Search results for: domestic wastewater treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9459

Search results for: domestic wastewater treatment

9129 Prevalence Rate and Types of the Domestic Violence Against Deaf in Iran

Authors: Hadi Farahani, Mahsa Tahzibi, Laleh Golamrej Eliasi, Mohammad Torkashvand

Abstract:

Iranian deafs are an under-researched population. The lack of research comes from the fact that if none, there are very few researchers capable of speaking sign language. The exclusion of this minority group from mainstream society often distorts the general understanding of prevalent issues of the deaf in Iran. The topic of this research was co-created through preliminary discussions with the Iranian deaf. Domestic violence then was picked up as an infrastructural issue impacting other dimensions of deaf lives such as work, education, and outside family relationships. For this purpose, we systematically searched the literature seeking a comprehensive questionnaire. We came across a 46-item standardized questionnaire measuring domestic violence in Iran. To adapt this questionnaire, we followed standard procedures reflected in another article. The inclusion criteria of the current research were married (had experienced living with a partner before) and +18-year-old deaf. Sampling was random and recruitment of the participants was through governmental or voluntary organizations for the deaf. 390 questionnaires then were analyzed through SPSS version 27. Analysis showed that the prevalence rate of domestic violence was 26% in general that emotional violence with 29% was the most prevalent type. Findings suggested that the more educated, and economically independent were the participants, the lower the probability of encountering domestic violence. Domestic violence within families where all members were deaf proved to be less usual than in families in which only the participant was deaf. Further interventional research is needed to assess how to empower the Iranian deaf regarding domestic violence.

Keywords: deaf, domestic violence, economic violence, emotional violence, physical violence, sexual violence

Procedia PDF Downloads 97
9128 Pollution of Cadmium in Green Space of Rasht City and Environmental Health

Authors: Seyed Armin Hashemi, Somayeh Rahimzadeh

Abstract:

The urban green space and environment should be considered to be among the most fundamental elements of the sustainability of natural and human life in the new citizenship. The present research is intended to evaluate the impact of irrigation using urban wastewater of Cadmium (Cd) in the soil and leaves of the pine trees of Rasht in the forest territories of Rasht. For this purpose, following the exact specification of the geographical and topographical attributes of under treatment area, 100 sample trees were implemented randomly –systematically in each compound studied. Approaching the end of growth season, five trees were selected randomly in each of the plats and samples of leaves were collected from the parts near to the end of the crown and the part which was adjacent to the light. At the foot of each of the trees selected, a soil profile was dug and samples of soil were extracted from three depths of 0-20, centimeters. The measurements done in the laboratory showed that the density of nutritious elements of the samples of leaf and soil in the compound irrigated with wastewater .The results of the present research suggest that urban can be used as a source of irrigation whereas muck can be employed in forestation and irrigation with precise and particular supervision and control.

Keywords: irrigation, forestation, urban waste water, pine, wastewater

Procedia PDF Downloads 432
9127 The Unspoken Truth of Female Domestic Violence: An Integrative Review

Authors: Glenn Guira

Abstract:

Domestic violence is an international pandemic that has affected women from all walks of life. The World Health Organization (2016), announced that recent global prevalence of violence against women indicates that 1 in 3 (35 %) women worldwide have experienced either physical and/or sexual intimate partner violence or non-partner violence in their lifetime. It further said that violence against women is a major public health problem and violations of women’s human rights. Furthermore, the agency said that the factors associated in an increased risk of experiencing intimate partner and sexual violence include low education, child maltreatment or exposure to violence between parents, abuse during childhood, attitudes accepting violence and gender inequality. This is an integrative review of domestic violence focusing on four themes namely types of domestic violence against women, predictors of domestic violence against women, effects of domestic violence against women and strategies in addressing domestic violence against women. This integrative research study was conducted to identify relevant themes on domestic violence that was conducted and published. This study is geared toward understanding further domestic violence as a public health concern. Using the keywords domestic violence, Google Scholar, MEDLINE PLUS, and Ingenta Connect were searched to identify relevant studies. This resulted in 3,467 studies that fall within the copyright year 2006 – 2016. The studies were delimited to domestic violence against women because there are other types of violence that can be committed such as senior citizens abuse, child abuse, violence against males and gay/lesbian abuse. The significant findings of the research study are the following: the forms of domestic violence against women include physical, sexual, psychological, emotional, economic, spiritual and conflict-related violence against, the predictors of domestic violence against women include demographic, health-related, psychological, behavioral, partner-related and social-stress factors, the effects of domestic violence against women include victim-related factors and child-related factors and the strategies addressing domestic violence against women include personal-related strategies, education-related strategies, health-related strategies, legal-related strategies and judicial-related strategies. Consequent to the foregoing findings, the following conclusions are drawn by the researcher that there are published researches that presented different forms, predictors, effects and strategies addressing domestic violence committed by perpetrators against women. The researcher recommended that the summarized comprehensive data should be use to educate people who are potential victims of domestic violence and that future researchers should continue to conduct research for the development of pragmatic programs aimed at reducing domestic violence.

Keywords: domestic violence, physical abuse, intimate partner violence, sexual violence

Procedia PDF Downloads 239
9126 Concentration of Waste Waters by Enzyme-Assisted Low-Temperature Evaporation

Authors: Ahokas Mikko, Taskila Sanna, Varrio Kalle, Tanskanen Juha

Abstract:

The present research aimed at the development of an energy efficient process for the concentration of starchy waste waters. The selected principle is mechanical vapor recompression evaporation (MVR) which leads to concentrated solid material and evaporated water phase. Evaporation removes water until a certain viscosity limit is reached. Materials with high viscosity cannot be concentrated using standard evaporators due to limitations of pumps and other constraints, such as wetting. Control of viscosity is thus essential for efficient evaporation. This applies especially to fluids in which due starch or other compounds the viscosity tends to increase via removal of water. In the present research, the effect of enzymes on evaporation of highly viscous starch industry waste waters was investigated. Wastewater samples were received from starch industry at pH of 4.8. Response surface methodology (RSM) was applied for the investigation of factor effects on the behaviour of concentrate during evaporation. The RSM was prepared using quadratic face-centered central composite design (CCF). The evaporation performance was evaluated by monitoring the viscosity of fluid during processing. Based on viscosity curves, the addition of glucoamylase reduced the viscosity during evaporation. This assumption was confirmed by CCF, suggesting that the use of starch decomposing glucoamylase allowed evaporation of the starchy wastewater to a relatively high total solid concentration without a detrimental increase in the viscosity. The results suggest that use of enzymes for reduction of viscosity during the evaporation allows more effective concentration of the wastewater and thereby recovery of potable water.

Keywords: viscous, wastewater, treatment, evaporation, concentration

Procedia PDF Downloads 226
9125 Heterogeneous Photocatalytic Degradation of Ibuprofen in Ultrapure Water, Municipal and Pharmaceutical Industry Wastewaters Using a TiO2/UV-LED System

Authors: Nabil Jallouli, Luisa M. Pastrana-Martínez, Ana R. Ribeiro, Nuno F. F. Moreira, Joaquim L. Faria, Olfa Hentati, Adrián M. T. Silva, Mohamed Ksibi

Abstract:

Degradation and mineralization of ibuprofen (IBU) were investigated using Ultraviolet (UV) Light Emitting Diodes (LEDs) in TiO2 photocatalysis. Samples of ultrapure water (UP) and a secondary treated effluent of a municipal wastewater treatment plant (WWTP), both spiked with IBU, as well as a highly concentrated IBU (230 mgL-1) pharmaceutical industry wastewater (PIWW), were tested in the TiO2/UV-LED system. Three operating parameters, namely, pH, catalyst load and number of LEDs were optimized. The process efficiency was evaluated in terms of IBU removal using high performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Additionally, the mineralization was investigated by determining the dissolved organic carbon (DOC) content. The chemical structures of transformation products were proposed based on the data obtained using liquid chromatography with a high resolution mass spectrometer ion trap/time-of-flight (LC-MS-IT-TOF). A possible pathway of IBU degradation was accordingly proposed. Bioassays were performed using the marine bacterium Vibrio fischeri to evaluate the potential acute toxicity of original and treated wastewaters. TiO2 heterogeneous photocatalysis was efficient to remove IBU from UP and from PIWW, and less efficient in treating the wastewater from the municipal WWTP. The acute toxicity decreased by ca. 40% after treatment, regardless of the studied matrix.

Keywords: acute toxicity, Ibuprofen, UV-LEDs, wastewaters

Procedia PDF Downloads 231
9124 Biosorption of Cu (II) and Zn (II) from Real Wastewater onto Cajanus cajan Husk

Authors: Mallappa A. Devani, John U. Kennedy Oubagaranadin, Basudeb Munshi

Abstract:

In this preliminary work, locally available husk of Cajanus cajan (commonly known in India as Tur or Arhar), a bio-waste, has been used in its physically treated and chemically activated form for the removal of binary Cu (II) and Zn(II) ions from the real waste water obtained from an electroplating industry in Bangalore, Karnataka, India and from laboratory prepared binary solutions having almost similar composition of the metal ions, for comparison. The real wastewater after filtration and dilution for five times was used for biosorption studies at the normal pH of the solutions at room temperature. Langmuir's binary model was used to calculate the metal uptake capacities of the biosorbents. It was observed that Cu(II) is more competitive than Zn(II) in biosorption. In individual metal biosorption, Cu(II) uptake was found to be more than that of the Zn(II) and a similar trend was observed in the binary metal biosorption from real wastewater and laboratory prepared solutions. FTIR analysis was carried out to identify the functional groups in the industrial wastewater and EDAX for the elemental analysis of the biosorbents after experiments.

Keywords: biosorption, Cajanus cajan, multi metal remediation, wastewater

Procedia PDF Downloads 368
9123 Assessment of Current and Future Opportunities of Chemical and Biological Surveillance of Wastewater for Human Health

Authors: Adam Gushgari

Abstract:

The SARS-CoV-2 pandemic has catalyzed the rapid adoption of wastewater-based epidemiology (WBE) methodologies both domestically and internationally. To support the rapid scale-up of pandemic-response wastewater surveillance systems, multiple federal agencies (i.e. US CDC), non-government organizations (i.e. Water Environment Federation), and private charities (i.e. Bill and Melinda Gates Foundation) have funded over $220 million USD supporting development and expanding equitable access of surveillance methods. Funds were primarily distributed directly to municipalities under the CARES Act (90.6%), followed by academic projects (7.6%), and initiatives developed by private companies (1.8%). In addition to federal funding for wastewater monitoring primarily conducted at wastewater treatment plants, state/local governments and private companies have leveraged wastewater sampling to obtain health and lifestyle data on student, prison inmate, and employee populations. We explore the viable paths for expansion of the WBE m1ethodology across a variety of analytical methods; the development of WBE-specific samplers and real-time wastewater sensors; and their application to various governments and private sector industries. Considerable investment in, and public acceptance of WBE suggests the methodology will be applied to other future notifiable diseases and health risks. Early research suggests that WBE methods can be applied to a host of additional “biological insults” including communicable diseases and pathogens, such as influenza, Cryptosporidium, Giardia, mycotoxin exposure, hepatitis, dengue, West Nile, Zika, and yellow fever. Interest in chemical insults is also likely, providing community health and lifestyle data on narcotics consumption, use of pharmaceutical and personal care products (PPCP), PFAS and hazardous chemical exposure, and microplastic exposure. Successful application of WBE to monitor analytes correlated with carcinogen exposure, community stress prevalence, and dietary indicators has also been shown. Additionally, technology developments of in situ wastewater sensors, WBE-specific wastewater samplers, and integration of artificial intelligence will drastically change the landscape of WBE through the development of “smart sewer” networks. The rapid expansion of the WBE field is creating significant business opportunities for professionals across the scientific, engineering, and technology industries ultimately focused on community health improvement.

Keywords: wastewater surveillance, wastewater-based epidemiology, smart cities, public health, pandemic management, substance abuse

Procedia PDF Downloads 81
9122 Treatment Performance of Waste Stabilization Ponds: A Look at Physic-Chemical Parameters in Ghana

Authors: Emmanuel Adu-Ofori, Richard Amfo-Otu, Isaac O. A. Hodgson

Abstract:

The study was conducted to determine the treatment performance of waste stabilization ponds in Akosombo. A total of 15 samples were taken for four consecutive months from the inlet, facultative pond and outlet of maturation pond. The samples were preserved and transported to Water Research Institute for laboratory analysis. The wastewater quality parameters analysed to assess the treatment performance were total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia and phosphate. The results of the laboratory analysis showed that the ponds achieved TSS, BOD and COD removals of about 30, 82 and 75 per cent respectively. Statistically, the BOD (t = 10.27, p = 6.68 x 10-6) and COD (t = 4.23, p = 0.0029) of the raw sewage were significantly different from the total effluent at 95% confidence interval. The ammonia and phosphate removal was as high as 92% and 84% respectively. The quality parameters analysed for the final effluent from the Waste Stabilisation Pond was within the EPA guideline values. The general treatment performances were very good with respect to the parameters studied and does not pose threat to the receiving water body. A further study to examine the bacteriological treatment performance was recommended.

Keywords: waste stabilization pond, wast water, treatment performance, nutrient, Ghana

Procedia PDF Downloads 303
9121 Ultrafiltration Process Intensification for Municipal Wastewater Reuse: Water Quality, Optimization of Operating Conditions and Fouling Management

Authors: J. Yang, M. Monnot, T. Eljaddi, L. Simonian, L. Ercolei, P. Moulin

Abstract:

The application of membrane technology to wastewater treatment has expanded rapidly under increasing stringent legislation and environmental protection requirements. At the same time, the water resource is becoming precious, and water reuse has gained popularity. Particularly, ultrafiltration (UF) is a very promising technology for water reuse as it can retain organic matters, suspended solids, colloids, and microorganisms. Nevertheless, few studies dealing with operating optimization of UF as a tertiary treatment for water reuse on a semi-industrial scale appear in the literature. Therefore, this study aims to explore the permeate water quality and to optimize operating parameters (maximizing productivity and minimizing irreversible fouling) through the operation of a UF pilot plant under real conditions. The fully automatic semi-industrial UF pilot plant with periodic classic backwashes (CB) and air backwashes (AB) was set up to filtrate the secondary effluent of an urban wastewater treatment plant (WWTP) in France. In this plant, the secondary treatment consists of a conventional activated sludge process followed by a sedimentation tank. The UF process was thus defined as a tertiary treatment and was operated under constant flux. It is important to note that a combination of CB and chlorinated AB was used for better fouling management. The 200 kDa hollow fiber membrane was used in the UF module, with an initial permeability (for WWTP outlet water) of 600 L·m-2·h⁻¹·bar⁻¹ and a total filtration surface of 9 m². Fifteen filtration conditions with different fluxes, filtration times, and air backwash frequencies were operated for more than 40 hours of each to observe their hydraulic filtration performances. Through comparison, the best sustainable condition was flux at 60 L·h⁻¹·m⁻², filtration time at 60 min, and backwash frequency of 1 AB every 3 CBs. The optimized condition stands out from the others with > 92% water recovery rates, better irreversible fouling control, stable permeability variation, efficient backwash reversibility (80% for CB and 150% for AB), and no chemical washing occurrence in 40h’s filtration. For all tested conditions, the permeate water quality met the water reuse guidelines of the World Health Organization (WHO), French standards, and the regulation of the European Parliament adopted in May 2020, setting minimum requirements for water reuse in agriculture. In permeate: the total suspended solids, biochemical oxygen demand, and turbidity were decreased to < 2 mg·L-1, ≤ 10 mg·L⁻¹, < 0.5 NTU respectively; the Escherichia coli and Enterococci were > 5 log removal reduction, the other required microorganisms’ analysis were below the detection limits. Additionally, because of the COVID-19 pandemic, coronavirus SARS-CoV-2 was measured in raw wastewater of WWTP, UF feed, and UF permeate in November 2020. As a result, the raw wastewater was tested positive above the detection limit but below the quantification limit. Interestingly, the UF feed and UF permeate were tested negative to SARS-CoV-2 by these PCR assays. In summary, this work confirms the great interest in UF as intensified tertiary treatment for water reuse and gives operational indications for future industrial-scale production of reclaimed water.

Keywords: semi-industrial UF pilot plant, water reuse, fouling management, coronavirus

Procedia PDF Downloads 93
9120 Use of Natural Fibers in Landfill Leachate Treatment

Authors: Araujo J. F. Marina, Araujo F. Marcus Vinicius, Mulinari R. Daniella

Abstract:

Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment. In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber. These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale. In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%. The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.

Keywords: lndfill leachate, chemical treatment, natural fibers, advanced oxidation processes

Procedia PDF Downloads 336
9119 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye

Authors: Rahul Jarariya

Abstract:

The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.

Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21

Procedia PDF Downloads 155
9118 Significance of Treated Wasteater in Facing Consequences of Climate Change in Arid Regions

Authors: Jamal A. Radaideh, A. J. Radaideh

Abstract:

Being a problem threatening the planet and its ecosystems, the climate change has been considered for a long time as a disturbing topic impacting water resources in Jordan. Jordan is expected for instance to be highly vulnerable to climate change consequences given its unbalanced distribution between water resources availability and existing demands. Thus, action on adaptation to climate impacts is urgently needed to cope with the negative consequences of climate change. Adaptation to global change must include prudent management of treated wastewater as a renewable resource, especially in regions lacking groundwater or where groundwater is already over exploited. This paper highlights the expected negative effects of climate change on the already scarce water sources and to motivate researchers and decision makers to take precautionary measures and find alternatives to keep the level of water supplies at the limits required for different consumption sectors in terms of quantity and quality. The paper will focus on assessing the potential for wastewater recycling as an adaptation measure to cope with water scarcity in Jordan and to consider wastewater as integral part of the national water budget to solve environmental problems. The paper also identified a research topic designed to help the nation progress in making the most appropriate use of the resource, namely for agricultural irrigation. Wastewater is a promising alternative to fill the shortage in water resources, especially due to climate changes, and to preserve the valuable fresh water to give priority to securing drinking water for the population from these resources and at the same time raise the efficiency of the use of available resources. Jordan has more than 36 wastewater treatment plants distributed throughout the country and producing about 386,000 CM/day of reclaimed water. According to the reports of water quality control programs, more than 85 percent of this water is of a quality that is completely identical to the quality suitable for irrigation of field crops and forest trees according to the requirements of Jordanian Standard No. 893/2006.

Keywords: climate change effects on water resources, adaptation on climate change, treated wastewater recycling, arid and semi-arid regions, Jordan

Procedia PDF Downloads 96
9117 Assessment the Infiltration of the Wastewater Ponds and Its Impact on the Water Quality of Pleistocene Aquifer at El Sadat City Using 2-D Electrical Resistivity Tomography and Water Chemistry

Authors: Abeer A. Kenawy, Usama Massoud, El-Said A. Ragab, Heba M. El-Kosery

Abstract:

2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims to investigate the area around the wastewater ponds to determine the possibility of water percolation from the wastewater ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural, and industrial activities. In this concern, seven ERT profiles were measured around the wastewater ponds. Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations, anions, nutrients, and heavy elements. Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. In addition, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. In addition, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are not the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural, and anthropogenic processes.

Keywords: El Sadat city, ERT, hydrochemistry, percolation, wastewater ponds

Procedia PDF Downloads 323
9116 Maintaining Parenthood: Challenges for Mothers Who Are Victims of Domestic Violence

Authors: Druzhinenko-Silhan Daria, Metz Claire

Abstract:

In this paper, we introduce the findings of the "Conjugal violence: mothers' parenting and court decisions" (VIC-PADEJ) study, focusing on the motherhood experiences of domestic violence victims. Utilizing a longitudinal research protocol that encompassed clinical interviews, projective methods, and various questionnaires, we detail the outcomes derived from seven clinical interviews with mothers alongside a comprehensive analysis. The findings reveal a pronounced decline in security and an imperative need for structuring both social and internal realities. The convergence of these findings indicates that parenting, post-experiencing domestic violence, may become an unattainable task due to the deficiency of internal resources.

Keywords: domestic violence, parenthood, mothers victims, projective methods, longitudinal research, alceste analysis

Procedia PDF Downloads 27
9115 Modeling of the Biodegradation Performance of a Membrane Bioreactor to Enhance Water Reuse in Agri-food Industry - Poultry Slaughterhouse as an Example

Authors: masmoudi Jabri Khaoula, Zitouni Hana, Bousselmi Latifa, Akrout Hanen

Abstract:

Mathematical modeling has become an essential tool for sustainable wastewater management, particularly for the simulation and the optimization of complex processes involved in activated sludge systems. In this context, the activated sludge model (ASM3h) was used for the simulation of a Biological Membrane Reactor (MBR) as it includes the integration of biological wastewater treatment and physical separation by membrane filtration. In this study, the MBR with a useful volume of 12.5 L was fed continuously with poultry slaughterhouse wastewater (PSWW) for 50 days at a feed rate of 2 L/h and for a hydraulic retention time (HRT) of 6.25h. Throughout its operation, High removal efficiency was observed for the removal of organic pollutants in terms of COD with 84% of efficiency. Moreover, the MBR has generated a treated effluent which fits with the limits of discharge into the public sewer according to the Tunisian standards which were set in March 2018. In fact, for the nitrogenous compounds, average concentrations of nitrate and nitrite in the permeat reached 0.26±0.3 mg. L-1 and 2.2±2.53 mg. L-1, respectively. The simulation of the MBR process was performed using SIMBA software v 5.0. The state variables employed in the steady state calibration of the ASM3h were determined using physical and respirometric methods. The model calibration was performed using experimental data obtained during the first 20 days of the MBR operation. Afterwards, kinetic parameters of the model were adjusted and the simulated values of COD, N-NH4+and N- NOx were compared with those reported from the experiment. A good prediction was observed for the COD, N-NH4+and N- NOx concentrations with 467 g COD/m³, 110.2 g N/m³, 3.2 g N/m³ compared to the experimental data which were 436.4 g COD/m³, 114.7 g N/m³ and 3 g N/m³, respectively. For the validation of the model under dynamic simulation, the results of the experiments obtained during the second treatment phase of 30 days were used. It was demonstrated that the model simulated the conditions accurately by yielding a similar pattern on the variation of the COD concentration. On the other hand, an underestimation of the N-NH4+ concentration was observed during the simulation compared to the experimental results and the measured N-NO3 concentrations were lower than the predicted ones, this difference could be explained by the fact that the ASM models were mainly designed for the simulation of biological processes in the activated sludge systems. In addition, more treatment time could be required by the autotrophic bacteria to achieve a complete and stable nitrification. Overall, this study demonstrated the effectiveness of mathematical modeling in the prediction of the performance of the MBR systems with respect to organic pollution, the model can be further improved for the simulation of nutrients removal for a longer treatment period.

Keywords: activated sludge model (ASM3h), membrane bioreactor (MBR), poultry slaughter wastewater (PSWW), reuse

Procedia PDF Downloads 32
9114 The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions

Authors: Anza-Vhudziki Mboyi, Ilunga Kamika, Maggy Momba

Abstract:

The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal.

Keywords: bacteria, biological treatment, chemical oxygen demand (COD) and nanomaterials, consortium, pH, protozoan

Procedia PDF Downloads 276
9113 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater

Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar

Abstract:

Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.

Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater

Procedia PDF Downloads 565
9112 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 326
9111 Demand for Domestic Marine and Coastal Tourism and Day Trips on an Island Nation

Authors: John Deely, Stephen Hynes, Mary Cawley, Sarah Hogan

Abstract:

Domestic marine and coastal tourism have increased in importance over the last number of years due to the impacts of international travel, environmental concerns, associated health benefits and COVID-19 related travel restrictions. Consequently, this paper conceptualizes domestic marine and coastal tourism within an economic framework. Two logit models examine the factors that influence participation in the coastal day trips and overnight stays markets, respectively. Two truncated travel cost models are employed to explore trip duration, one analyzing the number of day trips taken and the other examining the number of nights spent in marine and coastal areas. Although a range of variables predicts participation, no one variable had a significant and consistent effect on every model. A division in access to domestic marine and coastal tourism is also observed based on variation in household income. The results also indicate a vibrant day trip market and large consumer surpluses.

Keywords: domestic marine and coastal tourism, day tripper, participation models, truncated travel cost model

Procedia PDF Downloads 114
9110 Heavy Metal Adsorption from Synthetic Wastewater Using Agro Waste-Based Nanoparticles: A Comparative Study

Authors: Nomthandazo Precious Sibiya, Thembisile Patience Mahlangu, Sudesh Rathilal

Abstract:

Heavy metal removal is critical in the wastewater treatment process due to its numerous harmful effects on human and aquatic life. There are several chemical and physical techniques for removing heavy metals from wastewater, including ion exchange, reverse osmosis, adsorption, electrodialysis, and ultrafiltration. However, adsorption technology has captivated researchers for years due to its low cost, high efficiency, and compatible with the environment. In this study, the adsorption effectiveness of three modified agro-waste materials was explored for the removal of lead from synthetic wastewater: banana peels (BP), orange peels (OP), and sugarcane bagasse (SB). The magnetite (Fe₃O₄) is incorporated with BP, OP, and SB at a ratio of 1:1 to create magnetic biosorbents. Characterization of biosorbents was carried out using and scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) to investigate surface morphology and elemental compositions, respectively. A series of batch experiments were carried out to investigate the effects of adsorbent mass, agitation time, and initial pH concentration on adsorption behaviour, as well as adsorption isotherms and kinetics. The removal efficiency of lead by the modified agro-waste materials proved to be superior to that of non-modified agro-waste materials. The proof of concept was achieved, and agro-waste materials can be paired with adsorption technology to effectively remove lead from aqueous media. The use of agricultural waste as biosorbents will aid in waste reduction and management.

Keywords: adsorption, isotherms, kinetics, agro waste, nanoparticles, batch

Procedia PDF Downloads 43
9109 Extraction and Quantification of Triclosan in Wastewater Samples Using Molecularly Imprinted Membrane Adsorbent

Authors: Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Phumlane Selby Mdluli, Peter Papoh Ndibewu, Kholofelo Clifford Malematja

Abstract:

This paper reports on the successful extraction and quantification of an antibacterial and antifungal agent present in some consumer products (Triclosan: C₁₂H₇Cl₃O₂)generally found in wastewater or effluents using molecularly imprinted membrane adsorbent (MIMs) followed by quantification and removal on a high-performance liquid chromatography (HPLC). Triclosan is an antibacterial and antifungal agent present in some consumer products like toothpaste, soaps, detergents, toys, and surgical cleaning treatments. The MIMs was fabricated usingpolyvinylidene fluoride (PVDF) polymer with selective micro composite particles known as molecularly imprinted polymers (MIPs)via a phase inversion by immersion precipitation technique. This resulted in an improved hydrophilicity and mechanical behaviour of the membranes. Wastewater samples were collected from the Umbogintwini Industrial Complex (UIC) (south coast of Durban, KwaZulu-Natal in South Africa). central UIC effluent treatment plant and pre-treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The resultant MIMs had an adsorption efficiency of 97% of TCS with reference to NIMs and bare membrane, which had 92%, 88%, respectively. The analytical method utilized in this review had limits of detection (LoD) and limits of quantification (LoQ) of 0.22, 0.71µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68%. The detection of TCS was monitored for 10 consecutive days, where optimum TCS traces detected in the treated wastewater was 55.0μg/L inday 9 of the monitored days, while the lowest detected was 6.0μg/L. As the concentrations of analytefound in effluent water samples were not so diverse, this study suggested that MIMs could be the best potential adsorbent for the development and continuous progress in membrane technologyand environmental sciences, lending its capability to desalination.

Keywords: molecularly imprinted membrane, triclosan, phase inversion, wastewater

Procedia PDF Downloads 97
9108 Energy and Carbon Footprint Analysis of Food Waste Treatment Alternatives for Hong Kong

Authors: Asad Iqbal, Feixiang Zan, Xiaoming Liu, Guang-Hao Chen

Abstract:

Water, food, and energy nexus is a vital subject to achieve sustainable development goals worldwide. Wastewater (WW) and food waste (FW) from municipal sources are primary contributors to their respective wastage sum from a country. Along with the loss of these invaluable natural resources, their treatment systems also consume a lot of abiotic energy and resources input with a perceptible contribution to global warming. Hence, the global paradigm has evolved from simple pollution mitigation to a resource recovery system (RRS). In this study, the prospects of six alternative FW treatment scenarios are quantitatively evaluated for Hong Kong in terms of energy use and greenhouse emissions (GHEs) potential, using life cycle assessment (LCA). Considered scenarios included: aerobic composting, anaerobic digestion (AD), combine AD and composting (ADC), co-disposal, and treatment with wastewater (CoD-WW), incineration, and conventional landfilling as base-case. Results revealed that in terms of GHEs saving, all-new scenarios performed significantly better than conventional landfilling, with ADC scenario as best-case and incineration, AD alone, CoD-WW ranked as second, third, and fourth best respectively. Whereas, composting was the worst-case scenario in terms of energy balance, while incineration ranked best and AD alone, ADC, and CoD-WW ranked as second, third, and fourth best, respectively. However, these results are highly sensitive to boundary settings, e.g., the inclusion of the impact of biogenic carbon emissions and waste collection and transportation, and several other influential parameters. The study provides valuable insights and policy guidelines for the decision-makers locally and a generic modelling template for environmental impact assessment.

Keywords: food waste, resource recovery, greenhouse emissions, energy balance

Procedia PDF Downloads 85
9107 A Review of the Factors That Influence on Nutrient Removal in Upflow Filters

Authors: Ali Alzeyadi, Edward Loffill, Rafid Alkhaddar Ali Alattabi

Abstract:

Phosphate, ammonium, and nitrates are forms of nutrients; they are released from different sources. High nutrient levels contribute to the eutrophication of water bodies by accelerating the extraordinary growth of algae. Recently, many filtration and treatment systems were developed and used for different removal processes. Due to enhanced operational aspects for the up-flow, continuous, granular Media filter researchers became more interested in further developing this technology and its performance for nutrient removal from wastewater. Environmental factors significantly affect the filtration process performance, and understanding their impact will help to maintain the nutrient removal process. Phosphate removal by phosphate sorption materials PSMs and nitrogen removal biologically are the methods of nutrient removal that have been discussed in this paper. Hence, the focus on the factors that influence these processes is the scope of this work. The finding showed the presence of factors affecting both removal processes; the size, shape, and roughness of the filter media particles play a crucial role in supporting biofilm formation. On the other hand, all of which are effected on the reactivity of surface between the media and phosphate. Many studies alluded to factors that have significant influence on the biological removal for nitrogen such as dissolved oxygen, temperature, and pH; this is due to the sensitivity of biological processes while the phosphate removal by PSMs showed less affected by these factors. This review work provides help to the researchers in create a comprehensive approach in regards study the nutrient removal in up flow filtration systems.

Keywords: nitrogen biological treatment, nutrients, psms, upflow filter, wastewater treatment

Procedia PDF Downloads 295
9106 Fluoranthene Removal in Wastewater Using Biological and Physico-Chemical Methods

Authors: Angelica Salmeron Alcocer, Deifilia Ahuatzi Chacon, Felipe Rodriguez Casasola

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are produced naturally (forest fires, volcanic eruptions) and human activity (burning fossil fuels). Concern for PAHs is due to their toxic, mutagenic and carcinogenic effects and so pose a potential risk to human health and ecology. Therefore these are considered the most toxic components of oil, they are highly hydrophobic, making them easily depositable on the floor, air and water. One method of removing PAHs of contaminated soil used surfactants such as Tween 80, which it has been reported as less toxic and also increases the solubility of the PAH compared to other surfactants, fluoranthene is a PAH with molecular formula C16H10, its name derives from the fluorescence which presents to UV light. In this paper, a study of the fluoranthene removal solubilized with Tween 80 in synthetic wastewater using a microbial community (isolated from soil of coffee plantations in the state of Veracruz, Mexico) and Fenton oxidation method was performed. The microbial community was able to use both tween 80 and fluoranthene as carbon sources for growth, when the biological treatment in batch culture was applied, 100% of fluoranthene was mineralized, this only occurred at an initial concentration of 100 ppm, but by increasing the initial concentration of fluoranthene the removal efficiencies decay and degradation time increases due to the accumulation of byproducts more toxic or less biodegradable, however when the Fenton oxidation was previously applied to the biological treatment, it was observed that removal of fluoranthene improved because it is consumed approximately 2.4 times faster.

Keywords: fluoranthene, polycyclic aromatic hydrocarbons, biological treatment, fenton oxidation

Procedia PDF Downloads 221
9105 Biodegradation Study of Diethyl Phthalate Using Bacteria Isolated from Plastic Industry Wastewater Discharge Site

Authors: Sangram Shamrao Patil, Hara Mohan Jena

Abstract:

Phthalates are among the most common organic pollutant since they have become widespread in the environment and found in sediments, natural waters, soils, plants, landfill leachates, biota including human tissue and aquatic organisms. Diethyl phthalate (DEP) is a low molecular weight phthalate which has wide applications as plasticizer and become a major cause of environmental pollution. Environmental protection agency (EPA) listed DEP as priority pollutant because of its toxicity and they recommended human health ambient water quality criterion for diethyl phthalate (DEP) as 4 mg/l. Therefore, wastes containing phthalates require proper treatment before being discharged into the environment. Biodegradation is attractive and efficient treatment method as it is cost effective and produces non-toxic end products. In the present study, a DEP degrading aerobic bacterium was isolated from soil contaminated with plastic industry wastewater. Morphological and biochemical characteristics of isolate were performed. 16S rRNA sequencing and phylogenetic analysis of isolate was carried out and it was identified as Empedobacter brevis. Isolate has been found to tolerate up to 1650 mg/l of DEP. This study will be significant for exploring an application of microbes for remediation of phthalates and development of a suitable bioreactor.

Keywords: diethyl phthalate, plasticizer, pollutant, biodegradation

Procedia PDF Downloads 251
9104 Carbon@NiCoFeS Nanoparticles for Photocatalytic Degradation of Organic Pollutants via Peroxymonosulfate Activation

Authors: Raqiqa Tur Rasool, Ghulam Abbas Ashraf

Abstract:

This study presents the synthesis and application of Carbon@NiCoFeS nanoparticles as a photocatalyst for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. The Carbon@NiCoFeS nanoparticles, synthesized via a hydrothermal method, exhibit a highly crystalline and uniformly distributed nanostructure, as confirmed by XRD, SEM, TEM, and FTIR analyses. The photocatalytic performance was tested using ibuprofen (IBU) as a model pollutant under visible light, demonstrating remarkable efficiency across various conditions, including different concentrations of photocatalyst and PMS and a range of pH values. The enhanced activity is attributed to the synergistic effects of Ni, Co, and Fe, promoting effective electron-hole separation and reactive radical generation, primarily SO4•− and •OH. Quenching experiments highlighted sulfate radicals' predominant role in the degradation process. The Carbon@NiCoFeS photocatalyst also showed excellent reusability and stability over multiple cycles, and its versatility in degrading various organic pollutants underscores its potential for practical wastewater treatment applications. This research offers significant insights into multi-metal sulfide photocatalyst design, showcasing Carbon@NiCoFeS nanoparticles' promising role in environmental remediation via efficient PMS activation.

Keywords: NiCoFeS nanoparticles, photocatalytic degradation, peroxymonosulfate activation, organic pollutant removal, wastewater treatment

Procedia PDF Downloads 11
9103 Application of Biopolymer for Adsorption of Methylene Blue Dye from Simulated Effluent: A Green Method for Textile Industry Wastewater Treatment

Authors: Rabiya, Ramkrishna Sen

Abstract:

The textile industry releases huge volume of effluent containing reactive dyes in the nearby water bodies. These effluents are significant source of water pollution since most of the dyes are toxic in nature. Moreover, it scavenges the dissolved oxygen essential to the aquatic species. Therefore, it is necessary to treat the dye effluent before it is discharged in the nearby water bodies. The present study focuses on removing the basic dye methylene blue from simulated wastewater using biopolymer. The biopolymer was partially purified from the culture of Bacillus licheniformis by ultrafiltration. Based on the elution profile of the biopolymer from ion exchange column, it was found to be a negatively charged molecule. Its net anionic nature allows the biopolymer to adsorb positively charged molecule, methylene blue. The major factors which influence the removal of dye by the biopolymer such as incubation time, pH, initial dye concentration were evaluated. The methylene blue uptake by the biopolymer is more (14.84 mg/g) near neutral pH than in acidic pH (12.05mg/g) of the water. At low pH, the lower dissociation of the dye molecule as well as the low negative charge available on the biopolymer reduces the interaction between the biopolymer and dye. The optimum incubation time for maximum removal of dye was found to be 60 min. The entire study was done with 25 mL of dye solution in 100 mL flask at 25 °C with an amount of 11g/L of biopolymer. To study the adsorption isotherm, the dye concentration was varied in the range of 25mg/L to 205mg/L. The dye uptake by the biopolymer against the equilibrium concentration was plotted. The plot indicates that the adsorption of dye by biopolymer follows the Freundlich adsorption isotherm (R-square 0.99). Hence, these studies indicate the potential use of biopolymer for the removal of basic dye from textile wastewater in an ecofriendly and sustainable way.

Keywords: biopolymer, methylene blue dye, textile industry, wastewater

Procedia PDF Downloads 124
9102 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins of North Gaza Emergency Sewage Treatment Plant as Case Study

Authors: Sadi Ali, Yaser Kishawi

Abstract:

As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l, and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.

Keywords: soil aquifer treatment, recovery and reuse scheme, infiltration basins, North Gaza

Procedia PDF Downloads 224
9101 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption

Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.

Abstract:

The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.

Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design

Procedia PDF Downloads 57
9100 Addressing the Water Shortage in Beijing: Increasing Water Use Efficiency in Domestic Sector

Authors: Chenhong Peng

Abstract:

Beijing, the capital city of China, is running out of water. The water resource per capita in Beijing is only 106 cubic meter, accounts for 5% of the country’s average level and less than 2% of the world average level. The tension between water supply and demand is extremely serious. For one hand, the surface and ground water have been over-exploited during the last decades; for the other hand, water demand keep increasing as the result of population and economic growth. There is a massive gap between water supply and demand. This paper will focus on addressing the water shortage in Beijing city by increasing water use efficiency in domestic sector. First, we will emphasize on the changing structure of water supply and demand in Beijing under the economic development and restructure during the last decade. Second, by analyzing the water use efficiency in agriculture, industry and domestic sectors in Beijing, we identify that the key determinant for addressing the water crisis is to increase the water use efficiency in domestic sector. Third, this article will explore the two primary causes for the water use inefficiency in Beijing: The ineffective water pricing policy and the poor water education and communication policy. Finally, policy recommendation will offered to improve the water use efficiency in domestic sector by making and implementing an effective water pricing policy and people-engaged water education and communication policy.

Keywords: Beijing, water use efficiency, domestic sector, water pricing policy, water education policy

Procedia PDF Downloads 525