Search results for: deep globe land cover classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7163

Search results for: deep globe land cover classification

6833 Analysis of Legal System of Land Use in Archaeological Sites

Authors: Yen-Sheng Ho

Abstract:

It is important to actively adjust the legal system of land use in archaeological sites and the reward system to meet the needs of modern society and to solve the dilemma of government management. Under the principle of administration according to law and the principle of the clarity of law, human rights, legal orders and legitimate expectation shall be regulated. The Cultural Heritage Preservation Act has many norms related to archaeological sites in Taiwan. However, in practice, the preservation of archaeological sites still encounters many challenges. For instance, some archaeological sites have ‘management and maintenance plans’. The restrictions of land uses are not clearly defined making it difficult to determine how planting types and cultivation methods will impact the underground relics. In addition, there are questions as follows. How to coordinate the ‘site preservation plan’ with the Regional Planning Act and the Urban Planning Act? How to define preservation of land, preservation area and other uses of land or area? How to define land use in practice? How to control land use? After selecting three sites for the case investigation, this study will analyze the site’s land use status and propose the direction of land use and control methods. This study suggests that the prerequisite to limit the use of land is to determine the public interest in the preservation of the site. Another prerequisite is to establish a mechanism for permitting the use of the site and for setting the site preservation and zoning maintenance practices according to the Regional Planning Act, Urban Planning Act and other relevant rules, such as, land use zoning, land use control, land management, land maintenance, regional development and management and etc.

Keywords: archaeological site, land use and site preservation plan, regional planning, urban planning

Procedia PDF Downloads 266
6832 Radical Web Text Classification Using a Composite-Based Approach

Authors: Kolade Olawande Owoeye, George R. S. Weir

Abstract:

The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.

Keywords: extremist, web pages, classification, semantics, posit

Procedia PDF Downloads 140
6831 Urban Heat Islands Analysis of Matera, Italy Based on the Change of Land Cover Using Satellite Landsat Images from 2000 to 2017

Authors: Giuseppina Anna Giorgio, Angela Lorusso, Maria Ragosta, Vito Telesca

Abstract:

Climate change is a major public health threat due to the effects of extreme weather events on human health and on quality of life in general. In this context, mean temperatures are increasing, in particular, extreme temperatures, with heat waves becoming more frequent, more intense, and longer lasting. In many cities, extreme heat waves have drastically increased, giving rise to so-called Urban Heat Island (UHI) phenomenon. In an urban centre, maximum temperatures may be up to 10° C warmer, due to different local atmospheric conditions. UHI occurs in the metropolitan areas as function of the population size and density of a city. It consists of a significant difference in temperature compared to the rural/suburban areas. Increasing industrialization and urbanization have increased this phenomenon and it has recently also been detected in small cities. Weather conditions and land use are one of the key parameters in the formation of UHI. In particular surface urban heat island is directly related to temperatures, to land surface types and surface modifications. The present study concern a UHI analysis of Matera city (Italy) based on the analysis of temperature, change in land use and land cover, using Corine Land Cover maps and satellite Landsat images. Matera, located in Southern Italy, has a typical Mediterranean climate with mild winters and hot and humid summers. Moreover, Matera has been awarded the international title of the 2019 European Capital of Culture. Matera represents a significant example of vernacular architecture. The structure of the city is articulated by a vertical succession of dug layers sometimes excavated or partly excavated and partly built, according to the original shape and height of the calcarenitic slope. In this study, two meteorological stations were selected: MTA (MaTera Alsia, in industrial zone) and MTCP (MaTera Civil Protection, suburban area located in a green zone). In order to evaluate the increase in temperatures (in terms of UHI occurrences) over time, and evaluating the effect of land use on weather conditions, the climate variability of temperatures for both stations was explored. Results show that UHI phenomena is growing in Matera city, with an increase of maximum temperature values at a local scale. Subsequently, spatial analysis was conducted by Landsat satellite images. Four years was selected in the summer period (27/08/2000, 27/07/2006, 11/07/2012, 02/08/2017). In Particular, Landsat 7 ETM+ for 2000, 2006 and 2012 years; Landsat 8 OLI/TIRS for 2017. In order to estimate the LST, Mono Window Algorithm was applied. Therefore, the increase of LST values spatial scale trend has been verified, in according to results obtained at local scale. Finally, the analysis of land use maps over the years by the LST and/or the maximum temperatures measured, show that the development of industrialized area produces a corresponding increase in temperatures and consequently a growth in UHI.

Keywords: climate variability, land surface temperature, LANDSAT images, urban heat island

Procedia PDF Downloads 118
6830 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 130
6829 Land Suitability Analysis for Maize Production in Egbeda Local Government Area of Oyo State Using GIS Techniques

Authors: Abegunde Linda, Adedeji Oluwatayo, Tope-Ajayi Opeyemi

Abstract:

Maize constitutes a major agrarian production for use by the vast population but despite its economic importance, it has not been produced to meet the economic needs of the country. Achieving optimum yield in maize can meaningfully be supported by land suitability analysis in order to guarantee self-sufficiency for future production optimization. This study examines land suitability for maize production through the analysis of the physic-chemical variations in soil properties over space using a Geographic Information System (GIS) framework. Physic-chemical parameters of importance selected include slope, landuse, and physical and chemical properties of the soil. Landsat imagery was used to categorize the landuse, Shuttle Radar Topographic Mapping (SRTM) generated the slope and soil samples were analyzed for its physical and chemical components. Suitability was categorized into highly, moderately and marginally suitable based on Food and Agricultural Organisation (FAO) classification using the Analytical Hierarchy Process (AHP) technique of GIS. This result can be used by small scale farmers for efficient decision making in the allocation of land for maize production.

Keywords: AHP, GIS, MCE, suitability, Zea mays

Procedia PDF Downloads 392
6828 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion

Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao

Abstract:

Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.

Keywords: image classification, decision fusion, multi-temporal, remote sensing

Procedia PDF Downloads 117
6827 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 87
6826 Aromatic Medicinal Plant Classification Using Deep Learning

Authors: Tsega Asresa Mengistu, Getahun Tigistu

Abstract:

Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.

Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network

Procedia PDF Downloads 426
6825 TELUM Land Use Model: An Investigation of Data Requirements and Calibration Results for Chittenden County MPO, U.S.A.

Authors: Georgia Pozoukidou

Abstract:

TELUM software is a land use model designed specifically to help metropolitan planning organizations (MPOs) prepare their transportation improvement programs and fulfill their numerous planning responsibilities. In this context obtaining, preparing, and validating socioeconomic forecasts are becoming fundamental tasks for an MPO in order to ensure that consistent population and employment data are provided to travel demand models. Chittenden County Metropolitan Planning Organization of Vermont State was used as a case study to test the applicability of TELUM land use model. The technical insights and lessons learned from the land use model application have transferable value for all MPOs faced with land use forecasting development and transportation modelling.

Keywords: calibration data requirements, land use models, land use planning, metropolitan planning organizations

Procedia PDF Downloads 285
6824 Evaluating Urban Land Expansion Using Geographic Information System and Remote Sensing in Kabul City, Afghanistan

Authors: Ahmad Sharif Ahmadi, Yoshitaka Kajita

Abstract:

With massive population expansion and fast economic development in last decade, urban land has increasingly expanded and formed high informal development territory in Kabul city. This paper investigates integrated urbanization trends in Kabul city since the formation of the basic structure of the present city using GIS and remote sensing. This study explores the spatial and temporal difference of urban land expansion and land use categories among different time intervals, 1964-1978 and 1978-2008 from 1964 to 2008 in Kabul city. Furthermore, the goal of this paper is to understand the extent of urban land expansion and the factors driving urban land expansion in Kabul city. Many factors like population expansion, the return of refugees from neighboring countries and significant economic growth of the city affected urban land expansion. Across all the study area urban land expansion rate, population expansion rate and economic growth rate have been compared to analyze the relationship of driving forces with urban land expansion. Based on urban land change data detected by interpreting land use maps, it was found that in the entire study area the urban territory has been expanded by 14 times between 1964 and 2008.

Keywords: GIS, Kabul city, land use, urban land expansion, urbanization

Procedia PDF Downloads 328
6823 Modeling Sediment Yield of Jido River in the Rift Vally

Authors: Dawit Hailekrios Hailu

Abstract:

The main objective of this study is to predict the sediment yield of the Jido River Watershed. Jido River is the largest tributary and covers around 50% of the total catchment area of Lake Shala. This research is undertaken to analyze the sediment yield of the catchments, transport capacity of the streams and sediment deposition rates of Jido River, which is located in the Sub-basin of Shala Lake, Rift Valley Basin of Ethiopia. The input data were Meteorological, Hydrological, land use/land cover maps and soil maps collected from concerned government offices. The sediment yield of Jido River and sediment change of the streams discharging into the Shala Lake were modeled.

Keywords: sediment yield, watershed, simulation, calibration

Procedia PDF Downloads 65
6822 Approaching the Spatial Multi-Objective Land Use Planning Problems at Mountain Areas by a Hybrid Meta-Heuristic Optimization Technique

Authors: Konstantinos Tolidis

Abstract:

The mountains are amongst the most fragile environments in the world. The world’s mountain areas cover 24% of the Earth’s land surface and are home to 12% of the global population. A further 14% of the global population is estimated to live in the vicinity of their surrounding areas. As urbanization continues to increase in the world, the mountains are also key centers for recreation and tourism; their attraction is often heightened by their remarkably high levels of biodiversity. Due to the fact that the features in mountain areas vary spatially (development degree, human geography, socio-economic reality, relations of dependency and interaction with other areas-regions), the spatial planning on these areas consists of a crucial process for preserving the natural, cultural and human environment and consists of one of the major processes of an integrated spatial policy. This research has been focused on the spatial decision problem of land use allocation optimization which is an ordinary planning problem on the mountain areas. It is a matter of fact that such decisions must be made not only on what to do, how much to do, but also on where to do, adding a whole extra class of decision variables to the problem when combined with the consideration of spatial optimization. The utility of optimization as a normative tool for spatial problem is widely recognized. However, it is very difficult for planners to quantify the weights of the objectives especially when these are related to mountain areas. Furthermore, the land use allocation optimization problems at mountain areas must be addressed not only by taking into account the general development objectives but also the spatial objectives (e.g. compactness, compatibility and accessibility, etc). Therefore, the main research’s objective was to approach the land use allocation problem by utilizing a hybrid meta-heuristic optimization technique tailored to the mountain areas’ spatial characteristics. The results indicates that the proposed methodological approach is very promising and useful for both generating land use alternatives for further consideration in land use allocation decision-making and supporting spatial management plans at mountain areas.

Keywords: multiobjective land use allocation, mountain areas, spatial planning, spatial decision making, meta-heuristic methods

Procedia PDF Downloads 336
6821 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion

Authors: Hantian Wu, Bo Huang, Yuan Zeng

Abstract:

Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.

Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management

Procedia PDF Downloads 122
6820 Application of Hyperspectral Remote Sensing in Sambhar Salt Lake, A Ramsar Site of Rajasthan, India

Authors: Rajashree Naik, Laxmi Kant Sharma

Abstract:

Sambhar lake is the largest inland Salt Lake of India, declared as a Ramsar site on 23 March 1990. Due to high salinity and alkalinity condition its biodiversity richness is contributed by haloalkaliphilic flora and fauna along with the diverse land cover including waterbody, wetland, salt crust, saline soil, vegetation, scrub land and barren land which welcome large number of flamingos and other migratory birds for winter harboring. But with the gradual increase in the irrational salt extraction activities, the ecological diversity is at stake. There is an urgent need to assess the ecosystem. Advanced technology like remote sensing and GIS has enabled to look into the past, compare with the present for the future planning and management of the natural resources in a judicious way. This paper is a research work intended to present a vegetation in typical inland lake environment of Sambhar wetland using satellite data of NASA’s EO-1 Hyperion sensor launched in November 2000. With the spectral range of 0.4 to 2.5 micrometer at approximately 10nm spectral resolution with 242 bands 30m spatial resolution and 705km orbit was used to produce a vegetation map for a portion of the wetland. The vegetation map was tested for classification accuracy with a pre-existing detailed GIS wetland vegetation database. Though the accuracy varied greatly for different classes the algal communities were successfully identified which are the major sources of food for flamingo. The results from this study have practical implications for uses of spaceborne hyperspectral image data that are now becoming available. Practical limitations of using these satellite data for wetland vegetation mapping include inadequate spatial resolution, complexity of image processing procedures, and lack of stereo viewing.

Keywords: Algal community, NASA’s EO-1 Hyperion, salt-tolerant species, wetland vegetation mapping

Procedia PDF Downloads 131
6819 Sub-Pixel Level Classification Using Remote Sensing For Arecanut Crop

Authors: S. Athiralakshmi, B.E. Bhojaraja, U. Pruthviraj

Abstract:

In agriculture, remote sensing is applied for monitoring of plant development, evaluating of physiological processes and growth conditions. Especially valuable are the spatio-temporal aspects of the remotely sensed data in detecting crop state differences and stress situations. In this study, hyperion imagery is used for classifying arecanut crops based on their age so that these maps can be used in yield estimation of crops, irrigation purposes, applying fertilizers etc. Traditional hard classifiers assigns the mixed pixels to the dominant classes. The proposed method uses a sub pixel level classifier called linear spectral unmixing available in ENVI software. It provides the relative abundance of surface materials and the context within a pixel that may be a potential solution to effectively identifying the land-cover distribution. Validation is done referring to field spectra collected using spectroradiometer and the ground control points obtained from GPS.

Keywords: FLAASH, Hyperspectral remote sensing, Linear Spectral Unmixing, Spectral Angle Mapper Classifier.

Procedia PDF Downloads 517
6818 Estimation of Soil Erosion Potential in Herat Province, Afghanistan

Authors: M. E. Razipoor, T. Masunaga, K. Sato, M. S. Saboory

Abstract:

Estimation of soil erosion is economically and environmentally important in Herat, Afghanistan. Degradation of soil has negative impact (decreased soil fertility, destroyed soil structure, and consequently soil sealing and crusting) on life of Herat residents. Water and wind are the main erosive factors causing soil erosion in Herat. Furthermore, scarce vegetation cover, exacerbated by socioeconomic constraint, and steep slopes accelerate soil erosion. To sustain soil productivity and reduce soil erosion impact on human life, due to sustaining agricultural production and auditing the environment, it is needed to quantify the magnitude and extent of soil erosion in a spatial domain. Thus, this study aims to estimate soil loss potential and its spatial distribution in Herat, Afghanistan by applying RUSLE in GIS environment. The rainfall erosivity factor ranged between values of 125 and 612 (MJ mm ha-1 h-1 year-1). Soil erodibility factor varied from 0.036 to 0.073 (Mg h MJ-1 mm-1). Slope length and steepness factor (LS) values were between 0.03 and 31.4. The vegetation cover factor (C), derived from NDVI analysis of Landsat-8 OLI scenes, resulting in range of 0.03 to 1. Support practice factor (P) were assigned to a value of 1, since there is not significant mitigation practices in the study area. Soil erosion potential map was the product of these factors. Mean soil erosion rate of Herat Province was 29 Mg ha-1 year-1 that ranged from 0.024 Mg ha-1 year-1 in flat areas with dense vegetation cover to 778 Mg ha-1 year-1 in sharp slopes with high rainfall but least vegetation cover. Based on land cover map of Afghanistan, areas with soil loss rate higher than soil loss tolerance (8 Mg ha-1 year-1) occupies 98% of Forests, 81% rangelands, 64% barren lands, 60% rainfed lands, 28% urban area and 18% irrigated Lands.

Keywords: Afghanistan, erosion, GIS, Herat, RUSLE

Procedia PDF Downloads 426
6817 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia

Authors: Nathenal Thomas Lambamo

Abstract:

Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.

Keywords: septoria, leaf rust, deep learning, CNN

Procedia PDF Downloads 73
6816 The Relations between Spatial Structure and Land Price

Authors: Jung-Hun Cho, Tae-Heon Moon, Jin-Hak Lee

Abstract:

Land price contains the comprehensive characteristics of urban space, representing the social and economic features of the city. Accordingly, land price can be utilized as an indicator, which can identify the changes of spatial structure and socioeconomic variations caused by urban development. This study attempted to explore the changes in land price by a new road construction. Methodologically, it adopted Space Syntax, which can interpret urban spatial structure comprehensively, to identify the relationship between the forms of road networks and land price. The result of the regression analysis showed the ‘integration index’ of Space Syntax is statistically significant and has a strong correlation with land price. If the integration value is high, land price increases proportionally. Subsequently, using regression equation, it tried to predict the land price changes of each of the lots surrounding the roads that are newly opened. The research methods or study results have the advantage of predicting the changes in land price in an easy way. In addition, it will contribute to planners and project managers to establish relevant polices and smoothing urban regeneration projects through enhancing residents’ understanding by providing possible results and advantages in their land price before the execution of urban regeneration and development projects.

Keywords: space syntax, urban regeneration, spatial structure, official land price

Procedia PDF Downloads 323
6815 Effects of the Purpose Expropriation of Land Consolidation to Landholding

Authors: Turgut Ayten, Tayfun Çay

Abstract:

In the current expropriation of Turkey, the state acquires necessary lands for its investment without permission of the owners and not searching for alternative solutions, so it is determined that neither processor nor processed is not happy. In this study, interactions of enterprises in Turkey are analysed in case the necessary land for public investments are acquired by expropriation purposed land consolidation. Legal basis, positive and negative sides, financial effects to enterprises of this method is evaluated according to Konya Kadınhanı, Kolukısa avenue which is on the Konya-Ankara High-Speed Train Route.

Keywords: expropriation, land consolidation, land consolidation for expropriation purpose, sustainable rural development

Procedia PDF Downloads 500
6814 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 178
6813 Metropolitan Governance in Statutory Plan Making Process

Authors: Vibhore Bakshi

Abstract:

This research paper is a step towards understanding the role of governance in the plan preparation process. It addresses the complexities of the peri-urban, historical constructions, politics and policies of sustainability, and legislative frameworks. The paper reflects on the Delhi NCT as one of the classical cases that have happened to witness different structural changes in the master plan around 1981, 2001, 2021, and Proposed Draft 2041. The Delhi Landsat imageries for 1989 and 2018 show an increase in the built-up areas around the periphery of NCT. The peri-urbanization has been a result of increasing in-migration to peri–urban areas of Delhi. The built-up extraction for years 1981, 1991, 2001, 2011, and 2018 highlights the growing peri-urbanization on scarce land therefore, it becomes equally important to research the history of the land and its legislative measures. It is interesting to understand the streaks of changes that have occurred in the land of Delhi in accordance with the different master plans and land legislative policies. The process of masterplan process in Delhi has experienced a lot of complexities in juxtaposition to other metropolitan regions of the world. The paper identifies the shortcomings in the current master planning process approach in regard to the stage of the planning process, traditional planning approach, and lagging ICT-based interventions. The metropolitan governance systems across the globe and India depict diversity in the organizational setup and varied dissemination of functions. It addresses the complexity of the peri-urban, historical constructions, politics and policies of sustainability, and legislative frameworks.

Keywords: governance, land provisions, built-up areas, in migration, built up extraction, master planning process, legislative policies, metropolitan governance systems

Procedia PDF Downloads 168
6812 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation

Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane

Abstract:

This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.

Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover

Procedia PDF Downloads 135
6811 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 169
6810 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 78
6809 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant

Procedia PDF Downloads 346
6808 Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land

Authors: Jalil Badamfirooz

Abstract:

Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses.

Keywords: mulch, bitumen emulsion, arid land, PAH

Procedia PDF Downloads 84
6807 Change Detection of Water Bodies in Dhaka City: An Analysis Using Geographic Information System and Remote Sensing

Authors: M. Humayun Kabir, Mahamuda Afroze, K. Maudood Elahi

Abstract:

Since the late 1900s, unplanned and rapid urbanization processes have drastically altered the land, reduced water bodies, and decreased vegetation cover in the capital city of Bangladesh, Dhaka. The capitalist modes of urbanization results in the encroachment of the surface water bodies in this city. The main goal of this study is to investigate the change detection of water bodies in Dhaka city, analyzing spatial distribution of water bodies and calculating the changing rate of it. This effort aims to influence public policy for environmental justice initiatives around protecting water bodies for ensuring proper function of the urban ecosystem. This study accomplishes research goal by compiling satellite imageries into GIS software to understand the changes of water bodies in Dhaka city. The work focuses on the late 20th century to early 21st century to analyze this city before and after major infrastructural changes occurred in unplanned manner. The land use of the study area has been classified into four categories, and the areas of the different land use have been calculated using MS Excel and SPSS. The results reveal that the urbanization expanded from central to northern part and major encroachment occurred at the western and eastern part of the city. It has also been found that, in 1988, the total area of water bodies was 8935.38 hectares, and it gradually decreased, and in 1998, 2008, 2017, the total areas of water bodies reached 6065.73, 4853.32, 2077.56 hectares, respectively. Rapid population growth, unplanned urbanization, and industrialization have generated pressure to change the land use pattern in Dhaka city. These expansion processes are engulfing wetland, water bodies, and vegetation cover without considering environmental impact. In order to regain the wetland and surface water bodies, the concern authorities must implement laws and act as a legal instrument in this regard and take action against the violators of it. This research is the synthesis of time series data that provides a complete picture of the water body’s status of Dhaka city that might help to make plans and policies for water body conservation.

Keywords: ecosystem, GIS, industrialization, land use, remote sensing, urbanization

Procedia PDF Downloads 145
6806 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 183
6805 Lean Models Classification: Towards a Holistic View

Authors: Y. Tiamaz, N. Souissi

Abstract:

The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.

Keywords: lean approach, lean models, classification, dimensions, holistic view

Procedia PDF Downloads 430
6804 Influence of Precipitation and Land Use on Extreme Flow in Prek Thnot River Basin of Mekong River in Cambodia

Authors: Chhordaneath Hen, Ty Sok, Ilan Ich, Ratboren Chan, Chantha Oeurng

Abstract:

The damages caused by hydrological extremes such as flooding have been severe globally, and several research studies indicated extreme precipitations play a crucial role. Cambodia is one of the most vulnerable countries exposed to floods and drought as consequences of climate impact. Prek Thnot River Basin in the southwest part of Cambodia, which is in the plate and plateau region and a part of the Mekong Delta, was selected to investigate the changes in extreme precipitation and hydrological extreme. Furthermore, to develop a statistical relationship between these phenomena in this basin from 1995 to 2020 using Multiple Linear Regression. The precipitation and hydrological extreme were assessed via the attributes and trends of rainfall patterns during the study periods. The extreme flow was defined as a dependent variable, while the independent variables are various extreme precipitation indices. The study showed that all extreme precipitations indices (R10, R20, R35, CWD, R95p, R99p, and PRCPTOT) had increasing decency. However, the number of rain days per year had a decreasing tendency, which can conclude that extreme rainfall was more intense in a shorter period of the year. The study showed a similar relationship between extreme precipitation and hydrological extreme and land use change association with hydrological extreme. The direct combination of land use and precipitation equals 37% of the flood causes in this river. This study provided information on these two causes of flood events and an understanding of expectations of climate change consequences for flood and water resources management.

Keywords: extreme precipitation, hydrological extreme, land use, land cover, Prek Thnot river basin

Procedia PDF Downloads 102