Search results for: floating architectures
205 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.Keywords: binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform
Procedia PDF Downloads 317204 Rationally Designed Dual PARP-HDAC Inhibitor Elicits Striking Anti-leukemic Effects
Authors: Amandeep Thakur, Yi-Hsuan Chu, Chun-Hsu Pan, Kunal Nepali
Abstract:
The transfer of ADP-ribose residues onto target substrates from nicotinamide adenine dinucleotide (NAD) (PARylation) is catalyzed by Poly (ADP-ribose) polymerases (PARPs). Amongst the PARP family members, the DNA damage response in cancer is majorly regulated by PARP1 and PARP2. The blockade of DNA repair by PARP inhibitors leads to the progression of DNA single-strand breaks (induced by some triggering factors) to double-strand breaks. Notably, PARP inhibitors are remarkably effective in cancers with defective homologous recombination repair (HRR). In particular, cancer cells with BRCA mutations are responsive to therapy with PARP inhibitors. The aforementioned requirement for PARP inhibitors to be effective confers a narrow activity spectrum to PARP inhibitors, which hinders their clinical applicability. Thus, the quest to expand the application horizons of PARP inhibitors beyond BRCA mutations is the need of the hour. Literature precedents reveal that HDAC inhibition induces BRCAness in cancer cells and can broaden the therapeutic scope of PARP inhibitors. Driven by such disclosures, dual inhibitors targeting both PARP and HDAC enzymes were designed by our research group to extend the efficacy of PARP inhibitors beyond BRCA-mutated cancers to cancers with induced BRCAness. The design strategy involved the installation of Veliparib, an investigational PARP inhibitor, as a surface recognition part in the HDAC inhibitor pharmacophore model. The chemical architecture of veliparib was deemed appropriate as a starting point for the generation of dual inhibitors by virtue of its size and structural flexibility. A validatory docking study was conducted at the outset to predict the binding mode of the designed dual modulatory chemical architectures. Subsequently, the designed chemical architectures were synthesized via a multistep synthetic route and evaluated for antitumor efficacy. Delightfully, one compound manifested impressive anti-leukemic effects (HL-60 cell lines) mediated via dual inhibition of PARP and class I HDACs. The outcome of the western blot analysis revealed that the compound could downregulate the expression levels of PARP1 and PARP2 and the HDAC isoforms (HDAC1, 2, and 3). Also, the dual PARP-HDAC inhibitor upregulated the protein expression of the acetyl histone H3, confirming its abrogation potential for class I HDACs. In addition, the dual modulator could arrest the cell cycle at the G0/G1 phase and induce autophagy. Further, polymer-based nanoformulation of the dual inhibitor was furnished to afford targeted delivery of the dual inhibitor at the cancer site. Transmission electron microscopy (TEM) results indicate that the nanoparticles were monodispersed and spherical. Moreover, the polymeric nanoformulation exhibited an appropriate particle size. Delightfully, pH-sensitive behavior was manifested by the polymeric nanoformulation that led to selective antitumor effects towards the HL-60 cell lines. In light of the magnificent anti-leukemic profile of the identified dual PARP-HDAC inhibitor, in-vivo studies (pharmacokinetics and pharmacodynamics) are currently being conducted. Notably, the optimistic findings of the aforementioned study have spurred our research group to initiate several medicinal chemistry campaigns to create bifunctional small molecule inhibitors addressing PARP as the primary target.Keywords: PARP inhibitors, HDAC inhibitors, BRCA mutations, leukemia
Procedia PDF Downloads 32203 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 107202 Climate Change: Affecting Basic Human Rights in Bangladesh
Authors: Shekh Shadi Rahaman
Abstract:
In Bangladesh, basic human rights more specifically right to food and right to shelter are being adversely affected by the consequences of climate change. Over the last two decades, a considerable number of environmental studies revealed that basic human rights, more specifically, the right to food and right to a shelter are going to be seriously affected by climate change. Agriculture, forestry, and fisheries and livestock, which are most sensitive to climate change, are key sources interconnected with food security and the security of shelter. Consequences of climate change affecting these key sources, and with the change of time, climate change is turning into a gigantic challenge towards ensuring basic human rights in Bangladesh. This study was carried out by employing a general review of literature on climate change, focusing on effects of climate change on basic two major human rights in Bangladesh. Upon analysis of existing researches, it is found very few researches focused on correlating climate change and right to food and right to shelter. This study shows how the consequences of climate change affects food production and abode of people of Bangladesh. This study recommends that tree plantation, floating agricultural practice, co-operation with international organization, developing environment friendly institutions, increased use of renewable energy, proper management of wetlands and forests, shelter for climate induced migrated people, encouraging research and public awareness are key issues to be followed for combating climate change and protecting basic human right to food and shelter.Keywords: achievements, agriculture and forestry, fisheries and livestock, renewable energy
Procedia PDF Downloads 141201 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof
Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba
Abstract:
In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof
Procedia PDF Downloads 151200 Hydrogeophysical Investigations of Groundwater Resources and Demarcation of Saltwater-Freshwater Interface in Kilwa Kisiwani Island, Se Tanzania
Authors: Simon R. Melchioly, Ibrahimu C. Mjemah, Isaac M. Marobhe
Abstract:
The main objective of this research was to identify new potential sources of groundwater resources using geophysical methods and also to demarcate the saltwater - freshwater interface. Kilwa Kisiwani Island geologically is covered mostly by Quaternary alluvial sediments, sand, and gravel. The geophysical techniques employed during the research include Vertical Electrical Sounding (VES), Earth Resistivity Tomography (ERT), and Transient Electromagnetics (TEM). Two-dimensional interpolated geophysical results show that there exist freshwater lenses formations that are potential aquifers on the Island with resistivity values ranging from 11.68 Ωm to 46.71 Ωm. These freshwater lenses are underlain by formation with brackish water in which the resistivity values are varying between 3.89 Ωm and 1.6 Ωm. Saltwater with resistivity less than 1 Ωm is found at the bottom being overlaid by brackish saturated formation. VES resistivity results show that 89% (16 out of 18) of the VES sites are potential for groundwater resources drilling while TEM results indicate that 75% (12 out of 16) of TEM sites are potential for groundwater borehole drilling. The recommended drilling depths for potential sites in Kilwa Kisiwani Island show that the maximum depth is 25 m and the minimum being 10 m below ground surface. The aquifer structure in Kilwa Kisiwani Island is a shallow, unconfined freshwater lenses floating above the seawater and the maximum thickness of the aquifer is 25 m for few selected VES and TEM sites while the minimum thickness being 10 m.Keywords: groundwater, hydrogeophysical, Kilwa Kisiwani, freshwater, saltwater, resistivity
Procedia PDF Downloads 204199 Potential of Macroalgae Ulva lactuca for Municipal Wastewater Treatment and Fruitfly Food
Authors: Shuang Qiu, Lingfeng Wang, Zhipeng Chen, Shijian Ge
Abstract:
Macroalgae are considered a promising approach for wastewater treatment as well as an alternative animal feed in addition to a biofuel feedstock. Their large size and/or tendency to grow as dense floating mats or substrate-attached turfs lead to lower separation and drying costs than microalgae. In this study, the macroalgae species Ulva lactuca (U. lactuca) were used to investigate their capacity for treating municipal wastewaters, and the feasibility of using the harvested biomass as an alternative food source for the fruitfly Drosophila melanogaster, an animal model for biological research. Results suggested that U. lactuca could successfully grow on three types of wastewaters studied with biomass productivities of 8.12-64.3 g DW (dry weight)/(m²∙d). The secondary wastewater (SW) was demonstrated as the most effective wastewater medium for U. lactuca growth. However, both high nitrogen (92.5-98.9%) and phosphorus (64.5-88.6%) removal efficiencies were observed in all wastewaters, particularly in primary wastewater (PW) and SW, however, in central wastewater (CW), the highest removal rates were obtained (N 24.7 ± 0.97 and P 0.69 ± 0.01 mg/(g DW·d)). Additionally, the inclusion of 20% washed U. lactuca with 80% standard fruitfly food (w/w) resulted in a longer lifespan and more stable body weights in flies. On the other hand, similar results were not obtained for the food treatment with the addition of 20 % unwashed U. lactuca. This study suggests a promising method for the macroalgae-based treatment of municipal wastewater and the biomass for animal feed.Keywords: animal feed, flies, macroalgae, nutrient recovery, Ulva lactuca, wastewater
Procedia PDF Downloads 130198 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures
Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara
Abstract:
The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.Keywords: IoT, fog computing, task offloading, efficient crow search algorithm
Procedia PDF Downloads 61197 Fuzzy Neuro Approach for Integrated Water Management System
Authors: Stuti Modi, Aditi Kambli
Abstract:
This paper addresses the need for intelligent water management and distribution system in smart cities to ensure optimal consumption and distribution of water for drinking and sanitation purposes. Water being a limited resource in cities require an effective system for collection, storage and distribution. In this paper, applications of two mostly widely used particular types of data-driven models, namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the water resources management field are considered. The objective of this paper is to review the principles of various types and architectures of neural network and fuzzy adaptive systems and their applications to integrated water resources management. Final goal of the review is to expose and formulate progressive direction of their applicability and further research of the AI-related and data-driven techniques application and to demonstrate applicability of the neural networks, fuzzy systems and other machine learning techniques in the practical issues of the regional water management. Apart from this the paper will deal with water storage, using ANN to find optimum reservoir level and predicting peak daily demands.Keywords: artificial neural networks, fuzzy systems, peak daily demand prediction, water management and distribution
Procedia PDF Downloads 191196 Orbiting Intelligence: A Comprehensive Survey of AI Applications and Advancements in Space Exploration
Authors: Somoshree Datta, Chithra A. V., Sandeep Nithyanandan, Smitha K. K.
Abstract:
Space exploration has always been at the forefront of technological innovation, pushing the boundaries of human knowledge and capabilities. In recent years, the integration of Artificial Intelligence (AI) has revolutionized the field, offering unprecedented opportunities to enhance the efficiency, autonomy and intelligence of space missions. This survey paper aims to provide a comprehensive overview of the multifaceted applications of AI in space exploration, exploring the evolution of this synergy and its impact on mission success, scientific discovery, and the future of space endeavors. Indian Space Research Organization (ISRO) has achieved great feats in the recent moon mission (Chandrayaan-3) and sun mission (Aditya L1) by using artificial intelligence to enhance moon navigation as well as help young scientists to study the Sun even before the launch by creating AI-generated image visualizations. Throughout this survey, we will review key advancements, challenges and prospects in the intersection of AI and space exploration. As humanity continues its quest to explore the cosmos, the integration of AI promises to unlock new frontiers, reshape mission architectures, and redefine our understanding of the universe. This survey aims to serve as a comprehensive resource for researchers, engineers and enthusiasts interested in the dynamic and evolving landscape of AI applications in space exploration.Keywords: artificial intelligence, space exploration, space missions, deep learning
Procedia PDF Downloads 38195 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation
Authors: Rizwan Rizwan
Abstract:
This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats
Procedia PDF Downloads 38194 Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application
Authors: Špela Hajduk, Sean P. Berglund, Matejka Podlogar, Goran Dražić, Fatwa F. Abdi, Zorica C. Orel, Menny Shalom
Abstract:
Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS).Keywords: carbon nitride, photoanode, solar water splitting, zinc oxide
Procedia PDF Downloads 198193 Synthesis of Biologically Active Heterocyclic Compounds via C-H Bond Activation
Authors: Neeraj Kumar Mishra, In Su Kim
Abstract:
The isoindoline, indazole and indole heterocycles are ubiquitous structural motif found in heterocyclic compounds as they exhibit biological and medicinal applications. For example, isoindoline motif is present in molecules that act as endothelin-A receptor antagonists and dipeptidyl peptidase inhibitors. Moreover, isoindoline derivatives are very crucial constituents in the field of materials science as attractive candidates for organic light-emitting devices. However, compounds containing the indazole motif are known to exhibit to a variety of biological activities, such as estrogen receptor, HIV protease inhibition and anti-tumor activity. The prevalence of indazoles and indoles has led to the development of many useful methods for their preparation. Thus, isoindoline, indazole and indole heterocycles can be new candidates for the next generation of pharmaceuticals. Therefore, the development of highly efficient strategies for the formation of these heterocyclic architectures is an area of great interest in organic synthesis. The past years, transition-metal-catalyzed C−H activation followed by annulation reaction has been frequently used as a powerful tool to construct various heterocycles. Herein, we describe our recent achievements about the transition-metal-catalyzed tandem cyclization reactions of N-benzyltriflamides, 1,2-disubstituted arylhydrazines, acetanilides, etc. via C−H bond activation to access the corresponding bioactive heterocylic scaffolds.Keywords: biologically active, C-H activation, heterocyclic compounds, transition-metal catalysts
Procedia PDF Downloads 311192 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles
Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado
Abstract:
In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces
Procedia PDF Downloads 390191 AC Electro-Kinetics, Bipolar Current and Concentration-Polarization in a Microchannel-Nafion Membrane System
Authors: Sinwook Park, Gilad Yossifon
Abstract:
The presence of a floating electrode array located within the depletion layer formed due to concentration-polarization (CP) across a microchannel-membrane device, produces not only induced-charge electro-osmosis (ICEO) vortex and but also a bipolar current resulting from faradaic reactions. It has been shown that there exists an optimal SiO2 layer thickness of ~50nm which is sufficient to suppress bipolar currents (at least up to 5V applied voltage) but still enables ICEO vortices that stir the depletion layer, thereby affecting its I-V response. This effect is pronounced beyond the limiting current where the existence of the depletion layer results in increased local electric field due to decreased solution conductivity. This comprehensive study of the interaction of embedded electrodes with the induced CP in microchannel-perm selective medium systems, allows one to choose the thickness of the thin dielectric coating to either enhance the mixing as a means to control the diffuse layer, or suppress it, for example, in the case where electrodes are intended for local measurements of the solution conductivity with minimal invasion. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the CP length. In addition, the use of embedded heaters within the depletion layer generates electro-thermal vortices that in turn also control the CP length.Keywords: AC electrokinetics, microchannel, concentration-polarization, bipolar current
Procedia PDF Downloads 500190 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs
Authors: Amir Ahmad Dehghani, Morteza Nabizadeh
Abstract:
This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam
Procedia PDF Downloads 483189 Numerical Simulation and Experimental Verification of Mechanical Displacements in Piezoelectric Transformer
Authors: F. Boukazouha, G. Poulin-Vittrant, M. Rguiti, M. Lethiecq
Abstract:
Since its invention, by virtue of its remarkable features, the piezoelectric transformer (PT) has drawn the attention of the scientific community. In past years, it has been extensively studied and its performances have been continuously improved. Nowadays, such devices are designed in more and more sophisticated architectures with associated models describing their behavior quite accurately. However, the different studies usually carried out on such devices mainly focus on their electrical characteristics induced by direct piezoelectric effects such as voltage gain, efficiency or supplied power. In this work, we are particularly interested in the characterization of mechanical displacements induced by the inverse piezoelectric effect in a PT in vibration. For this purpose, a detailed three-dimensional finite element analysis is proposed to examine the mechanical behavior of a Rosen-type transformer made of a single bar of soft PZT (P191) and with dimensions 22mm×2.35mm×2.5mm. At the first three modes of vibration, output voltage and mechanical displacements ux, uy and uz along the length, the width and the thickness, respectively, are calculated. The amplitude of displacements varies in a range from a few nanometers to a few hundred nanometers. The validity of the simulations was successfully confirmed by experiments carried out on a prototype using a laser interferometer. A good match was observed between simulation and experimental results, especially for us at the second mode. Such 3D simulations thus appear as a helpful tool for a better understanding of mechanical phenomena in Rosen-type PT.Keywords: piezoelectricity, gain, dispalcement, simulations
Procedia PDF Downloads 41188 Place Branding and the Sense of Place in the Italian UNESCO World Heritage Site of Vicenza
Authors: A. Chtourou, K. Ben Youssef, M. Friel, T. Leicht
Abstract:
These Place attributes and destination images associated with tourism destinations are often crucial important for tourist travel decisions and choice behavior. Understanding the interactions between them is fundamental for developing sustainable place brands. Despite their extensive use on an empirical ground, little research has been done in terms of analyzing the constructs that determine the sense of place in the marketing of cultural heritage sites and on how tourist experiences at such places influence tourist motivations to revisit destinations. By referring to the Italian city of Vicenza, internationally renowned for its gold jewelry production and for the Palladian architectures and buildings which have been recognized World Heritage by the UNESCO, the paper aims to identify how destination image, place familiarity and travel satisfaction influence tourists’ motivations to revisit Vicenza. After an introduction and literature review, the paper investigates the importance of the core constructs that determine the sense of place in the tourist practice. In accordance with previous research, the results provide evidence that favorable travel experiences influence revisit intentions positively. The managerial implications and recommendations for the city of Vicenza are discussed.Keywords: consumer behavior, heritage tourism, sense of place, place branding, territorial marketing
Procedia PDF Downloads 411187 Trimma: Trimming Metadata Storage and Latency for Hybrid Memory Systems
Authors: Yiwei Li, Boyu Tian, Mingyu Gao
Abstract:
Hybrid main memory systems combine both performance and capacity advantages from heterogeneous memory technologies. With larger capacities, higher associativities, and finer granularities, hybrid memory systems currently exhibit significant metadata storage and lookup overheads for flexibly remapping data blocks between the two memory tiers. To alleviate the inefficiencies of existing designs, we propose Trimma, the combination of a multi-level metadata structure and an efficient metadata cache design. Trimma uses a multilevel metadata table to only track truly necessary address remap entries. The saved memory space is effectively utilized as extra DRAM cache capacity to improve performance. Trimma also uses separate formats to store the entries with non-identity and identity mappings. This improves the overall remap cache hit rate, further boosting the performance. Trimma is transparent to software and compatible with various types of hybrid memory systems. When evaluated on a representative DDR4 + NVM hybrid memory system, Trimma achieves up to 2.4× and on average 58.1% speedup benefits, compared with a state-of-the-art design that only leverages the unallocated fast memory space for caching. Trimma addresses metadata management overheads and targets future scalable large-scale hybrid memory architectures.Keywords: memory system, data cache, hybrid memory, non-volatile memory
Procedia PDF Downloads 83186 Preliminary Findings from a Research Survey on Evolution of Software Defined Radio
Authors: M. Srilatha, R. Hemalatha, T. Sri Aditya
Abstract:
Communication of today world is dominated by wireless technology. This is mainly due to the revolutionary development of new wireless communication system generations. The evolving new generations of wireless systems are accommodating the demand through better resource management including improved transmission technologies with optimized communication devices. To keep up with the evolution of technologies, the communication systems must be designed to optimize transparent insertion of newly evolved technologies virtually at all stages of their life cycle. After the insertion of new technologies, the upgraded devices should continue the communication without squalor in quality. The concern of improving spectrum access and spectrum efficiency combined with both the introduction of Software Defined Radios (SDR) and the possibility of the software application to radios has led to an evolution of wireless radio research. The software defined radio term was coined in the 1970s to overcome the problems in the application of software to wireless radios which eliminates the requirement of hardware changes. SDR has become the prime theme of research since it eliminates the drawbacks associated with conventional wireless communication systems implementation. This paper identifies and discusses key enabling technologies and possibility of research and development in SDRs. In addition transmitter and receiver architectures of SDR are also discussed along with their feasibility for reconfigurable radio application.Keywords: software defined radios, wireless communication, reconfigurable, reconfigurable transmitter, reconfigurable receivers, FPGA, DSP
Procedia PDF Downloads 317185 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 127184 Fluid Catalytic Cracking: Zeolite Catalyzed Chemical Industry Processes
Authors: Mithil Pandey, Ragunathan Bala Subramanian
Abstract:
One of the major conversion technologies in the oil refinery industry is Fluid catalytic cracking (FCC) which produces the majority of the world’s gasoline. Some useful products are generated from the vacuum gas oil, heavy gas oil and residue feedstocks by the FCC unit in an oil refinery. Moreover, Zeolite catalysts (zeo-catalysts) have found widespread applications and have proved to be substantial and paradigmatic in oil refining and petrochemical processes, such as FCC because of their porous features. Several famous zeo-catalysts have been fabricated and applied in industrial processes as milestones in history, and have brought on huge changes in petrochemicals. So far, more than twenty types of zeolites have been industrially applied, and their versatile porous architectures with their essential features have contributed to affect the catalytic efficiency. This poster depicts the evolution of pore models in zeolite catalysts which are accompanied by an increase in environmental and demands. The crucial roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The development of industrial processes for the FCC process, aromatic conversions and olefin production, makes it obvious that the pore architecture plays a very important role in zeo-catalysis processes. By looking at the different necessities of industrial processes, rational construction of the pore model is critically essential. Besides, the pore structure of the zeolite would have a substantial and direct effect on the utilization efficiency of the zeo-catalyst.Keywords: catalysts, fluid catalytic cracking, industrial processes, zeolite
Procedia PDF Downloads 360183 FEDBD Plasma, A Promising Approach for Skin Rejuvenation
Authors: P. Charipoor, M. Khani, H. Mahmoudi, E. Ghasemi, P. Akbartehrani, B. Shokri
Abstract:
Cold air plasma could have a variety of effects on cells and living organisms and also shows good results in medical and cosmetic cases. Herein, plasma floating electrode dielectric barrier discharge (FEDBD) plasma was designed for mouse skin rejuvenation purposes. It is safe and easy to use in clinics, laboratories, and homes. The effects of this device were investigated on mouse skin. Vitamin C ointment in combination with plasma was also used as a new method to improve FEDBD results. In this study, 20 Wistar rats were evaluated in four groups. The first group received high-dose plasma, the second group received moderate-dose plasma (with vitamin C cream), the third group received low-dose plasma (with vitamin C cream) for 6 minutes, and the fourth group received only vitamin C cream. This process was done 3 times a week for 4 weeks. Skin temperature was monitored to evaluate the thermal effect of plasma. The presence of reactive species was also demonstrated using optical spectroscopy. Mechanical assays were performed to evaluate the effect of plasma and vitamin C on the mechanical strength of the tissue, which showed a positive effect of plasma on the treated tissue compared to the control group. Using pathological and biometric skin tests, an increase in collagen levels, epidermal thickness, and an increase in fibroblasts was observed in rat skin, as well as increased skin elasticity. This study showed the positive effect of using the FEDBD plasma device on the effective parameters in skin rejuvenation.Keywords: plasma, skin rejuvenation, collagen, epidermal thickness
Procedia PDF Downloads 260182 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.Keywords: multiclass classification, convolution neural network, OpenCV
Procedia PDF Downloads 180181 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies
Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu
Abstract:
A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization
Procedia PDF Downloads 277180 An Archaeological Approach to Dating Polities and Architectural Ingenuity in Ijebu, South Western Nigeria
Authors: Olanrewaju B. Lasisi
Abstract:
The position of Ijebu-Ode, the historical capital of the Ijebu Kingdom, at the center of gravity of Ijebu land is enclosed by the 180-km-long earthwork and suggests a centrally controlled project. This paper reflects on the first stratigraphic drawing of the banks and ditches of this earthwork, and place its construction mechanism in a chronological framework. Nine radiocarbon dates obtained at the site suggest that the earthwork was built in the late 14th or early 15th century. This suggests a relationship with the Ijebu Kingdom, which pre-existed the opening of the Atlantic trade but first became visible only in the Portuguese records in the 1480s. In June 2017, more earthworks were found but within the core of Ijebu Land. This most recent finding points to an extension of territory from the center to the outlying villages. One central question about this discovery of monumental architectures that was functional around the 14th century or before is in its mode of construction. Apparently, iron tools must have been used in the construction of ‘a 20m deep ditch that runs 180km in circumference.’ Thus, the discovery of iron-working sites around the vicinity of the earthwork is a pointer to this building process that is up till now shrouded in mystery. By comparing the chronology of Ijebu earthworks with the evidence of Iron working in south western Nigeria around the first half of the first millennium AD, it can be thought that the rise in polity triggered the knowledge of metallurgy in the region.Keywords: archaeology, earthworks, Ijebu, metallurgy
Procedia PDF Downloads 251179 A Low-Latency Quadratic Extended Domain Modular Multiplier for Bilinear Pairing Based on Non-Least Positive Multiplication
Authors: Yulong Jia, Xiang Zhang, Ziyuan Wu, Shiji Hu
Abstract:
The calculation of bilinear pairing is the core of the SM9 algorithm, which relies on the underlying prime domain algorithm and the quadratic extension domain algorithm. Among the field algorithms, modular multiplication operation is the most time-consuming part. Therefore, the underlying modular multiplication algorithm is optimized to maximize the operation speed of bilinear pairings. This paper uses a modular multiplication method based on non-least positive (NLP) combined with Karatsuba and schoolbook multiplication to improve the Montgomery algorithm. At the same time, according to the characteristics of multiplication operation in quadratic extension domain, a quadratic extension domain FP2-NLP modular multiplication algorithm for bilinear pairings is proposed, which effectively reduces the operation time of modular multiplication in quadratic extension domain. The subexpanded domain 𝐹ₚ₂ -NLP modular multiplication algorithm effectively reduces the operation time of modular multiplication under the second-expanded domain. The multiplication unit in the quadratic extension domain is implemented using SMIC55nm process, and two different implementation architectures are designed to cope with different application scenarios. Compared with the existing related literature, the output latency of this design can reach a minimum of 15 cycles. The shortest time for calculating the (𝐴𝐵 + 𝐶𝐷)𝑟⁻¹ mod 𝑀 form is 37.5ns, and the comprehensive area-time product (AT) is 11400. The final R-ate pairing algorithm hardware accelerator consumes 2670k equivalent logic gates and 1.8ms computing time in 55nm process.Keywords: sm9, hardware, NLP, Montgomery
Procedia PDF Downloads 21178 The Relationship between Operating Condition and Sludge Wasting of an Aerobic Suspension-Sequencing Batch Reactor (ASSBR) Treating Phenolic Wastewater
Authors: Ali Alattabi, Clare Harris, Rafid Alkhaddar, Ali Alzeyadi
Abstract:
Petroleum refinery wastewater (PRW) can be considered as one of the most significant source of aquatic environmental pollution. It consists of oil and grease along with many other toxic organic pollutants. In recent years, a new technique was implemented using different types of membranes and sequencing batch reactors (SBRs) to treat PRW. SBR is a fill and draw type sludge system which operates in time instead of space. Many researchers have optimised SBRs’ operating conditions to obtain maximum removal of undesired wastewater pollutants. It has gained more importance mainly because of its essential flexibility in cycle time. It can handle shock loads, requires less area for operation and easy to operate. However, bulking sludge or discharging floating or settled sludge during the draw or decant phase with some SBR configurations are still one of the problems of SBR system. The main aim of this study is to develop and innovative design for the SBR optimising the process variables to result is a more robust and efficient process. Several experimental tests will be developed to determine the removal percentages of chemical oxygen demand (COD), Phenol and nitrogen compounds from synthetic PRW. Furthermore, the dissolved oxygen (DO), pH and oxidation-reduction potential (ORP) of the SBR system will be monitored online to ensure a good environment for the microorganisms to biodegrade the organic matter effectively.Keywords: petroleum refinery wastewater, sequencing batch reactor, hydraulic retention time, Phenol, COD, mixed liquor suspended solids (MLSS)
Procedia PDF Downloads 266177 A Domain Specific Modeling Language Semantic Model for Artefact Orientation
Authors: Bunakiye R. Japheth, Ogude U. Cyril
Abstract:
Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.Keywords: control process, metrics of engineering, structured abstraction, semantic model
Procedia PDF Downloads 145176 Photocrosslinkable Nanocomposite Ink for Printing of Strong, Biodegradable and Bioactive Bone Graft
Authors: Xin Zhao
Abstract:
3D printing is used in creating bone grafts of various architectures by printing materials in a layer-by-layer manner. Traditionally, to make materials printable, heating up or dissolving materials in organic solvents have been used, compromising their capability in loading biomolecules. Photocrosslinkable materials which are initially liquid and printable, and solidified upon light exposure are therefore developed. However, the existing photocrosslinkable materials are either too soft to bear load or non-degradable with potential long-term biocompatibility problems. Here, photocrosslinkable nanocomposite ink is developed composed of poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PmLnDMA) and hydroxyethyl methacrylate-functionalized hydroxyapatite nanoparticles (nHAMA) mimicking the hairy setae of gecko that can strongly interact with its surroundings to bear high load. Incorporation of nHAMA into PmLnDMA endows the nanocomposite ink with several advantages in (1) improved organic/inorganic interfacial compatibility to increase mechanical strength, (2) readily modulated rheological behaviors, wettability, and biodegradation, (3) enhanced osteoconductivity and osteoinductivity. Moreover, the ink can be rapidly crosslinked upon light exposure, load, and long-term release growth factors, and be printed into 3D bone scaffolds of various shapes and structures according to the patients’ needs. Altogether, this innovation will benefit patients all over the world who suffer from bone fractures, tumors, infections.Keywords: photocrosslinkable nanocomposite, 3D printing, bone ink, personalized medicine
Procedia PDF Downloads 118