Search results for: ant colony algorithms
1929 Comparative Analysis of Classical and Parallel Inpainting Algorithms Based on Affine Combinations of Projections on Convex Sets
Authors: Irina Maria Artinescu, Costin Radu Boldea, Eduard-Ionut Matei
Abstract:
The paper is a comparative study of two classical variants of parallel projection methods for solving the convex feasibility problem with their equivalents that involve variable weights in the construction of the solutions. We used a graphical representation of these methods for inpainting a convex area of an image in order to investigate their effectiveness in image reconstruction applications. We also presented a numerical analysis of the convergence of these four algorithms in terms of the average number of steps and execution time in classical CPU and, alternatively, in parallel GPU implementation.Keywords: convex feasibility problem, convergence analysis, inpainting, parallel projection methods
Procedia PDF Downloads 1741928 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand
Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova
Abstract:
The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.Keywords: ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control
Procedia PDF Downloads 2961927 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand
Authors: Jefferson Hernandez, Juan Padilla
Abstract:
Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.Keywords: price elasticity, volume, correlation structures, Bayesian models
Procedia PDF Downloads 1651926 Medical Image Compression Based on Region of Interest: A Review
Authors: Sudeepti Dayal, Neelesh Gupta
Abstract:
In terms of transmission, bigger the size of any image, longer the time the channel takes for transmission. It is understood that the bandwidth of the channel is fixed. Therefore, if the size of an image is reduced, a larger number of data or images can be transmitted over the channel. Compression is the technique used to reduce the size of an image. In terms of storage, compression reduces the file size which it occupies on the disk. Any image is based on two parameters, region of interest and non-region of interest. There are several algorithms of compression that compress the data more economically. In this paper we have reviewed region of interest and non-region of interest based compression techniques and the algorithms which compress the image most efficiently.Keywords: compression ratio, region of interest, DCT, DWT
Procedia PDF Downloads 3741925 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms
Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,
Abstract:
Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model
Procedia PDF Downloads 2821924 A Fast and Robust Protocol for Reconstruction and Re-Enactment of Historical Sites
Authors: Sanaa I. Abu Alasal, Madleen M. Esbeih, Eman R. Fayyad, Rami S. Gharaibeh, Mostafa Z. Ali, Ahmed A. Freewan, Monther M. Jamhawi
Abstract:
This research proposes a novel reconstruction protocol for restoring missing surfaces and low-quality edges and shapes in photos of artifacts at historical sites. The protocol starts with the extraction of a cloud of points. This extraction process is based on four subordinate algorithms, which differ in the robustness and amount of resultant. Moreover, they use different -but complementary- accuracy to some related features and to the way they build a quality mesh. The performance of our proposed protocol is compared with other state-of-the-art algorithms and toolkits. The statistical analysis shows that our algorithm significantly outperforms its rivals in the resultant quality of its object files used to reconstruct the desired model.Keywords: meshes, point clouds, surface reconstruction protocols, 3D reconstruction
Procedia PDF Downloads 4561923 pscmsForecasting: A Python Web Service for Time Series Forecasting
Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou
Abstract:
pscmsForecasting is an open-source web service that implements a variety of time series forecasting algorithms and exposes them to the user via the ubiquitous HTTP protocol. It allows developers to enhance their applications by adding time series forecasting functionalities through an intuitive and easy-to-use interface. This paper provides some background on time series forecasting and gives details about the implemented algorithms, aiming to enhance the end user’s understanding of the underlying methods before incorporating them into their applications. A detailed description of the web service’s interface and its various parameterizations is also provided. Being an open-source project, pcsmsForecasting can also be easily modified and tailored to the specific needs of each application.Keywords: time series, forecasting, web service, open source
Procedia PDF Downloads 831922 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 1621921 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Authors: Kostas Metaxiotis, Kostas Liagkouras
Abstract:
This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.Keywords: expert systems, multi-objective optimization, evolutionary algorithms, portfolio selection
Procedia PDF Downloads 4391920 An Optimized Association Rule Mining Algorithm
Authors: Archana Singh, Jyoti Agarwal, Ajay Rana
Abstract:
Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph
Procedia PDF Downloads 4201919 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output
Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin
Abstract:
With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.Keywords: channel estimation, LMMSE, LS, MIMO, MMSE
Procedia PDF Downloads 1911918 Chemical Synthesis of a cDNA and Its Expression Analysis
Authors: Salman Akrokayan
Abstract:
Synthetic cDNA (ScDNA) of granulocyte colony-stimulating factor (G-CSF) was constructed using a DNA synthesizer with the aim to increase its expression level. 5' end of the ScDNA of G-CSF coding region was modified by decreasing the GC content without altering the predicted amino acids sequence. The identity of the resulting protein from ScDNA was confirmed by the highly specific enzyme-linked immunosorbent assay. In conclusion, a synthetic G-CSF cDNA in combination with the recombinant DNA protocol offers a rapid and reliable strategy for synthesizing the target protein. However, the commercial utilization of this methodology requires rigorous validation and quality control.Keywords: synthetic cDNA, recombinant G-CSF, cloning, gene expression
Procedia PDF Downloads 2841917 Matrix Completion with Heterogeneous Cost
Authors: Ilqar Ramazanli
Abstract:
The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.Keywords: matroid optimization, matrix completion, linear algebra, algorithms
Procedia PDF Downloads 1091916 Development of Algorithms for Solving and Analyzing Special Problems Transports Type
Authors: Dmitri Terzi
Abstract:
The article presents the results of an algorithmic study of a special optimization problem of the transport type (traveling salesman problem): 1) To solve the problem, a new natural algorithm has been developed based on the decomposition of the initial data into convex hulls, which has a number of advantages; it is applicable for a fairly large dimension, does not require a large amount of memory, and has fairly good performance. The relevance of the algorithm lies in the fact that, in practice, programs for problems with the number of traversal points of no more than twenty are widely used. For large-scale problems, the availability of algorithms and programs of this kind is difficult. The proposed algorithm is natural because the optimal solution found by the exact algorithm is not always feasible due to the presence of many other factors that may require some additional restrictions. 2) Another inverse problem solved here is to describe a class of traveling salesman problems that have a predetermined optimal solution. The constructed algorithm 2 allows us to characterize the structure of traveling salesman problems, as well as construct test problems to evaluate the effectiveness of algorithms and other purposes. 3) The appendix presents a software implementation of Algorithm 1 (in MATLAB), which can be used to solve practical problems, as well as in the educational process on operations research and optimization methods.Keywords: traveling salesman problem, solution construction algorithm, convex hulls, optimality verification
Procedia PDF Downloads 731915 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions
Authors: Tesfaye Mengistu
Abstract:
This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission
Procedia PDF Downloads 831914 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 911913 Searching k-Nearest Neighbors to be Appropriate under Gaming Environments
Authors: Jae Moon Lee
Abstract:
In general, algorithms to find continuous k-nearest neighbors have been researched on the location based services, monitoring periodically the moving objects such as vehicles and mobile phone. Those researches assume the environment that the number of query points is much less than that of moving objects and the query points are not moved but fixed. In gaming environments, this problem is when computing the next movement considering the neighbors such as flocking, crowd and robot simulations. In this case, every moving object becomes a query point so that the number of query point is same to that of moving objects and the query points are also moving. In this paper, we analyze the performance of the existing algorithms focused on location based services how they operate under gaming environments.Keywords: flocking behavior, heterogeneous agents, similarity, simulation
Procedia PDF Downloads 3021912 Decision Support System for Diagnosis of Breast Cancer
Authors: Oluwaponmile D. Alao
Abstract:
In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.Keywords: breast cancer, data mining, neural network, support vector machine
Procedia PDF Downloads 3471911 Improved FP-Growth Algorithm with Multiple Minimum Supports Using Maximum Constraints
Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam
Abstract:
Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FP-growth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.Keywords: association rules, FP-growth, multiple minimum supports, Weka tool
Procedia PDF Downloads 4851910 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach
Authors: Mukesh Kumar Shah, Tushar Gupta
Abstract:
An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.Keywords: economic dispatch, gaussian selection operator, prohibited operating zones, ramp rate limits
Procedia PDF Downloads 1291909 Chaos Fuzzy Genetic Algorithm
Authors: Mohammad Jalali Varnamkhasti
Abstract:
The genetic algorithms have been very successful in handling difficult optimization problems. The fundamental problem in genetic algorithms is premature convergence. This paper, present a new fuzzy genetic algorithm based on chaotic values instead of the random values in genetic algorithm processes. In this algorithm, for initial population is used chaotic sequences and then a new sexual selection proposed for selection mechanism. In this technique, the population is divided such that the male and female would be selected in an alternate way. The layout of the male and female chromosomes in each generation is different. A female chromosome is selected by tournament selection size from the female group. Then, the male chromosome is selected, in order of preference based on the maximum Hamming distance between the male chromosome and the female chromosome or The highest fitness value of male chromosome (if more than one male chromosome is having the maximum Hamming distance existed), or Random selection. The selections of crossover and mutation operators are achieved by running the fuzzy logic controllers, the crossover and mutation probabilities are varied on the basis of the phenotype and genotype characteristics of the chromosome population. Computational experiments are conducted on the proposed techniques and the results are compared with some other operators, heuristic and local search algorithms commonly used for solving p-median problems published in the literature.Keywords: genetic algorithm, fuzzy system, chaos, sexual selection
Procedia PDF Downloads 3851908 Genetic Algorithms for Parameter Identification of DC Motor ARMAX Model and Optimal Control
Authors: A. Mansouri, F. Krim
Abstract:
This paper presents two techniques for DC motor parameters identification. We propose a numerical method using the adaptive extensive recursive least squares (AERLS) algorithm for real time parameters estimation. This algorithm, based on minimization of quadratic criterion, is realized in simulation for parameters identification of DC motor autoregressive moving average with extra inputs (ARMAX). As advanced technique, we use genetic algorithms (GA) identification with biased estimation for high dynamic performance speed regulation. DC motors are extensively used in variable speed drives, for robot and solar panel trajectory control. GA effectiveness is derived through comparison of the two approaches.Keywords: ARMAX model, DC motor, AERLS, GA, optimization, parameter identification, PID speed regulation
Procedia PDF Downloads 3791907 Self-Calibration of Fish-Eye Camera for Advanced Driver Assistance Systems
Authors: Atef Alaaeddine Sarraj, Brendan Jackman, Frank Walsh
Abstract:
Tomorrow’s car will be more automated and increasingly connected. Innovative and intuitive interfaces are essential to accompany this functional enrichment. For that, today the automotive companies are competing to offer an advanced driver assistance system (ADAS) which will be able to provide enhanced navigation, collision avoidance, intersection support and lane keeping. These vision-based functions require an accurately calibrated camera. To achieve such differentiation in ADAS requires sophisticated sensors and efficient algorithms. This paper explores the different calibration methods applicable to vehicle-mounted fish-eye cameras with arbitrary fields of view and defines the first steps towards a self-calibration method that adequately addresses ADAS requirements. In particular, we present a self-calibration method after comparing different camera calibration algorithms in the context of ADAS requirements. Our method gathers data from unknown scenes while the car is moving, estimates the camera intrinsic and extrinsic parameters and corrects the wide-angle distortion. Our solution enables continuous and real-time detection of objects, pedestrians, road markings and other cars. In contrast, other camera calibration algorithms for ADAS need pre-calibration, while the presented method calibrates the camera without prior knowledge of the scene and in real-time.Keywords: advanced driver assistance system (ADAS), fish-eye, real-time, self-calibration
Procedia PDF Downloads 2521906 A Unified Ghost Solid Method for the Elastic Solid-Solid Interface
Authors: Abouzar Kaboudian, Boo Cheong Khoo
Abstract:
The Ghost Solid Method (GSM) based algorithms have been extensively used for numerical calculation of wave propagation in the limit of abrupt changes in materials. In this work, we present a unified version of the GSMs that can be successfully applied to both abrupt as well as smooth changes of the material properties in a medium. The application of this method enables us to use the previously-matured numerical algorithms which were developed to be applied to homogeneous mediums, with only minor modifications. This method is developed for one-dimensional settings and its extension to multi-dimensions is briefly discussed. Various numerical experiments are presented to show the applicability of this unified GSM to wave propagation problems in sharply as well as smoothly varying mediums.Keywords: elastic solid, functionally graded material, ghost solid method, solid-solid interaction
Procedia PDF Downloads 4141905 Effects of Reversible Watermarking on Iris Recognition Performance
Authors: Andrew Lock, Alastair Allen
Abstract:
Fragile watermarking has been proposed as a means of adding additional security or functionality to biometric systems, particularly for authentication and tamper detection. In this paper we describe an experimental study on the effect of watermarking iris images with a particular class of fragile algorithm, reversible algorithms, and the ability to correctly perform iris recognition. We investigate two scenarios, matching watermarked images to unmodified images, and matching watermarked images to watermarked images. We show that different watermarking schemes give very different results for a given capacity, highlighting the importance of investigation. At high embedding rates most algorithms cause significant reduction in recognition performance. However, in many cases, for low embedding rates, recognition accuracy is improved by the watermarking process.Keywords: biometrics, iris recognition, reversible watermarking, vision engineering
Procedia PDF Downloads 4561904 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection
Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld
Abstract:
In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation
Procedia PDF Downloads 2641903 A Fast GPS Satellites Signals Detection Algorithm Based on Simplified Fast Fourier Transform
Authors: Beldjilali Bilal, Benadda Belkacem, Kahlouche Salem
Abstract:
Due to the Doppler effect caused by the high velocity of satellite and in some case receivers, the frequency of the Global Positioning System (GPS) signals are transformed into a new ones. Several acquisition algorithms frequency of the Global Positioning System (GPS) signals are transformed can be used to estimate the new frequency and phase shifts values. Numerous algorithms are based on the frequencies domain calculation. Our developed algorithm is a new approach dedicated to the Global Positioning System signal acquisition based on the fast Fourier transform. Our proposed new algorithm is easier to implement and has fast execution time compared with elder ones.Keywords: global positioning system, acquisition, FFT, GPS/L1, software receiver, weak signal
Procedia PDF Downloads 2501902 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam
Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen
Abstract:
In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks
Procedia PDF Downloads 2101901 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 661900 A User Interface for Easiest Way Image Encryption with Chaos
Authors: D. López-Mancilla, J. M. Roblero-Villa
Abstract:
Since 1990, the research on chaotic dynamics has received considerable attention, particularly in light of potential applications of this phenomenon in secure communications. Data encryption using chaotic systems was reported in the 90's as a new approach for signal encoding that differs from the conventional methods that use numerical algorithms as the encryption key. The algorithms for image encryption have received a lot of attention because of the need to find security on image transmission in real time over the internet and wireless networks. Known algorithms for image encryption, like the standard of data encryption (DES), have the drawback of low level of efficiency when the image is large. The encrypting based on chaos proposes a new and efficient way to get a fast and highly secure image encryption. In this work, a user interface for image encryption and a novel and easiest way to encrypt images using chaos are presented. The main idea is to reshape any image into a n-dimensional vector and combine it with vector extracted from a chaotic system, in such a way that the vector image can be hidden within the chaotic vector. Once this is done, an array is formed with the original dimensions of the image and turns again. An analysis of the security of encryption from the images using statistical analysis is made and is used a stage of optimization for image encryption security and, at the same time, the image can be accurately recovered. The user interface uses the algorithms designed for the encryption of images, allowing you to read an image from the hard drive or another external device. The user interface, encrypt the image allowing three modes of encryption. These modes are given by three different chaotic systems that the user can choose. Once encrypted image, is possible to observe the safety analysis and save it on the hard disk. The main results of this study show that this simple method of encryption, using the optimization stage, allows an encryption security, competitive with complicated encryption methods used in other works. In addition, the user interface allows encrypting image with chaos, and to submit it through any public communication channel, including internet.Keywords: image encryption, chaos, secure communications, user interface
Procedia PDF Downloads 489