellulose Obtained from a Sustainable Method as a Potential Reinforcement for Polymeric Composites

Authors: Heloise Sasso Teixeira, Talita Szlapak Franco, Thais Helena Sydenstricker Flores-Sahagun, Milton Vazquez Lepe, Graciela Bolzon Muñiz

Abstract:

Due to the need to reduce the consumption of materials produced from non-renewable sources, the search for new raw materials of natural origin is growing. In this regard, lignocellulosic fibers have great potential. Ceiba sp fibers are found in the fruit of the tree of the same name and have characteristics that differ from other natural fibers. Ceiba fibers are very light, have a high cellulose content, and are hydrophobic due to the presence of waxes on their surface. In this study, Ceiba fiber was used as raw material to obtain cellulose nanofibers (CNF), with the potential to be used in polymeric matrices. Due to the characteristics of this fiber, no chemical pretreatment was necessary before the mechanical defibrilation process in a colloidal mill, obtaining sustainable nanocellulose. The CNFs were characterized by Fourier infrared (FTIR), differential scanning calorimetry (DSC), analysis of the rmogravimetic (TGA), scanning electron microscopy (SEM), transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS).

Keywords: cellulose nanofibers, nanocellulose, fibers, Brazilian fIbers, lignocellulosic, characterization

Procedia PDF Downloads 172
1912 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy

Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll

Abstract:

ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.

Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy

Procedia PDF Downloads 223
1911 Preparation of Superparamagnetic Functionalized Magnetite Nanoparticles for Magnetically Separable Catalysis

Authors: Priya Arora, Jaspreet K. Rajput

Abstract:

Superparamagnetism has accelerated the research and use of more economical and ecological magnetically separable catalysts due to their more efficient isolation by response to an applied magnetic field. Magnetite nanomaterials coated by SiO2 shell have received a great deal of focus in the last decades as it provides high stability and also easy further surface functionalization depending upon the application. In this protocol, Fe3O4 magnetic nanoparticles have been synthesized by co-precipitation combined with sonication method. Further, Fe3O4 superparamagnetic nanoparticles have been functionalized by various moieties to serve as efficient catalysts for multicomponent reactions. The functionalized nanoparticles were characterized by techniques like Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area analysis. The as prepared nanocatalysts can be reused for several times without any significant loss in its activity. The utilization of magnetic nanoparticles as catalysts for this reaction is one approach i.e. green, inexpensive, facile and widely applicable.

Keywords: functionalized, magnetite, multicomponent reactions, superparamagnetic

Procedia PDF Downloads 334
1910 Assessment of Sperm Aneuploidy Using Advanced Sperm Fish Technique in Infertile Patients

Authors: Archana. S, Usha Rani. G, Anand Balakrishnan, Sanjana.R, Solomon F, Vijayalakshmi. J

Abstract:

Background: There is evidence that male factors contribute to the infertility of up to 50% of couples, who are evaluated and treated for infertility using advanced assisted reproductive technologies. Genetic abnormalities, including sperm chromosome aneuploidy as well as structural aberrations, are one of the major causes of male infertility. Recent advances in technology expedite the evaluation of sperm aneuploidy. The purpose of the study was to de-termine the prevalence of sperm aneuploidy in infertile males and the degree of association between DNA fragmentation and sperm aneuploidy. Methods: In this study, 75 infertile men were included, and they were divided into four abnormal groups (Oligospermia, Terato-spermia, Asthenospermia and Oligoasthenoteratospermia (OAT)). Men with children who were normozoospermia served as the control group. The Fluorescence in situ hybridization (FISH) method was used to test for sperm aneuploidy, and the Sperm Chromatin Dispersion Assay (SCDA) was used to measure the fragmentation of sperm DNA. Spearman's correla-tion coefficient was used to evaluate the relationship between sperm aneuploidy and sperm DNA fragmentation along with age. P < 0.05 was regarded as significant. Results: 75 partic-ipants' ages varied from 28 to 48 years old (35.5±5.1). The percentage of spermatozoa bear-ing X and Y was determined to be statistically significant (p-value < 0.05) and was found to be 48.92% and 51.18% of CEP X X 1 – nucish (CEP XX 1) [100] and CEP Y X 1 – nucish (CEP Y X 1) [100]. When compared to the rate of DNA fragmentation, it was discovered that infertile males had a greater frequency of sperm aneuploidy. Asthenospermia and OAT groups in sex chromosomal aneuploidy were significantly correlated (p<0.05). Conclusion: Sperm FISH and SCDA assay results showed increased sperm aneuploidy frequency, and DNA fragmentation index in infertile men compared with fertile men. There is a significant relationship observed between sperm aneuploidy and DNA fragmentation in OAT patients. When evaluating male variables and idiopathic infertility, the sperm FISH screening method can be used as a valuable diagnostic tool.

Keywords: ale infertility, dfi (dna fragmentation assay) (scd-sperm chromatin dispersion).art (artificial reproductive technology), trisomy, aneuploidy, fish (fluorescence in-situ hybridization), oat (oligoasthoteratospermia)

Procedia PDF Downloads 47
1909 The Digital Microscopy in Organ Transplantation: Ergonomics of the Tele-Pathological Evaluation of Renal, Liver, and Pancreatic Grafts

Authors: Constantinos S. Mammas, Andreas Lazaris, Adamantia S. Mamma-Graham, Georgia Kostopanagiotou, Chryssa Lemonidou, John Mantas, Eustratios Patsouris

Abstract:

The process to build a better safety culture, methods of error analysis, and preventive measures, starts with an understanding of the effects when human factors engineering refer to remote microscopic diagnosis in surgery and specially in organ transplantation for the evaluation of the grafts. Α high percentage of solid organs arrive at the recipient hospitals and are considered as injured or improper for transplantation in the UK. Digital microscopy adds information on a microscopic level about the grafts (G) in Organ Transplant (OT), and may lead to a change in their management. Such a method will reduce the possibility that a diseased G will arrive at the recipient hospital for implantation. Aim: The aim of this study is to analyze the ergonomics of digital microscopy (DM) based on virtual slides, on telemedicine systems (TS) for tele-pathological evaluation (TPE) of the grafts (G) in organ transplantation (OT). Material and Methods: By experimental simulation, the ergonomics of DM for microscopic TPE of renal graft (RG), liver graft (LG) and pancreatic graft (PG) tissues is analyzed. In fact, this corresponded to the ergonomics of digital microscopy for TPE in OT by applying virtual slide (VS) system for graft tissue image capture, for remote diagnoses of possible microscopic inflammatory and/or neoplastic lesions. Experimentation included the development of an OTE-TS similar experimental telemedicine system (Exp.-TS) for simulating the integrated VS based microscopic TPE of RG, LG and PG Simulation of DM on TS based TPE performed by 2 specialists on a total of 238 human renal graft (RG), 172 liver graft (LG) and 108 pancreatic graft (PG) tissues digital microscopic images for inflammatory and neoplastic lesions on four electronic spaces of the four used TS. Results: Statistical analysis of specialist‘s answers about the ability to accurately diagnose the diseased RG, LG and PG tissues on the electronic space among four TS (A,B,C,D) showed that DM on TS for TPE in OT is elaborated perfectly on the ES of a desktop, followed by the ES of the applied Exp.-TS. Tablet and mobile-phone ES seem significantly risky for the application of DM in OT (p<.001). Conclusion: To make the largest reduction in errors and adverse events referring to the quality of the grafts, it will take application of human factors engineering to procurement, design, audit, and awareness-raising activities. Consequently, it will take an investment in new training, people, and other changes to management activities for DM in OT. The simulating VS based TPE with DM of RG, LG and PG tissues after retrieval, seem feasible and reliable and dependable on the size of the electronic space of the applied TS, for remote prevention of diseased grafts from being retrieved and/or sent to the recipient hospital and for post-grafting and pre-transplant planning.

Keywords: digital microscopy, organ transplantation, tele-pathology, virtual slides

Procedia PDF Downloads 276
1908 Oligoalkylamine Modified Poly(Amidoamine) Generation 4.5 Dendrimer for the Delivery of Small Interfering RNA

Authors: Endris Yibru Hanurry, Wei-Hsin Hsu, Hsieh-Chih Tsai

Abstract:

In recent years, the discovery of small interfering RNAs (siRNAs) has got great attention for the treatment of cancer and other diseases. However, the therapeutic efficacy of siRNAs has been faced with many drawbacks because of short half-life in blood circulation, poor membrane penetration, weak endosomal escape and inadequate release into the cytosol. To overcome these drawbacks, we designed a non-viral vector by conjugating polyamidoamine generation 4.5 dendrimer (PDG4.5) with diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA) followed by binding with siRNA to form polyplexes through electrostatic interaction. The result of 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy, heteronuclear single–quantum correlation spectroscopy, and Fourier transform infrared spectroscopy confirmed the successful conjugation of DETA and TEPA with PDG4.5. Then, the size, surface charge, morphology, binding ability, stability, release assay, toxicity and cellular internalization were analyzed to explore the physicochemical and biological properties of PDG4.5-DETA and PDG4.5-TEPA polyplexes at specific N/P ratios. The polyplexes (N/P = 8) exhibited spherical nanosized (125 and 85 nm) particles with optimum surface charge (13 and 26 mV), showed strong siRNA binding ability, protected the siRNA against enzyme digestion and accepted biocompatibility to the HeLa cells. Qualitatively, the fluorescence microscopy image revealed the delocalization (Manders’ coefficient 0.63 and 0.53 for PDG4.5-DETA and PDG4.5-TEPA, respectively) of polyplexes and the translocation of the siRNA throughout the cytosol to show a decent cellular internalization and intracellular biodistribution of polyplexes in HeLa cells. Quantitatively, the flow cytometry result indicated that a significant (P < 0.05) amount of siRNA was internalized by cells treated with PDG4.5-DETA (68.5%) and PDG4.5-TEPA (73%) polyplexes. Generally, PDG4.5-DETA and PDG4.5-TEPA were ideal nanocarriers of siRNA in vitro and might be used as promising candidates for in vivo study and future pharmaceutical applications.

Keywords: non-viral carrier, oligoalkylamine, poly(amidoamine) dendrimer, polyplexes, siRNA

Procedia PDF Downloads 124
1907 Morphological Characteristic of Hybrid Thin Films

Authors: Azyuni Aziz, Syed A. Malik, Shahrul Kadri Ayop, Fatin Hana Naning

Abstract:

Currently, organic-inorganic hybrid thin films have attracted researchers to explore them, where these thin films can give a lot of benefits. Hybrid thin films are thin films that consist of inorganic and organic materials. Inorganic and organic materials give high efficiency and low manufacturing cost in some applications such as solar cells application, furthermore, organic materials are environment-friendly. In this study, poly (3-hexylthiophene) was choosing as organic material which combined with inorganic nanoparticles, Cadmium Sulfide (CdS) quantum dots. Samples were prepared using new technique, Angle Lifting Deposition (ALD) at different weight percentage. All prepared samples were then characterized by Field Emission Scanning Electron Microscopy (FESEM) with Energy-dispersive X-ray spectroscopy (EDX) and Atomic Force Microscopy (AFM) to study surface of samples and determine their surface roughness. Results show that these inorganic nanoparticles have affected the surface of samples and surface roughness of samples increased due to increasing of weight percentage of CdS in the thin films samples.

Keywords: AFM, CdS, FESEM-EDX, hybrid thin films, P3HT

Procedia PDF Downloads 497
1906 Corrosion Behaviour of Hypereutectic Al-Si Automotive Alloy in Different pH Environment

Authors: M. Al Nur, M. S. Kaiser

Abstract:

Corrosion behaviour of hypereutectic Al-19Si automotive alloy in different pH=1, 3, 5, 7, 9, 11, and 13 environments was carried out using conventional gravimetric measurements and was complemented by resistivity, optical micrograph, scanning electron microscopy (SEM) and X-ray analyzer (EDX) investigations. Gravimetric analysis confirmed that the highest corrosion rate is shown at pH 13 followed by pH 1. Minimum corrosion occurs in the pH range of 3.0 to 11 due to establishment of passive layer on the surface. The highest corrosion rate at pH 13 is due to the presence of sodium hydroxide in the solution which dissolves the surface oxide film at a steady rate. At pH 1, it can be attributed that the presence of aggressive chloride ions serves to pick up the damage of the passive films at localized regions. With varying exposure periods by both, the environment complies with the normal corrosion rate profile that is an initial steep rise followed by a nearly constant value of corrosion rate. Resistivity increases in case of pH 1 solution for the higher pit formation and decreases at pH 13 due to formation of thin film. The SEM image of corroded samples immersed in pH 1 solution clearly shows pores on the surface and in pH 13 solution, and the corrosion layer seems more compact and homogenous and not porous.

Keywords: Al-Si alloy, corrosion, pH, resistivity, scanning electron microscopy (SEM)

Procedia PDF Downloads 161
1905 Non-Equilibrium Synthesis and Structural Characterization of Magnetic FeCoPt Nanocrystalline Alloys

Authors: O. Crisan, A. D. Crisan, I. Mercioniu, R. Nicula, F. Vasiliu

Abstract:

FePt-based systems are currently under scrutiny for their possible use as future materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that are capable to operate at higher temperatures than the classic Nd-Fe-B magnets. Within this work, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. Extended transmission electron microscopy analysis shows the high degree of L10 ordering. X-ray diffraction is used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. Co-existence of hard CoFePt and CoPt L10 phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains of around 5 to 20 nm in size. Magnetic measurements show increased remanence close to the parent L10 FePt phase and not so high coercivity due to the significant presence of the soft magnetic constituent phase. A Curie temperature of about 820K is reported for the FeCoPt alloy.

Keywords: melt-spinning, FeCoPt alloys, high-resolution electron microscopy (HREM), ordered L10 structure

Procedia PDF Downloads 313
1904 Charge Transport in Biological Molecules

Authors: E. L. Albuquerque, U. L. Fulco, G. S. Ourique

Abstract:

The focus of this work is on the numerical investigation of the charge transport properties of the de novo-designed alpha3 polypeptide, as well as in its variants, all of them probed by gene engineering. The theoretical framework makes use of a tight-binding model Hamiltonian, together with ab-initio calculations within quantum chemistry simulation. The alpha3 polypeptide is a 21-residue with three repeats of the seven-residue amino acid sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala, forming an alpha–helical bundle structure. Its variants are obtained by Ala→Gln substitution at the e (5th) and g (7th) position, respectively, of the alpha3 polypeptide amino acid sequence. Using transmission electron microscopy and atomic force microscopy, it was observed that the alpha3 polypeptide and one of its variant do have the ability to form fibrous assemblies, while the other does not. Our main aim is to investigate whether or not the biased alpha3 polypeptide and its variants can be also identified by quantum charge transport measurements through current-voltage (IxV) curves as a pattern to characterize their fibrous assemblies. It was observed that each peptide has a characteristic current pattern, which may be distinguished by charge transport measurements, suggesting that it might be a useful tool for the development of biosensors.

Keywords: charge transport properties, electronic transmittance, current-voltage characteristics, biological sensor

Procedia PDF Downloads 662
1903 Preparation of Metal Containing Epoxy Polymer and Investigation of Their Properties as Fluorescent Probe

Authors: Ertuğ Yıldırım, Dile Kara, Salih Zeki Yıldız

Abstract:

Metal containing polymers (MCPs) are macro molecules usually containing metal-ligand coordination units and are a multidisciplinary research field mainly based at the interface between coordination chemistry and polymer science. The progress of this area has also been reinforced by the growth of several other closely related disciplines including macro molecular engineering, crystal engineering, organic synthesis, supra molecular chemistry and colloidal and material science. Schiff base ligands are very effective in constructing supra molecular architectures such as coordination polymers, double helical and triple helical complexes. In addition, Schiff base derivatives incorporating a fluorescent moiety are appealing tools for optical sensing of metal ions. MCPs are well-known systems in which the combinations of local parameters are possible by means of fluoro metric techniques. Generally, without incorporation of the fluorescent groups with polymers is unspecific, and it is not useful to analyze their fluorescent properties. Therefore, it is necessary to prepare a new type epoxy polymers with fluorescent groups in terms of metal sensing prop and the other photo chemical applications. In the present study metal containing polymers were prepared via poly functional monomeric Schiff base metal chelate complexes in the presence of dis functional monomers such as diglycidyl ether Bisphenol A (DGEBA). The synthesized complexes and polymers were characterized by FTIR, UV-VIS and mass spectroscopies. The preparations of epoxy polymers have been carried out at 185 °C. The prepared composites having sharp and narrow excitation/emission properties are expected to be applicable in various systems such as heat-resistant polymers and photo voltaic devices. The prepared composite is also ideal for various applications, easily prepared, safe, and maintain good fluorescence properties.

Keywords: Schiff base ligands, crystal engineering, fluorescence properties, Metal Containing Polymers (MCPs)

Procedia PDF Downloads 341
1902 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 341
1901 Semi-Automatic Segmentation of Mitochondria on Transmission Electron Microscopy Images Using Live-Wire and Surface Dragging Methods

Authors: Mahdieh Farzin Asanjan, Erkan Unal Mumcuoglu

Abstract:

Mitochondria are cytoplasmic organelles of the cell, which have a significant role in the variety of cellular metabolic functions. Mitochondria act as the power plants of the cell and are surrounded by two membranes. Significant morphological alterations are often due to changes in mitochondrial functions. A powerful technique in order to study the three-dimensional (3D) structure of mitochondria and its alterations in disease states is Electron microscope tomography. Detection of mitochondria in electron microscopy images due to the presence of various subcellular structures and imaging artifacts is a challenging problem. Another challenge is that each image typically contains more than one mitochondrion. Hand segmentation of mitochondria is tedious and time-consuming and also special knowledge about the mitochondria is needed. Fully automatic segmentation methods lead to over-segmentation and mitochondria are not segmented properly. Therefore, semi-automatic segmentation methods with minimum manual effort are required to edit the results of fully automatic segmentation methods. Here two editing tools were implemented by applying spline surface dragging and interactive live-wire segmentation tools. These editing tools were applied separately to the results of fully automatic segmentation. 3D extension of these tools was also studied and tested. Dice coefficients of 2D and 3D for surface dragging using splines were 0.93 and 0.92. This metric for 2D and 3D for live-wire method were 0.94 and 0.91 respectively. The root mean square symmetric surface distance values of 2D and 3D for surface dragging was measured as 0.69, 0.93. The same metrics for live-wire tool were 0.60 and 2.11. Comparing the results of these editing tools with the results of automatic segmentation method, it shows that these editing tools, led to better results and these results were more similar to ground truth image but the required time was higher than hand-segmentation time

Keywords: medical image segmentation, semi-automatic methods, transmission electron microscopy, surface dragging using splines, live-wire

Procedia PDF Downloads 163
1900 Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites

Authors: Atilla Evcin, Bahri Ersoy, Süleyman Akpınar, I. Sinan Atlı

Abstract:

Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.

Keywords: electrospinning, characterization, composites, nanofiber

Procedia PDF Downloads 388
1899 Enhancing Sensitivity in Multifrequency Atomic Force Microscopy

Authors: Babak Eslami

Abstract:

Bimodal and trimodal AFM have provided additional capabilities to scanning probe microscopy characterization techniques. These capabilities have specifically enhanced material characterization of surfaces and provided subsurface imaging in addition to conventional topography images. Bimodal and trimodal AFM, being different techniques of multifrequency AFM, are based on exciting the cantilever’s fundamental eigenmode with second and third eigenmodes simultaneously. Although higher eigenmodes provide a higher number of observables that can provide additional information about the sample, they cause experimental challenges. In this work, different experimental approaches for enhancing AFM images in multifrequency for different characterization goals are provided. The trade-offs between eigenmodes including the advantages and disadvantages of using each mode for different samples (ranging from stiff to soft matter) in both air and liquid environments are provided. Additionally, the advantage of performing conventional single tapping mode AFM with higher eigenmodes of the cantilever in order to reduce sample indentation is discussed. These analyses are performed on widely used polymers such as polystyrene, polymethyl methacrylate and air nanobubbles on different surfaces in both air and liquid.

Keywords: multifrequency, sensitivity, soft matter, polymer

Procedia PDF Downloads 130
1898 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga

Abstract:

Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.

Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC

Procedia PDF Downloads 253
1897 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries

Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos

Abstract:

Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.

Keywords: ceramics, energy storage, electrochemical measurements, transmission electron microscope

Procedia PDF Downloads 249