Search results for: contiguous flight auger (CFA)
140 From Wave-Powered Propulsion to Flight with Membrane Wings: Insights Powered by High-Fidelity Immersed Boundary Methods based FSI Simulations
Authors: Rajat Mittal, Jung Hee Seo, Jacob Turner, Harshal Raut
Abstract:
The perpetual advancement in computational capabilities, coupled with the continuous evolution of software tools and numerical algorithms, is creating novel avenues for research, exploration, and application at the nexus of computational fluid and structural mechanics. Fish leverage their remarkably flexible bodies and fins to harness energy from vortices, propelling themselves with an elegance and efficiency that captivates engineers. Bats fly with unparalleled agility and speed by using their flexible membrane wings. Wave-assisted propulsion (WAP) systems, utilizing elastically mounted hydrofoils, convert wave energy into thrust. Each of these problems involves a complex and elegant interplay between fluid dynamics and structural mechanics. Historically, investigations into such phenomena were constrained by available tools, but modern computational advancements now facilitate exploration of these multi-physics challenges with an unprecedented level of fidelity, precision, and realism. In this work, the author will discuss projects that harness the capabilities of high-fidelity sharp-interface immersed boundary methods to address a spectrum of engineering and biological challenges involving fluid-structure interaction.Keywords: immersed boundary methods, CFD, bioflight, fluid structure interaction
Procedia PDF Downloads 70139 Study of Pressure and Air Mass Flow Effect on Output Power of PEM Fuel Cell Powertrains in Vehicles and Airplanes- A Simulation-based Approach
Authors: Mahdiye Khorasani, Arjun Vijay, Ali Mashayekh, Christian Trapp
Abstract:
The performance of Proton Exchange Membrane Fuel Cell (PEMFC) is highly dependent on the pressure and mass flow of media (Hydrogen and air) throughout the cells and the stack. Higher pressure, on the one hand, results in higher output power of the stack but, on the other hand, increases the electrical power demand of the compressor. In this work, a simulation model of a PEMFC system for vehicle and airplane applications is developed. With this new model, the effect of different pressures and air mass flow rates are investigated to discover the optimum operating point in a PEMFC system, and innovative operation strategies are implemented to optimize reactants flow while minimizing electrical power demand of the compressor for optimum performance. Additionally, a fuel cell system test bench is set up, which contains not only all the auxiliary components for conditioning the gases, reactants, and flows but also a dynamic titling table for testing different orientations of the stack to simulate the flight conditions during take-off and landing and off-road-vehicle scenarios. The results of simulation will be tested and validated on the test bench for future works.Keywords: air mass flow effect, optimization of operation, pressure effect, PEMFC system, PEMFC system simulation
Procedia PDF Downloads 175138 The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer
Authors: Rehan Siddiqui, Brendan Quine
Abstract:
The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes.Keywords: radiance enhancement, radiative transfer, shortwave upwelling radiative flux, cloud reflectivity, greenhouse gases
Procedia PDF Downloads 336137 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle
Authors: Mostafa Mjahed
Abstract:
Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV
Procedia PDF Downloads 119136 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments
Authors: William J. Crowther, Conor Marsh
Abstract:
Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics
Procedia PDF Downloads 102135 Effects of Inlet Distorted Flows on the Performance of an Axial Compressor
Authors: Asad Islam, Khalid Parvez
Abstract:
Compressor fans in modern aircraft engines are of considerate importance, as they provide majority of thrust required by the aircraft. Their challenging environment is frequently subjected to non-uniform inflow conditions. These conditions could be either due to the flight operating requirements such as take-off and landing, wake interference from aircraft fuselage or cross-flow wind conditions. So, in highly maneuverable flights regimes of fighter aircrafts affects the overall performance of an engine. Since the flow in compressor of an aircraft application is highly sensitive because of adverse pressure gradient due to different flow orientations of the aircraft. Therefore, it is prone to unstable operations. This paper presents the study that focuses on axial compressor response to inlet flow orientations for the range of angles as 0 to 15 degrees. For this purpose, NASA Rotor-37 was taken and CFD mesh was developed. The compressor characteristics map was generated for the design conditions of pressure ratio of 2.106 with the rotor operating at rotational velocity of 17188.7 rpm using CFD simulating environment of ANSYS-CFX®. The grid study was done to see the effects of mesh upon computational solution. Then, the mesh giving the best results, (when validated with the available experimental NASA’s results); was used for further distortion analysis. The flow in the inlet nozzle was given angle orientations ranging from 0 to 15 degrees. The CFD results are analyzed and discussed with respect to stall margin and flow separations due to induced distortions.Keywords: axial compressor, distortions, angle, CFD, ANSYS-CFX®, bladegen®
Procedia PDF Downloads 456134 USA Commercial Pilots’ Views of Crew Resource Management, Social Desirability, and Safety Locus of Control
Authors: Stephen Vera, Tabitha Black, Charalambos Cleanthous, Ryan Sain
Abstract:
A gender comparison of USA commercial pilots’ demographics and views of CRM, social desirability and locus of control were surveyed. The Aviation safety locus of control (ASLOC) was used to measure external (ASLOC-E) or internal (ASLOC-I) aviation safety locus of control. The gender differences were explored using the ASLOC scores as a categorical variable. A differential comparison of crew resource management (CRM), based on the Federal Aviation Administration’s (FAA) guidelines was conducted. The results indicated that the proportion of female to male respondents matches the current ratio of USA commercial pilots. Moreover, there were no significant differences regarding overall education and the total number of communication classes one took. Regarding CRM issues, there were no significant differences on their views regarding the roles of the PIC, stress, time management, and managing a flight team. The females scored significantly lower on aeronautical decision making (ADM) and communications. There were no significant differences on either the Balanced Inventory of Desirable Responding (BIDR) impression management (IM) or self-deceptive enhancement (SDE). Although there were no overall significant differences on the ASLOC, the females did score higher on the internal subscale than did the males. An additional comparison of socially desirable responding indicates that all scores may be invalid, especially from the female respondents.Keywords: social desirability, safety locus of control, crew resource management, commercial pilots
Procedia PDF Downloads 255133 Investigation of Chemical Effects on the Lγ2,3 and Lγ4 X-ray Production Cross Sections for Some Compounds of 66dy at Photon Energies Close to L1 Absorption-edge Energy
Authors: Anil Kumar, Rajnish Kaur, Mateusz Czyzycki, Alessandro Migilori, Andreas Germanos Karydas, Sanjiv Puri
Abstract:
The radiative decay of Li(i=1-3) sub-shell vacancies produced through photoionization results in production of the characteristic emission spectrum comprising several X-ray lines, whereas non-radiative vacancy decay results in Auger electron spectrum. Accurate reliable data on the Li(i=1-3) sub-shell X-ray production (XRP) cross sections is of considerable importance for investigation of atomic inner-shell ionization processes as well as for quantitative elemental analysis of different types of samples employing the energy dispersive X-ray fluorescence (EDXRF) analysis technique. At incident photon energies in vicinity of the absorption edge energies of an element, the many body effects including the electron correlation, core relaxation, inter-channel coupling and post-collision interactions become significant in the photoionization of atomic inner-shells. Further, in case of compounds, the characteristic emission spectrum of the specific element is expected to get influenced by the chemical environment (coordination number, oxidation state, nature of ligand/functional groups attached to central atom, etc.). These chemical effects on L X-ray fluorescence parameters have been investigated by performing the measurements at incident photon energies much higher than the Li(i=1-3) sub-shell absorption edge energies using EDXRF spectrometers. In the present work, the cross sections for production of the Lk(k= γ2,3, γ4) X-rays have been measured for some compounds of 66Dy, namely, Dy2O3, Dy2(CO3)3, Dy2(SO4)3.8H2O, DyI2 and Dy metal by tuning the incident photon energies few eV above the L1 absorption-edge energy in order to investigate the influence of chemical effects on these cross sections in presence of the many body effects which become significant at photon energies close to the absorption-edge energies. The present measurements have been performed under vacuum at the IAEA end-station of the X-ray fluorescence beam line (10.1L) of ELETTRA synchrotron radiation facility (Trieste, Italy) using self-supporting pressed pellet targets (1.3 cm diameter, nominal thicknesses ~ 176 mg/cm2) of 66Dy compounds (procured from Sigma Aldrich) and a metallic foil of 66Dy (nominal thickness ~ 3.9 mg/cm2, procured from Good Fellow, UK). The present measured cross sections have been compared with theoretical values calculated using the Dirac-Hartree-Slater(DHS) model based fluorescence and Coster-Kronig yields, Dirac-Fock(DF) model based X-ray emission rates and two sets of L1 sub-shell photoionization cross sections based on the non-relativistic Hartree-Fock-Slater(HFS) model and those deduced from the self-consistent Dirac-Hartree-Fock(DHF) model based total photoionization cross sections. The present measured XRP cross sections for 66Dy as well as for its compounds for the L2,3 and L4 X-rays, are found to be higher by ~14-36% than the two calculated set values. It is worth to be mentioned that L2,3 and L4 X-ray lines are originated by filling up of the L1 sub-shell vacancies by the outer sub-shell (N2,3 and O2,3) electrons which are much more sensitive to the chemical environment around the central atom. The present observed differences between measured and theoretical values are expected due to combined influence of the many-body effects and the chemical effects.Keywords: chemical effects, L X-ray production cross sections, Many body effects, Synchrotron radiation
Procedia PDF Downloads 132132 The Use of Remotely Sensed Data to Model Habitat Selections of Pileated Woodpeckers (Dryocopus pileatus) in Fragmented Landscapes
Authors: Ruijia Hu, Susanna T.Y. Tong
Abstract:
Light detection and ranging (LiDAR) and four-channel red, green, blue, and near-infrared (RGBI) remote sensed imageries allow an accurate quantification and contiguous measurement of vegetation characteristics and forest structures. This information facilitates the generation of habitat structure variables for forest species distribution modelling. However, applications of remote sensing data, especially the combination of structural and spectral information, to support evidence-based decisions in forest managements and conservation practices at local scale are not widely adopted. In this study, we examined the habitat requirements of pileated woodpecker (Dryocopus pileatus) (PW) in Hamilton County, Ohio, using ecologically relevant forest structural and vegetation characteristics derived from LiDAR and RGBI data. We hypothesized that the habitat of PW is shaped by vegetation characteristics that are directly associated with the availability of food, hiding and nesting resources, the spatial arrangement of habitat patches within home range, as well as proximity to water sources. We used 186 PW presence or absence locations to model their presence and absence in generalized additive model (GAM) at two scales, representing foraging and home range size, respectively. The results confirm PW’s preference for tall and large mature stands with structural complexity, typical of late-successional or old-growth forests. Besides, the crown size of dead trees shows a positive relationship with PW occurrence, therefore indicating the importance of declining living trees or early-stage dead trees within PW home range. These locations are preferred by PW for nest cavity excavation as it attempts to balance the ease of excavation and tree security. In addition, we found that PW can adjust its travel distance to the nearest water resource, suggesting that habitat fragmentation can have certain impacts on PW. Based on our findings, we recommend that forest managers should use different priorities to manage nesting, roosting, and feeding habitats. Particularly, when devising forest management and hazard tree removal plans, one needs to consider retaining enough cavity trees within high-quality PW habitat. By mapping PW habitat suitability for the study area, we highlight the importance of riparian corridor in facilitating PW to adjust to the fragmented urban landscape. Indeed, habitat improvement for PW in the study area could be achieved by conserving riparian corridors and promoting riparian forest succession along major rivers in Hamilton County.Keywords: deadwood detection, generalized additive model, individual tree crown delineation, LiDAR, pileated woodpecker, RGBI aerial imagery, species distribution models
Procedia PDF Downloads 52131 An Analysis of the Impact of Immunosuppression upon the Prevalence and Risk of Cancer
Authors: Aruha Khan, Brynn E. Kankel, Paraskevi Papadopoulou
Abstract:
In recent years, extensive research upon ‘stress’ has provided insight into its two distinct guises, namely the short–term (fight–or–flight) response versus the long–term (chronic) response. Specifically, the long–term or chronic response is associated with the suppression or dysregulation of immune function. It is also widely noted that the occurrence of cancer is greatly correlated to the suppression of the immune system. It is thus necessary to explore the impact of long–term or chronic stress upon the prevalence and risk of cancer. To what extent can the dysregulation of immune function caused by long–term exposure to stress be controlled or minimized? This study focuses explicitly upon immunosuppression due to its ability to increase disease susceptibility, including cancer itself. Based upon an analysis of the literature relating to the fundamental structure of the immune system alongside the prospective linkage of chronic stress and the development of cancer, immunosuppression may not necessarily correlate directly to the acquisition of cancer—although it remains a contributing factor. A cross-sectional analysis of the survey data from the University of Tennessee Medical Center (UTMC) and Harvard Medical School (HMS) will provide additional supporting evidence (or otherwise) for the hypothesis of the study about whether immunosuppression (caused by the chronic stress response) notably impacts the prevalence of cancer. Finally, a multidimensional framework related to education on chronic stress and its effects is proposed.Keywords: immune system, immunosuppression, long–term (chronic) stress, risk of cancer
Procedia PDF Downloads 134130 Assessing Spatial Associations of Mortality Patterns in Municipalities of the Czech Republic
Authors: Jitka Rychtarikova
Abstract:
Regional differences in mortality in the Czech Republic (CR) may be moderate from a broader European perspective, but important discrepancies in life expectancy can be found between smaller territorial units. In this study territorial units are based on Administrative Districts of Municipalities with Extended Powers (MEP). This definition came into force January 1, 2003. There are 205 units and the city of Prague. MEP represents the smallest unit for which mortality patterns based on life tables can be investigated and the Czech Statistical Office has been calculating such life tables (every five-years) since 2004. MEP life tables from 2009-2013 for males and females allowed the investigation of three main life cycles with the use of temporary life expectancies between the exact ages of 0 and 35; 35 and 65; and the life expectancy at exact age 65. The results showed regional survival inequalities primarily in adult and older ages. Consequently, only mortality indicators for adult and elderly population were related to census 2011 unlinked data for the same age groups. The most relevant socio-economic factors taken from the census are: having a partner, educational level and unemployment rate. The unemployment rate was measured for adults aged 35-64 completed years. Exploratory spatial data analysis methods were used to detect regional patterns in spatially contiguous units of MEP. The presence of spatial non-stationarity (spatial autocorrelation) of mortality levels for male and female adults (35-64), and elderly males and females (65+) was tested using global Moran’s I. Spatial autocorrelation of mortality patterns was mapped using local Moran’s I with the intention to depict clusters of low or high mortality and spatial outliers for two age groups (35-64 and 65+). The highest Moran’s I was observed for male temporary life expectancy between exact ages 35 and 65 (0.52) and the lowest was among women with life expectancy of 65 (0.26). Generally, men showed stronger spatial autocorrelation compared to women. The relationship between mortality indicators such as life expectancies and socio-economic factors like the percentage of males/females having a partner; percentage of males/females with at least higher secondary education; and percentage of unemployed males/females from economically active population aged 35-64 years, was evaluated using multiple regression (OLS). The results were then compared to outputs from geographically weighted regression (GWR). In the Czech Republic, there are two broader territories North-West Bohemia (NWB) and North Moravia (NM), in which excess mortality is well established. Results of the t-test of spatial regression showed that for males aged 30-64 the association between mortality and unemployment (when adjusted for education and partnership) was stronger in NM compared to NWB, while educational level impacted the length of survival more in NWB. Geographic variation and relationships in mortality of the CR MEP will also be tested using the spatial Durbin approach. The calculations were conducted by means of ArcGIS 10.6 and SAS 9.4.Keywords: Czech Republic, mortality, municipality, socio-economic factors, spatial analysis
Procedia PDF Downloads 118129 Optimal 3D Deployment and Path Planning of Multiple Uavs for Maximum Coverage and Autonomy
Authors: Indu Chandran, Shubham Sharma, Rohan Mehta, Vipin Kizheppatt
Abstract:
Unmanned aerial vehicles are increasingly being explored as the most promising solution to disaster monitoring, assessment, and recovery. Current relief operations heavily rely on intelligent robot swarms to capture the damage caused, provide timely rescue, and create road maps for the victims. To perform these time-critical missions, efficient path planning that ensures quick coverage of the area is vital. This study aims to develop a technically balanced approach to provide maximum coverage of the affected area in a minimum time using the optimal number of UAVs. A coverage trajectory is designed through area decomposition and task assignment. To perform efficient and autonomous coverage mission, solution to a TSP-based optimization problem using meta-heuristic approaches is designed to allocate waypoints to the UAVs of different flight capacities. The study exploits multi-agent simulations like PX4-SITL and QGroundcontrol through the ROS framework and visualizes the dynamics of UAV deployment to different search paths in a 3D Gazebo environment. Through detailed theoretical analysis and simulation tests, we illustrate the optimality and efficiency of the proposed methodologies.Keywords: area coverage, coverage path planning, heuristic algorithm, mission monitoring, optimization, task assignment, unmanned aerial vehicles
Procedia PDF Downloads 215128 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery
Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori
Abstract:
The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS
Procedia PDF Downloads 189127 High-Dimensional Single-Cell Imaging Maps Inflammatory Cell Types in Pulmonary Arterial Hypertension
Authors: Selena Ferrian, Erin Mccaffrey, Toshie Saito, Aiqin Cao, Noah Greenwald, Mark Robert Nicolls, Trevor Bruce, Roham T. Zamanian, Patricia Del Rosario, Marlene Rabinovitch, Michael Angelo
Abstract:
Recent experimental and clinical observations are advancing immunotherapies to clinical trials in pulmonary arterial hypertension (PAH). However, comprehensive mapping of the immune landscape in pulmonary arteries (PAs) is necessary to understand how immune cell subsets interact to induce pulmonary vascular pathology. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to interrogate the immune landscape in PAs from idiopathic (IPAH) and hereditary (HPAH) PAH patients. Massive immune infiltration in I/HPAH was observed with intramural infiltration linked to PA occlusive changes. The spatial context of CD11c+DCs expressing SAMHD1, TIM-3 and IDO-1 within immune-enriched microenvironments and neutrophils were associated with greater immune activation in HPAH. Furthermore, CD11c-DC3s (mo-DC-like cells) within a smooth muscle cell (SMC) enriched microenvironment were linked to vessel score, proliferating SMCs, and inflamed endothelial cells. Experimental data in cultured cells reinforced a causal relationship between neutrophils and mo-DCs in mediating pulmonary arterial SMC proliferation. These findings merit consideration in developing effective immunotherapies for PAH.Keywords: pulmonary arterial hypertension, vascular remodeling, indoleamine 2-3-dioxygenase 1 (IDO-1), neutrophils, monocyte-derived dendritic cells, BMPR2 mutation, interferon gamma (IFN-γ)
Procedia PDF Downloads 173126 Expanding the World: Public and Global Health Experiences for Undergraduate Nursing Students
Authors: Kristen Erekson, Sarah Spendlove Caswell
Abstract:
Nurse educators have the challenge of training future nurses that will provide compassionate care to an increasingly diverse population of patients in a culturally sensitive way. One approach to this challenge is an immersive public and global health experience as part of the nursing program curriculum. Undergraduate nursing students at our institution are required to participate in a Public and Global Health course. They participate in a didactic preparatory course followed by a 3-to-4-week program in one of the following locations: The Czech Republic, Ecuador, Finland/Poland, Ghana, India, Spain, Taiwan, Tonga, an Honor Flight to Washington D.C. with Veterans, or in local (Utah) communities working with marginalized populations (including incarcerated individuals, refugees, etc.). The students are required to complete 84 clinical hours and 84 culture hours (which involve exposure to local history, art, architecture, customs, etc.). As Faculty, we feel strongly that these public and global health experiences help cultivate cultural awareness in our students and prepare nurses who are better prepared to serve a diverse population of patients throughout their careers. This presentation will highlight our experiences and provide ideas for other nurse educators who have an interest in developing similar programs in their schools but do not know where to start. Suggestions about how to start building relationships that can lead to these opportunities, along with logistics for continuing the programs, will be highlighted.Keywords: global health nursing, nursing education, clinical education, public health nursing
Procedia PDF Downloads 78125 Propeller Performance Modeling through a Computational Fluid Dynamics Analysis Method
Authors: Maxime Alex Junior Kuitche, Ruxandra Mihaela Botez, Jean-Chirstophe Maunand
Abstract:
The evolution of aircraft is closely linked to the study and improvement of propulsion systems. Determining the propulsion performance is a real challenge in aircraft modeling and design. In addition to theoretical methodologies, experimental procedures are used to obtain a good estimation of the propulsion performances. For piston-propeller propulsion, the propeller needs several experimental tests which could be extremely demanding in terms of time and money. This paper presents a new procedure to estimate the performance of a propeller from a numerical approach using computational fluid dynamic analysis. The propeller was initially scanned, and then, its 3D model was represented using CATIA. A structured meshing and Shear Stress Transition k-ω turbulence model were applied to describe accurately the flow pattern around the propeller. Thus, the Partial Differential Equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45’s propeller designed and manufactured by Hydra Technologies in Mexico. An extensive investigation was performed for several flight conditions in terms of altitudes and airspeeds with the aim to determine thrust coefficients, power coefficients and efficiency of the propeller. The Computational Fluid Dynamics results were compared with experimental data acquired from wind tunnel tests performed at the LARCASE Price-Paidoussis wind tunnel. The results of this comparison have demonstrated that our approach was highly accurate.Keywords: CFD analysis, propeller performance, unmanned aerial system propeller, UAS-S45
Procedia PDF Downloads 353124 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres
Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav
Abstract:
Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.Keywords: amplitude, NACA0012, tubercles, unmanned space robots
Procedia PDF Downloads 146123 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.Keywords: fruit thinning, horticultural field, portable devices, sensor technologies
Procedia PDF Downloads 139122 Prediction of the Aerodynamic Stall of a Helicopter’s Main Rotor Using a Computational Fluid Dynamics Analysis
Authors: Assel Thami Lahlou, Soufiane Stouti, Ismail Lagrat, Hamid Mounir, Oussama Bouazaoui
Abstract:
The purpose of this research work is to predict the helicopter from stalling by finding the minimum and maximum values that the pitch angle can take in order to fly in a hover state condition. The stall of a helicopter in hover occurs when the pitch angle is too small to generate the thrust required to support its weight or when the critical angle of attack that gives maximum lift is reached or exceeded. In order to find the minimum pitch angle, a 3D CFD simulation was done in this work using ANSYS FLUENT as the CFD solver. We started with a small value of the pitch angle θ, and we kept increasing its value until we found the thrust coefficient required to fly in a hover state and support the weight of the helicopter. For the CFD analysis, the Multiple Reference Frame (MRF) method with k-ε turbulent model was used to study the 3D flow around the rotor for θmin. On the other hand, a 2D simulation of the airfoil NACA 0012 was executed with a velocity inlet Vin=ΩR/2 to visualize the flow at the location span R/2 of the disk rotor using the Spallart-Allmaras turbulent model. Finding the critical angle of attack at this position will give us the ability to predict the stall in hover flight. The results obtained will be exposed later in the article. This study was so useful in analyzing the limitations of the helicopter’s main rotor and thus, in predicting accidents that can lead to a lot of damage.Keywords: aerodynamic, CFD, helicopter, stall, blades, main rotor, minimum pitch angle, maximum pitch angle
Procedia PDF Downloads 79121 Security Analysis of Mod. S Transponder Technology and Attack Examples
Authors: M. Rutkowski, J. Cwiklak, M. Grzegorzewski, M. Adamski
Abstract:
All class A Airplanes have to be equipped with Mod. S transponder for ATC surveillance purposes. This technology was designed to provide a robust and dependable solution to localize, identify and exchange data with the airplane. The purpose of this paper is to analyze potential hazards that are a result of lack of any security or encryption on a design level. Secondary Surveillance Radars rely on an active response from an airplane. SSR radar installation is broadcasting a directional interrogation signal to the planes in range on 1030MHz frequency with DPSK modulation. If the interrogation is correctly received by the transponder located on the plane, a proper answer is sent on 1090MHz with PPM modulation containing plane’s SQUAWK, barometric altitude, GPS coordinates and 24bit unique address code. This technology does not use any kind of encryption. All of the specifications from the previous chapter can be found easily on the internet. Since there is no encryption or security measure to ensure the credibility of the sender and message, it is highly hazardous to use such technology to ensure the safety of the air traffic. The only thing that identifies the airplane is the 24-bit unique address. Most of the planes have been sniffed by aviation enthusiasts and cataloged in web databases. In the moment of writing this article, The PoFung Technologies has announced that they are planning to release all band SDR transceiver – this device would be more than enough to build your own Mod. S Transponder. With fake transponder, a potential terrorist can identify as a different airplane. By replacing the transponder in a poorly controlled airspace, hijackers can enter another airspace identifying themselves as another plane and land in the desired area.Keywords: flight safety, hijack, mod S transponder, security analysis
Procedia PDF Downloads 295120 Imaginations of the Silk Road in Sven Hedin’s Travel Writings: 1900-1936
Authors: Kexin Tan
Abstract:
The Silk Road is a concept idiosyncratic in nature. Western scholars co-created and conceptualized in its early days, transliterated into the countries along the Silk Road, redefined, reimagined, and reconfigured by the public in the second half of the twentieth century. Therefore, the image is not only a mirror of the discursive interactions between East and West but Self and Other. The travel narrative of Sven Hedin, through which the Silk Road was enriched in meanings and popularized, is the focus of this study. This article examines how the Silk Road was imagined in three key texts of Sven Hedin: The Silk Road, The Wandering Lake, and The Flight of “Big Horse”. Three recurring themes are extracted and analyzed: the Silk Road, the land of enigmas, the virgin land, and the reconnecting road. Ideas about ethnotypes and images drawn from theorists such as Joep Leerssen have been deployed in the analysis. This research tracks how the images were configured, concentrating on China’s ethnotypes, travel writing tropes, and the Silk Road discourse that preceded Sven Hedin. Hedin’s role in his expedition, his geopolitical viewpoints, and the commercial considerations of his books are also discussed in relation to the intellectual construct of the Silk Road. It is discovered that the images of the Silk Road and the discursive traditions behind it are mobile rather than static, inclusive than antithetical. The paradoxical characters of the Silk Road reveal the complexity of the socio-historical background of Hedin’s time, as well as the collision of discursive traditions and practical issues. While it is true that Hedin’s discursive construction of the Silk Road image embodies the bias of Self-West against Other-East, its characteristics such as fluidity and openness could probably offer a hint at its resurgence in the postcolonial era.Keywords: the silk road, Sven Hedin, imagology, ethnotype, travelogue
Procedia PDF Downloads 193119 From Transference Love to Self Alienation in the Therapeutic Relationship: A Case Study
Authors: Efi Koutantou
Abstract:
The foundation of successful therapy is the bond between the psychotherapist and the patient, Psychoanalysis would argue. The present study explores lived experiences of a psychotherapeutic relationship in different moments, initial and final with special reference to the transference love developed through the process. The fight between moments of ‘leaving a self’ behind and following ‘lines of flight’ in the process of creating a new subjectivity and ‘becoming-other’ will be explored. Moments between de-territorialisation – surpassing given constraints such as gender, family and religion, kinship bonds - freeing the space in favor of re-territorialisation – creation of oneself creation of oneself will also be analyzed. The generation of new possibilities of being, new ways of self-actualization for this patient will be discussed. The second part of this study will explore the extent to which this ‘transference love’ results for this specific patient to become ‘the discourse of the other’; it is a desideratum whether the patient finally becomes a subject of his/her own through his/her own self-exploration of new possibilities of existence or becomes alienated within the thought of the therapist. The way in which the patient uses or is (ab)used by the transference love in order to experience and undergo alienation from an ‘authority’ which may or may not sacrifice his/her own thought in favor of satisfying the therapist will be investigated. Finally, from an observer’s perspective and from the analysis of the results of this therapeutic relationship, the counter-transference will also be analyzed, in terms of an attempt of the analyst to relive and satisfy his/her own desires through the life of the analysand. The accession and fall of an idealized self will be analyzed, the turn of the transference love into ‘hate’ will conclude this case study through a lived experience in the therapeutic procedure; a relationship which can be called to be a mixture of a real relationship and remnants from a past object relationship.Keywords: alienation, authority, counter-transference, hate, transference love
Procedia PDF Downloads 211118 The Influence of Surface Roughness on the Flow Fields Generated by an Oscillating Cantilever
Authors: Ciaran Conway, Nick Jeffers, Jeff Punch
Abstract:
With the current trend of miniaturisation of electronic devices, piezoelectric fans have attracted increasing interest as an alternative means of forced convection over traditional rotary solutions. Whilst there exists an abundance of research on various piezo-actuated flapping fans in the literature, the geometries of these fans all consist of a smooth rectangular cross section with thicknesses typically of the order of 100 um. The focus of these studies is primarily on variables such as frequency, amplitude, and in some cases resonance mode. As a result, the induced flow dynamics are a direct consequence of the pressure differential at the fan tip as well as the pressure-driven ‘over the top’ vortices generated at the upper and lower edges of the fan. Rough surfaces such as golf ball dimples or vortex generators on an aircraft wing have proven to be beneficial by tripping the boundary layer and energising the adjacent air flow. This paper aims to examine the influence of surface roughness on the airflow generation of a flapping fan and determine whether the induced wake can be manipulated or enhanced by energising the airflow around the fan tip. Particle Image Velocimetry (PIV) is carried out on mechanically oscillated rigid fans with various surfaces consisting of pillars, perforations and cell-like grids derived from the wing topology of natural fliers. The results of this paper may be used to inform the design of piezoelectric fans and possibly aid in understanding the complex aerodynamics inherent in flapping wing flight.Keywords: aerodynamics, oscillating cantilevers, PIV, vortices
Procedia PDF Downloads 217117 Applications of Drones in Infrastructures: Challenges and Opportunities
Authors: Jin Fan, M. Ala Saadeghvaziri
Abstract:
Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.Keywords: bridge, construction, drones, infrastructure, information
Procedia PDF Downloads 124116 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple
Authors: Hasan Basaran, Emre Unal
Abstract:
Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode
Procedia PDF Downloads 104115 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing
Authors: Jason R. King, Hugh H. T. Liu
Abstract:
This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing
Procedia PDF Downloads 341114 Implementation of a Monostatic Microwave Imaging System using a UWB Vivaldi Antenna
Authors: Babatunde Olatujoye, Binbin Yang
Abstract:
Microwave imaging is a portable, noninvasive, and non-ionizing imaging technique that employs low-power microwave signals to reveal objects in the microwave frequency range. This technique has immense potential for adoption in commercial and scientific applications such as security scanning, material characterization, and nondestructive testing. This work presents a monostatic microwave imaging setup using an Ultra-Wideband (UWB), low-cost, miniaturized Vivaldi antenna with a bandwidth of 1 – 6 GHz. The backscattered signals (S-parameters) of the Vivaldi antenna used for scanning targets were measured in the lab using a VNA. An automated two-dimensional (2-D) scanner was employed for the 2-D movement of the transceiver to collect the measured scattering data from different positions. The targets consist of four metallic objects, each with a distinct shape. Similar setup was also simulated in Ansys HFSS. A high-resolution Back Propagation Algorithm (BPA) was applied to both the simulated and experimental backscattered signals. The BPA utilizes the phase and amplitude information recorded over a two-dimensional aperture of 50 cm × 50 cm with a discreet step size of 2 cm to reconstruct a focused image of the targets. The adoption of BPA was demonstrated by coherently resolving and reconstructing reflection signals from conventional time-of-flight profiles. For both the simulation and experimental data, BPA accurately reconstructed a high resolution 2D image of the targets in terms of shape and location. An improvement of the BPA, in terms of target resolution, was achieved by applying the filtering method in frequency domain.Keywords: back propagation, microwave imaging, monostatic, vivialdi antenna, ultra wideband
Procedia PDF Downloads 19113 Carbonation of Wollastonite (001) competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory
Authors: Peter Thissen
Abstract:
In this work, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as model surface of cement and concrete. Total energy calculations based on density functional theory (DFT) combined with kinetic barrier predictions based on nudge elastic band (NEB) method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO32-) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (MPER, also called early stage hydration) and Ca2+ ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca2+ react again with CO2 and form carbonate complexes, ending in a delocalized layer. By means of high resolution time-of-flight secondary-ion mass-spectroscopy images (ToF-SIMS), we confirm that hydration can lead to a partially delocalization of Ca2+ ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by means of Low Energy Ion Scattering (LEIS) spectroscopy combined with careful discussion about the competing reactions of carbonation vs. hydration.Keywords: Calcium-silicate, carbonation, hydration, metal-proton exchange reaction
Procedia PDF Downloads 363112 Political Regimes, Political Stability and Debt Dependence in African Countries of Franc Zone: A Logistic Modeling
Authors: Nounamo Nguedie Yann Harold
Abstract:
The factors behind the debt have been the subject of several studies in the literature. Pioneering studies based on the 'double deficit' approach linked indebtedness to the imbalance between savings and investment, the budget deficit and the current account deficit. Most studies on identifying factors that may stimulate or reduce the level of external public debt agree that the following variables are important explanatory variables in leveraging debt: the budget deficit, trade opening, current account and exchange rate, import, export, interest rate, term variation exchange rate, economic growth rate and debt service, capital flight, and over-indebtedness. Few studies addressed the impact of political factors on the level of external debt. In general, however, the IMF's stabilization programs in developing countries following the debt crisis have resulted in economic recession and the advent of political crises that have resulted in changes in governments. In this sense, political institutions are recognised as factors of accumulation of external debt in most developing countries. This paper assesses the role of political factors on the external debt level of African countries in the Franc Zone over the period 1985-2016. Data used come from World Bank and ICRG. Using a logit in panel, the results show that the more a country is politically stable, the lower the external debt compared to the gross domestic product. Political stability multiplies 1.18% the chances of being in the sustainable debt zone. For example, countries with good political institutions experience less severe external debt burdens than countries with bad political institutions.Keywords: African countries, external debt, Franc Zone, political factors
Procedia PDF Downloads 219111 Heterogeneous Photocatalytic Degradation of Ibuprofen in Ultrapure Water, Municipal and Pharmaceutical Industry Wastewaters Using a TiO2/UV-LED System
Authors: Nabil Jallouli, Luisa M. Pastrana-Martínez, Ana R. Ribeiro, Nuno F. F. Moreira, Joaquim L. Faria, Olfa Hentati, Adrián M. T. Silva, Mohamed Ksibi
Abstract:
Degradation and mineralization of ibuprofen (IBU) were investigated using Ultraviolet (UV) Light Emitting Diodes (LEDs) in TiO2 photocatalysis. Samples of ultrapure water (UP) and a secondary treated effluent of a municipal wastewater treatment plant (WWTP), both spiked with IBU, as well as a highly concentrated IBU (230 mgL-1) pharmaceutical industry wastewater (PIWW), were tested in the TiO2/UV-LED system. Three operating parameters, namely, pH, catalyst load and number of LEDs were optimized. The process efficiency was evaluated in terms of IBU removal using high performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Additionally, the mineralization was investigated by determining the dissolved organic carbon (DOC) content. The chemical structures of transformation products were proposed based on the data obtained using liquid chromatography with a high resolution mass spectrometer ion trap/time-of-flight (LC-MS-IT-TOF). A possible pathway of IBU degradation was accordingly proposed. Bioassays were performed using the marine bacterium Vibrio fischeri to evaluate the potential acute toxicity of original and treated wastewaters. TiO2 heterogeneous photocatalysis was efficient to remove IBU from UP and from PIWW, and less efficient in treating the wastewater from the municipal WWTP. The acute toxicity decreased by ca. 40% after treatment, regardless of the studied matrix.Keywords: acute toxicity, Ibuprofen, UV-LEDs, wastewaters
Procedia PDF Downloads 255