Search results for: flexible thermoelectric module
1552 Anlaytical Studies on Subgrade Soil Using Jute Geotextile
Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra
Abstract:
Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.Keywords: CBR, jute geotextile, low volume road, weaker soil
Procedia PDF Downloads 4421551 Using Artificial Vision Techniques for Dust Detection on Photovoltaic Panels
Authors: Gustavo Funes, Eduardo Peters, Jose Delpiano
Abstract:
It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more, lowering the energy production and module lifespan. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an autonomous way. We performed several experiments photographing three different types of panels, 30W, 340W and 410W. Those panels were soiled artificially with uniform and non-uniform distributed dust. The algorithm proposed uses statistical tools to provide a simulation with a 100% soiled panel and then performs a comparison to get the percentage of dirt in the experimental data set. The simulation uses a seed that is obtained by taking a dust sample from the maximum amount of dust from the dataset. The final result is the dirt percentage and the possible distribution of dust over the panel. Dust deposition is a key factor for plant owners to determine cleaning cycles or identify nonuniform depositions that could lead to module failure and hot spots.Keywords: dust detection, photovoltaic, artificial vision, soiling
Procedia PDF Downloads 501550 Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines
Authors: V. Radulescu, S. Dumitru
Abstract:
Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number).Keywords: experimental measurements, numerical correlations, thermal pollution through pipelines, turbulent thermal flow
Procedia PDF Downloads 1641549 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications
Authors: Arpan Dwivedi, Yogesh Pahariya
Abstract:
In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.Keywords: SAPS, DG, PMWTG, rural area, off-grid, PV module
Procedia PDF Downloads 2481548 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network
Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu
Abstract:
Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning
Procedia PDF Downloads 1301547 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules
Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima
Abstract:
Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.Keywords: Box-Jenkins's problem, double-input rule module, fuzzy inference model, obstacle avoidance, single-input rule module
Procedia PDF Downloads 3521546 An Intelligent Steerable Drill System for Orthopedic Surgery
Authors: Wei Yao
Abstract:
A steerable and flexible drill is needed in orthopaedic surgery. For example, osteoarthritis is a common condition affecting millions of people for which joint replacement is an effective treatment which improves the quality and duration of life in elderly sufferers. Conventional surgery is not very accurate. Computer navigation and robotics can help increase the accuracy. For example, In Total Hip Arthroplasty (THA), robotic surgery is currently practiced mainly on acetabular side helping cup positioning and orientation. However, femoral stem positioning mostly uses hand-rasping method rather than robots for accurate positioning. The other case for using a flexible drill in surgery is Anterior Cruciate Ligament (ACL) Reconstruction. The majority of ACL Reconstruction failures are primarily caused by technical mistakes and surgical errors resulting from drilling the anatomical bone tunnels required to accommodate the ligament graft. The proposed new steerable drill system will perform orthopedic surgery through curved tunneling leading to better accuracy and patient outcomes. It may reduce intra-operative fractures, dislocations, early failure and leg length discrepancy by making possible a new level of precision. This technology is based on a robotically assisted, steerable, hand-held flexible drill, with a drill-tip tracking device and a multi-modality navigation system. The critical differentiator is that this robotically assisted surgical technology now allows the surgeon to prepare 'patient specific' and more anatomically correct 'curved' bone tunnels during orthopedic surgery rather than drilling straight holes as occurs currently with existing surgical tools. The flexible and steerable drill and its navigation system for femoral milling in total hip arthroplasty had been tested on sawbones to evaluate the accuracy of the positioning and orientation of femoral stem relative to the pre-operative plan. The data show the accuracy of the navigation system is better than traditional hand-rasping method.Keywords: navigation, robotic orthopedic surgery, steerable drill, tracking
Procedia PDF Downloads 1661545 Numerical Study on the Urea Melting and Induced Natural Convection in a Urea Sender Module
Authors: Doo Ki Lee, Man Young Kim
Abstract:
The Urea-Selective Catalytic Reduction (SCR) system is considered to be the most promising technology to fulfill the stringent emission regulation. In the Urea-SCR system, the urea solutions are used as the reducing agent, which is a eutectic composition (32.5wt% of urea). The advantage of this eutectic compositions is that it has a low freezing point approximately at -11 ℃, however, the problem of freezing occurs at low-temperature levels below that freezing point. To prevent freezing of urea solutions, we need heating systems that can melt by heating the frozen urea solutions in urea storage tank at low-temperature environment. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to find the melting characteristics of the urea solutions on melting process. In this work, it can be found that the urea melting initiated by heat conduction from the heater is enhanced by the natural convection inside the melted liquid urea solutions due to the temperature difference. Also, liquid urea solutions are initially concentrated on the upper parts of the urea sender module.Keywords: urea solution, melting, heat conduction, natural convection, liquid fraction, phase change
Procedia PDF Downloads 2701544 All-In-One Universal Cartridge Based Truly Modular Electrolyte Analyzer
Authors: S. Dalvi, N. Sane, V. Patil, D. Bansode, A. Tharakan, V. Mathur
Abstract:
Measurement of routine clinical electrolyte tests is common in labs worldwide for screening of illness or diseases. All the analyzers for the measurement of electrolyte parameters have sensors, reagents, sampler, pump tubing, valve, other tubing’s separate that are either expensive, require heavy maintenance and have a short shelf-life. Moreover, the costs required to maintain such Lab instrumentation is high and this limits the use of the device to only highly specialized personnel and sophisticated labs. In order to provide Healthcare Diagnostics to ALL at affordable costs, there is a need for an All-in-one Universal Modular Cartridge that contains sensors, reagents, sampler, valve, pump tubing, and other tubing’s in one single integrated module-in-module cartridge that is affordable, reliable, easy-to-use, requires very low sample volume and is truly modular and maintenance-free. DiaSys India has developed a World’s first, Patent Pending, Versatile All-in-one Universal Module-in-Module Cartridge based Electrolyte Analyzer (QDx InstaLyte) that can perform sodium, potassium, chloride, calcium, pH, lithium tests. QDx InstaLyte incorporates High Performance, Inexpensive All-in-one Universal Cartridge for rapid quantitative measurement of electrolytes in body fluids. Our proposed methodology utilizes Advanced & Improved long life ISE sensors to provide a sensitive and accurate result in 120 sec with just 100 µl of sample volume. The All-in-One Universal Cartridge has a very low reagent consumption capable of maximum of 1000 tests with a Use-life of 3-4 months and a long Shelf life of 12-18 months at 4-25°C making it very cost-effective. Methods: QDx InstaLyte analyzers with All-in-one Universal Modular Cartridges were independently evaluated with three R&D lots for Method Performance (Linearity, Precision, Method Comparison, Cartridge Stability) to measure Sodium, Potassium, Chloride. Method Comparison was done against Medica EasyLyte Plus Na/K/Cl Electrolyte Analyzer, a mid-size lab based clinical chemistry analyzer with N = 100 samples run over 10 days. Within-run precision study was done using modified CLSI guidelines with N = 20 samples and day-to-day precision study was done for 7 consecutive days using Trulab N & P Quality Control Samples. Accelerated stability testing was done at 45oC for 4 weeks with Production Lots. Results: Data analysis indicates that the CV for within-run precision for Na is ≤ 1%, for K is ≤2%, and for Cl is ≤2% and with R2 ≥ 0.95 for Method Comparison. Further, the All-in-One Universal Cartridge is stable up to 12-18 months at 4-25oC storage temperature based on preliminary extrapolated data. Conclusion: The Developed Technology Platform of All-in-One Universal Module-in-Module Cartridge based QDx InstaLyte is Reliable and meets all the performance specifications of the lab and is Truly Modular and Maintenance-Free. Hence, it can be easily adapted for low cost, sensitive and rapid measurement of electrolyte tests in low resource settings such as in urban, semi-urban and rural areas in the developing countries and can be used as a Point-of-care testing system for worldwide applications.Keywords: all-in-one modular catridge, electrolytes, maintenance free, QDx instalyte
Procedia PDF Downloads 281543 Analytical Studies on Subgrade Soil Using Jute Geotextiles
Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra
Abstract:
Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.Keywords: CBR, Jute geotextile, low volume road, weaker soil
Procedia PDF Downloads 4281542 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM
Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei
Abstract:
In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank
Procedia PDF Downloads 1851541 Effect of a Traffic Psychology Workshop on Enhancing Positive Attitudes towards Road Safety Awareness among Youths
Authors: C. Ah Gang Getrude, Iqbal Hashmi Shazia, Mohd Nawi Nurul Hudani
Abstract:
This study examined the effectiveness of a Traffic Psychology Workshop in enhancing positive attitudes towards road safety awareness among youths. We predicted that youths’ attitudes towards road safety would be more positive after they participated in the one-day workshop. We examined their attitudes towards road safety awareness before and after they attended a one-day workshop. There were 21 participants who completed the pre and post-studies (9 males & 12 females, mean age 22.86, SD=2.03). A Wilcoxon signed-ranks test showed that the mean for post-test ranks for students’ attitudes towards road safety awareness was higher than the mean pre-test ranks, z =-3.16, p = .00. The study showed that the Traffic Psychology Module which focuses on the three elements: i) personality & emotion; Sensation, perception and visual; and mental workload could have positive effects on youths’ attitudes towards road safety awareness. We believe that the Traffic Psychology Module could be used as a guide by relevant authorities, such as the Sabah Road Safety Department, in implementing road safety awareness workshops and programs for the public, particularly road-users.Keywords: attitude, road safety, traffic psychology, youth
Procedia PDF Downloads 3281540 Model-Based Global Maximum Power Point Tracking at Photovoltaic String under Partial Shading Conditions Using Multi-Input Interleaved Boost DC-DC Converter
Authors: Seyed Hossein Hosseini, Seyed Majid Hashemzadeh
Abstract:
Solar energy is one of the remarkable renewable energy sources that have particular characteristics such as unlimited, no environmental pollution, and free access. Generally, solar energy can be used in thermal and photovoltaic (PV) types. The cost of installation of the PV system is very high. Additionally, due to dependence on environmental situations such as solar radiation and ambient temperature, electrical power generation of this system is unpredictable and without power electronics devices, there is no guarantee to maximum power delivery at the output of this system. Maximum power point tracking (MPPT) should be used to achieve the maximum power of a PV string. MPPT is one of the essential parts of the PV system which without this section, it would be impossible to reach the maximum amount of the PV string power and high losses are caused in the PV system. One of the noticeable challenges in the problem of MPPT is the partial shading conditions (PSC). In PSC, the output photocurrent of the PV module under the shadow is less than the PV string current. The difference between the mentioned currents passes from the module's internal parallel resistance and creates a large negative voltage across shaded modules. This significant negative voltage damages the PV module under the shadow. This condition is called hot-spot phenomenon. An anti-paralleled diode is inserted across the PV module to prevent the happening of this phenomenon. This diode is known as the bypass diode. Due to the performance of the bypass diode under PSC, the P-V curve of the PV string has several peaks. One of the P-V curve peaks that makes the maximum available power is the global peak. Model-based Global MPPT (GMPPT) methods can estimate the optimal point with higher speed than other GMPPT approaches. Centralized, modular, and interleaved DC-DC converter topologies are the significant structures that can be used for GMPPT at a PV string. there are some problems in the centralized structure such as current mismatch losses at PV sting, loss of power of the shaded modules because of bypassing by bypass diodes under PSC, needing to series connection of many PV modules to reach the desired voltage level. In the modular structure, each PV module is connected to a DC-DC converter. In this structure, by increasing the amount of demanded power from the PV string, the number of DC-DC converters that are used at the PV system will increase. As a result, the cost of the modular structure is very high. We can implement the model-based GMPPT through the multi-input interleaved boost DC-DC converter to increase the power extraction from the PV string and reduce hot-spot and current mismatch error in a PV string under different environmental condition and variable load circumstances. The interleaved boost DC-DC converter has many privileges than other mentioned structures, such as high reliability and efficiency, better regulation of DC voltage at DC link, overcome the notable errors such as module's current mismatch and hot spot phenomenon, and power switches voltage stress reduction.Keywords: solar energy, photovoltaic systems, interleaved boost converter, maximum power point tracking, model-based method, partial shading conditions
Procedia PDF Downloads 1301539 Energy Matrices of Partially Covered Photovoltaic Thermal Flat Plate Water Collectors
Authors: Shyam, G. N. Tiwari
Abstract:
Energy matrices of flate plate water collectors partially covered by PV module have been estimated in the present study. Photovoltaic thermal (PVT) water collector assembly is consisting of 5 water collectors having 2 m^2 area which are partially covered by photovoltaic module at its lower portion (inlet) and connected in series. The annual overall thermal energy and exergy are computed by using climatic data of New Delhi provided by Indian Meteorological Department (IMD) Pune, India. The Energy payback time on overall thermal and exergy basis are found to be 1.6 years and 17.8 years respectively. For 25 years of life time of system the energy production factor and life cycle conversion efficiency are estimated to be 15.8 and 0.04 respectively on overall thermal energy basis whereas for the same life time the energy production factor and life cycle conversion efficiency on exergy basis are obtained as 1.4 and 0.001.Keywords: overall thermal energy, exergy, energy payback time, PVT water collectors
Procedia PDF Downloads 3741538 IoT Based Monitoring Temperature and Humidity
Authors: Jay P. Sipani, Riki H. Patel, Trushit Upadhyaya
Abstract:
Today there is a demand to monitor environmental factors almost in all research institutes and industries and even for domestic uses. The analog data measurement requires manual effort to note readings, and there may be a possibility of human error. Such type of systems fails to provide and store precise values of parameters with high accuracy. Analog systems are having drawback of storage/memory. Therefore, there is a requirement of a smart system which is fully automated, accurate and capable enough to monitor all the environmental parameters with utmost possible accuracy. Besides, it should be cost-effective as well as portable too. This paper represents the Wireless Sensor (WS) data communication using DHT11, Arduino, SIM900A GSM module, a mobile device and Liquid Crystal Display (LCD). Experimental setup includes the heating arrangement of DHT11 and transmission of its data using Arduino and SIM900A GSM shield. The mobile device receives the data using Arduino, GSM shield and displays it on LCD too. Heating arrangement is used to heat and cool the temperature sensor to study its characteristics.Keywords: wireless communication, Arduino, DHT11, LCD, SIM900A GSM module, mobile phone SMS
Procedia PDF Downloads 2821537 Multi-source Question Answering Framework Using Transformers for Attribute Extraction
Authors: Prashanth Pillai, Purnaprajna Mangsuli
Abstract:
Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.Keywords: natural language processing, deep learning, transformers, information retrieval
Procedia PDF Downloads 1931536 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall
Authors: Snehal R. Pathak, Sachin S. Munnoli
Abstract:
Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.Keywords: earth pressure, earthquake, 2-DOF model, Plaxis, retaining walls, wall movement
Procedia PDF Downloads 5391535 Validation of the Arabic Version of the InterSePT Scale for Suicidal Thinking (ISST) among the Arab Population in Qatar
Authors: S. Hammoudeh, S. Ghuloum, A. Abdelhakam, A. AlMujalli, M. Opler, Y. Hani, A. Yehya, S. Mari, R. Elsherbiny, Z. Mahfoud, H. Al-Amin
Abstract:
Introduction: Suicidal ideation and attempts are very common in patients with schizophrenia and still contributes to the high mortality in this population. The InterSePT Scale for Suicidal Thinking (ISST) is a validated tool used to assess suicidal ideation in patients with schizophrenia. This research aims to validate the Arabic version of the ISST among the Arabs residing in Qatar. Methods: Patients diagnosed with schizophrenia were recruited from the department of Psychiatry, Rumailah Hospital, Doha, Qatar. Healthy controls were recruited from the primary health care centers in Doha, Qatar. The validation procedures including professional and expert translation, pilot survey and back translation of the ISST were implemented. Diagnosis of schizophrenia was confirmed using the validated Arabic version of Mini International Neuropsychiatric Interview (MINI 6, module K) for schizophrenia. The gold standard was the module B on suicidality from MINI 6 also. This module was administered by a rater who was blinded to the results of ISST. Results: Our sample (n=199) was composed of 98 patients diagnosed with schizophrenia (age 36.03 ± 9.88 years; M/F is 2/1) and 101 healthy participants (age 35.01 ± 8.23 years; M/F is 1/2). Among patients with schizophrenia: 26.5% were married, 17.3% had a college degree, 28.6% were employed, 9% had committed suicide once, and 4.4% had more than 4 suicide attempts. Among the control group: 77.2% were married, 57.4% had a college degree, and 99% were employed. The mean score on the ISST was 2.36 ± 3.97 vs. 0.47 ± 1.44 for the schizophrenia and control groups, respectively. The overall Cronbach’s alpha was 0.91. Conclusions: This is the first study in the Arab world to validate the ISST in an Arabic-based population. The psychometric properties indicate that the Arabic version of the ISST is a valid tool to assess the severity of suicidal ideation in Arabic speaking patients diagnosed with schizophrenia.Keywords: mental health, Qatar, schizophrenia, suicide
Procedia PDF Downloads 5621534 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model
Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han
Abstract:
Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model
Procedia PDF Downloads 3621533 Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading
Authors: Wei Zhao, Yuxuan Yao, Hao Chen
Abstract:
In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load.Keywords: battery module, finite element simulation, power battery, packing angle
Procedia PDF Downloads 691532 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading
Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul
Abstract:
The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms
Procedia PDF Downloads 3281531 Effect of Reflective Practices on the Performance of Prospective Teachers
Authors: Madiha Zahid, Afifa Khanam
Abstract:
The present study aims to investigate the effect of reflective teaching practices on prospective teachers’ performance. Reflective teaching practice helps teachers to plan, implement and improve their performance by rethinking about their strengths and weaknesses. An action research was conducted by the researcher. All prospective teachers of sixth semester in a women university’s teacher education program were the population of the study. From 40 students, 20 students were taken as experimental group, and the rest of 20 students were taken as control group. During the action research a cyclic process of producing a module, training teachers for the reflective practices and then observing them during their class for reflective practice was done by the researchers. The research used a set of rubrics and checklists for assessing prospective teachers’ performance during their class. Finally, the module was modified with the help of findings. It was found that the training has improved the performance of teachers as they revised and modified their teaching strategies through reflective practice. However, they were not able to train their students for reflective practice as per expectation. The study has implications for teacher training programs to include reflective practice modules as part of their course work for making them better teachers.Keywords: reflective practices, prospective teacher, effect, performance
Procedia PDF Downloads 1741530 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor
Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung
Abstract:
One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible
Procedia PDF Downloads 871529 Designing an Introductory Python Course for Finance Students
Authors: Joelle Thng, Li Fang
Abstract:
Objective: As programming becomes a highly valued and sought-after skill in the economy, many universities have started offering Python courses to help students keep up with the demands of employers. This study focuses on designing a university module that effectively educates undergraduate students on financial analysis using Python programming. Methodology: To better satisfy the specific demands for each sector, this study adopted a qualitative research modus operandi to craft a module that would complement students’ existing financial skills. The lessons were structured using research-backed educational learning tools, and important Python concepts were prudently screened before being included in the syllabus. The course contents were streamlined based on criteria such as ease of learning and versatility. In particular, the skills taught were modelled in a way to ensure they were beneficial for financial data processing and analysis. Results: Through this study, a 6-week course containing the chosen topics and programming applications was carefully constructed for finance students. Conclusion: The findings in this paper will provide valuable insights as to how teaching programming could be customised for students hailing from various academic backgrounds.Keywords: curriculum development, designing effective instruction, higher education strategy, python for finance students
Procedia PDF Downloads 791528 Establishment of an Information Platform Increases Spontaneous Reporting of Adverse Drug Reactions
Authors: Pei-Chun Chen, Chi-Ting Tseng, Lih-Chi Chen, Kai-Hsiang Yang
Abstract:
Introduction: The pharmacist is responsible for encouraging adverse drug reaction (ADR) reporting. In a local center in Northern Taiwan, promotion and rewarding of ADR reporting have continued for over six years but failed to bring significant changes. This study aims to find a solution to increase ADR reporting. Research question or hypothesis: We hypothesized that under-reporting is due to the inconvenience of the reporting system. Reports were made conventionally through printed sheets. We proposed that reports made per month will increase if they were computerized. Study design: An ADR reporting platform was established in April 2015, before which was defined as the first stage of this study (January-March, 2015) and after which the second stage. The third stage commenced in November, 2015, after adding a reporting module to physicians prescription system. ADRs could be reported simultaneously when documenting drug allergies. Methods: ADR report rates during the three stages of the study were compared. Effects of the information platform on reporting were also analyzed. Results: During the first stage, the number of ADR reports averaged 6 per month. In the second stage, the number of reports per month averaged 1.86. Introducing the information platform had little effect on the monthly number of ADR reports. The average number of reports each month during the third stage of the study was 11±3.06, with 70.43% made electronically. Reports per month increased significantly after installing the reporting module in November, 2015 (P<0.001, t-test). In the first two stages, 29.03% of ADR reports were made by physicians, as compared to 70.42% of cases in the third stage of the study. Increased physician reporting possibly account for these differences. Conclusion: Adding a reporting module to the prescription system significantly increased ADR reporting. Improved accessibility is likely the cause. The addition of similar modules to computer systems of other healthcare professions may be considered to encourage spontaneous ADR reporting.Keywords: adverse drug reactions, adverse drug reaction reporting systems, regional hospital, prescription system
Procedia PDF Downloads 3511527 Field Performance of Cement Treated Bases as a Reflective Crack Mitigation Technique for Flexible Pavements
Authors: Mohammad R. Bhuyan, Mohammad J. Khattak
Abstract:
Deterioration of flexible pavements due to crack reflection from its soil-cement base layer is a major concern around the globe. The service life of flexible pavement diminishes significantly because of the reflective cracks. Highway agencies are struggling for decades to prevent or mitigate these cracks in order to increase pavement service lives. The root cause of reflective cracks is the shrinkage crack which occurs in the soil-cement bases during the cement hydration process. The primary factor that causes the shrinkage is the cement content of the soil-cement mixture. With the increase of cement content, the soil-cement base gains strength and durability, which is necessary to withstand the traffic loads. But at the same time, higher cement content creates more shrinkage resulting in more reflective cracks in pavements. Historically, various states of USA have used the soil-cement bases for constructing flexile pavements. State of Louisiana (USA) had been using 8 to 10 percent of cement content to manufacture the soil-cement bases. Such traditional soil-cement bases yield 2.0 MPa (300 psi) 7-day compressive strength and are termed as cement stabilized design (CSD). As these CSD bases generate significant reflective cracks, another design of soil-cement base has been utilized by adding 4 to 6 percent of cement content called cement treated design (CTD), which yields 1.0 MPa (150 psi) 7-day compressive strength. The reduction of cement content in the CTD base is expected to minimize shrinkage cracks thus increasing pavement service lives. Hence, this research study evaluates the long-term field performance of CTD bases with respect to CSD bases used in flexible pavements. Pavement Management System of the state of Louisiana was utilized to select flexible pavement projects with CSD and CTD bases that had good historical record and time-series distress performance data. It should be noted that the state collects roughness and distress data for 1/10th mile section every 2-year period. In total, 120 CSD and CTD projects were analyzed in this research, where more than 145 miles (CTD) and 175 miles (CSD) of roadways data were accepted for performance evaluation and benefit-cost analyses. Here, the service life extension and area based on distress performance were considered as benefits. It was found that CTD bases increased 1 to 5 years of pavement service lives based on transverse cracking as compared to CSD bases. On the other hand, the service lives based on longitudinal and alligator cracking, rutting and roughness index remain the same. Hence, CTD bases provide some service life extension (2.6 years, on average) to the controlling distress; transverse cracking, but it was inexpensive due to its lesser cement content. Consequently, CTD bases become 20% more cost-effective than the traditional CSD bases, when both bases were compared by net benefit-cost ratio obtained from all distress types.Keywords: cement treated base, cement stabilized base, reflective cracking , service life, flexible pavement
Procedia PDF Downloads 1661526 Flexible Development and Calculation of Contract Logistics Services
Authors: T. Spiegel, J. Siegmann, C. F. Durach
Abstract:
Challenges resulting from an international and dynamic business environment are increasingly being passed on from manufacturing companies to external service providers. Especially providers of complex, customer-specific industry services have to cope with continuously changing requirements. This is particularly true for contract logistics service providers. They are forced to develop efficient and highly flexible structures and strategies to meet their customer’s needs. One core element they have to focus on is the reorganization of their service development and sales process. Based on an action research approach, this study develops and tests a concept to streamline tender management for contract logistics service providers. The concept of modularized service architecture is deployed in order to derive a practice-oriented approach for the modularization of complex service portfolios and the design of customized quotes. These findings are evaluated regarding their applicability in other service sectors and practical recommendations are given.Keywords: contract logistics, modularization, service development, tender management
Procedia PDF Downloads 4091525 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking
Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim
Abstract:
In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network
Procedia PDF Downloads 1581524 Effects of Flexible Flat Feet on Electromyographic Activity of Erector Spinae and Multifidus
Authors: Abdallah Mohamed Kamel Mohamed Ali, Samah Saad Zahran, Mohamed Hamed Rashad
Abstract:
Background: Flexible flatfoot (FFF) has been considered as a risk factor for several lower limb injuries and mechanical low back pain. This was attributed to the dysfunction of the lumbopelvic-hip complex musculature. Objective: To investigate the influence of FFF on electromyographic activities of erector spinae and multifidus. Methods: A cross-section study was held between an FFF group (20 subjects) and a normal foot group (20 subjects). A surface electromyography was used to assess the electromyographic activity of erector spinae and multifidus. Group differences were assessed by the T-test. Results: There was a significant increase in EMG activities of erector spinae and multifidus in the FFF group compared with the normal group. Conclusion: There is an increase in EMG activities in erector spinae and multifidus in FFF subjects compared with normal subjects.Keywords: electromyography, flatfoot, low back pain, paraspinal muscles
Procedia PDF Downloads 2131523 Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x
Authors: N. Kekelidze, B. Kvirkvelia, E. Khutsishvili, T. Qamushadze, D. Kekelidze, R. Kobaidze, Z. Chubinishvili, N. Qobulashvili, G. Kekelidze
Abstract:
On the basis of InAs, InP and their InPxAs1-x solid solutions, the technologies were developed and materials were created where the electron concentration and optical and thermoelectric properties do not change under the irradiation with Ф = 2∙1018 n/cm2 fluences of fast neutrons high-energy electrons (50 MeV, Ф = 6·1017 e/cm2) and 3 MeV electrons with fluence Ф = 3∙1018 e/cm2. The problem of obtaining such material has been solved, in which under hard irradiation the mobility of the electrons does not decrease, but increases. This material is characterized by high thermal stability up to T = 700 °C. The complex process of defects formation has been analyzed and shown that, despite of hard irradiation, the essential properties of investigated materials are mainly determined by point type defects.Keywords: InAs, InP, solid solutions, irradiation
Procedia PDF Downloads 178