Search results for: ambient sensing
1461 Internet of Things Edge Device Power Modelling and Optimization Simulator
Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh
Abstract:
Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting
Procedia PDF Downloads 1301460 Bimetallic Cu/Au Nanostructures and Bio-Application
Authors: Si Yin Tee
Abstract:
Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.Keywords: bimetallic, electrochemical sensing, glucose oxidation, gold-incorporated copper nanostructures
Procedia PDF Downloads 5211459 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication
Authors: Vedant Janapaty
Abstract:
Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.Keywords: estuary, remote sensing, machine learning, Fourier transform
Procedia PDF Downloads 1041458 Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia
Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta
Abstract:
Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities.Keywords: green space coverage, GIS and remote sensing, Landsat, LULC, Ethiopia
Procedia PDF Downloads 561457 Evaluating the Fire Resistance of Offshore Tubular K-Joints Subjected to Balanced Axial Loads
Authors: Neda Azari Dodaran, Hamid Ahmadi
Abstract:
Results of 405 finite element (FE) analyses were used in the present research to study the effect of the joint geometry on the ultimate strength and initial stiffness of tubular K-joints subjected to axial loading at fire-induced elevated temperatures. The FE models were validated against the data available from experimental tests. Structural behavior under different temperatures (200ºC, 400ºC, 500ºC, and 700ºC) was investigated and compared to the behavior at ambient temperature (20ºC). A parametric study was conducted to investigate the effect of dimensionless geometrical parameters (β, γ, θ, and τ) on the ultimate strength and initial stiffness. Afterwards, ultimate strength data extracted from the FE analyses were compared with the values calculated from the equations proposed by available design codes in which the ultimate strength of the joint at elevated temperatures is obtained by replacing the yield stress of the steel at ambient temperature with the corresponding value at elevated temperature. It was indicated that this method may not have acceptable accuracy for K-joints under axial loading. Hence, a design formula was developed, through nonlinear regression analyses, to determine the ultimate strength of K-joints subjected to balanced axial loads at elevated temperatures.Keywords: axial loading, elevated temperature, parametric equation, static strength, tubular K-joint
Procedia PDF Downloads 1491456 Frame Camera and Event Camera in Stereo Pair for High-Resolution Sensing
Authors: Khen Cohen, Daniel Yankelevich, David Mendlovic, Dan Raviv
Abstract:
We present a 3D stereo system for high-resolution sensing in both the spatial and the temporal domains by combining a frame-based camera and an event-based camera. We establish a method to merge both devices into one unite system and introduce a calibration process, followed by a correspondence technique and interpolation algorithm for 3D reconstruction. We further provide quantitative analysis about our system in terms of depth resolution and additional parameter analysis. We show experimentally how our system performs temporal super-resolution up to effectively 1ms and can detect fast-moving objects and human micro-movements that can be used for micro-expression analysis. We also demonstrate how our method can extract colored events for an event-based camera without any degradation in the spatial resolution, compared to a colored filter array.Keywords: DVS-CIS stereo vision, micro-movements, temporal super-resolution, 3D reconstruction
Procedia PDF Downloads 2971455 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction
Procedia PDF Downloads 1471454 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1021453 Research Analysis of Urban Area Expansion Based on Remote Sensing
Authors: Sheheryar Khan, Weidong Li, Fanqian Meng
Abstract:
The Urban Heat Island (UHI) effect is one of the foremost problems out of other ecological and socioeconomic issues in urbanization. Due to this phenomenon that human-made urban areas have replaced the rural landscape with the surface that increases thermal conductivity and urban warmth; as a result, the temperature in the city is higher than in the surrounding rural areas. To affect the evidence of this phenomenon in the Zhengzhou city area, an observation of the temperature variations in the urban area is done through a scientific method that has been followed. Landsat 8 satellite images were taken from 2013 to 2015 to calculate the effect of Urban Heat Island (UHI) along with the NPP-VRRIS night-time remote sensing data to analyze the result for a better understanding of the center of the built-up area. To further support the evidence, the correlation between land surface temperatures and the normalized difference vegetation index (NDVI) was calculated using the Red band 4 and Near-infrared band 5 of the Landsat 8 data. Mono-window algorithm was applied to retrieve the land surface temperature (LST) distribution from the Landsat 8 data using Band 10 and 11 accordingly to convert the top-of-atmosphere radiance (TOA) and to convert the satellite brightness temperature. Along with Landsat 8 data, NPP-VIIRS night-light data is preprocessed to get the research area data. The analysis between Landsat 8 data and NPP night-light data was taken to compare the output center of the Built-up area of Zhengzhou city.Keywords: built-up area, land surface temperature, mono-window algorithm, NDVI, remote sensing, threshold method, Zhengzhou
Procedia PDF Downloads 1391452 Flood Devastation Assessment Through Mapping in Nigeria-2022 using Geospatial Techniques
Authors: Hafiz Muhammad Tayyab Bhatti, Munazza Usmani
Abstract:
One of nature's most destructive occurrences, floods do immense damage to communities and economic losses. Nigeria country, specifically southern Nigeria, is known for being prone to flooding. Even though periodic flooding occurs in Nigeria frequently, the floods of 2022 were the worst since those in 2012. Flood vulnerability analysis and mapping are still lacking in this region due to the very limited historical hydrological measurements and surveys on the effects of floods, which makes it difficult to develop and put into practice efficient flood protection measures. Remote sensing and Geographic Information Systems (GIS) are useful approaches to detecting, determining, and estimating the flood extent and its impacts. In this study, NOAA VIIR has been used to extract the flood extent using the flood water fraction data and afterward fused with GIS data for some zonal statistical analysis. The estimated possible flooding areas are validated using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). The goal is to map and studied flood extent, flood hazards, and their effects on the population, schools, and health facilities for each state of Nigeria. The resulting flood hazard maps show areas with high-risk levels clearly and serve as an important reference for planning and implementing future flood mitigation and control strategies. Overall, the study demonstrated the viability of using the chosen GIS and remote sensing approaches to detect possible risk regions to secure local populations and enhance disaster response capabilities during natural disasters.Keywords: flood hazards, remote sensing, damage assessment, GIS, geospatial analysis
Procedia PDF Downloads 1371451 Possible Approach for Interlinking of Ponds to Mitigate Drought in Sivaganga Villages at Micro Level
Authors: Manikandan Sathianarayanan, Pernaidu Pasala
Abstract:
This paper presents the results of our studies concerning the implementation and exploitation of a Geographical Information System (GIS) dedicated to the support and assistance of decisions requested by drought management. In this study on diverting of surplus water through canals, pond sand check dams in the study area was carried out. The remote sensing data and GIS data was used to identify the drought prone villages in sivaganga taluk and to generate present land use, drainage pattern as well as slope and contour. This analysis was carried out for diverting surplus water through proposed canal and pond. The results of the study indicate that if the surplus water from the ponds and streams are diverted to the drought villages in Sivaganga taluk, it will definitely improve the agricultural production due to availability of water in the ponds. The improvements in agricultural production will help to improve the economical condition of the farmers in the region.Keywords: interlinking, spatial analysis, remote sensing, GIS
Procedia PDF Downloads 2521450 Immobilizing Quorum Sensing Inhibitors on Biomaterial Surfaces
Authors: Aditi Taunk, George Iskander, Kitty Ka Kit Ho, Mark Willcox, Naresh Kumar
Abstract:
Bacterial infections on biomaterial implants and medical devices accounts for 60-70% of all hospital acquired infections (HAIs). Treatment or removal of these infected devices results in high patient mortality and morbidity along with increased hospital expenses. In addition, with no effective strategies currently available and rapid development of antibacterial resistance has made device-related infections extremely difficult to treat. Therefore, in this project we have developed biomaterial surfaces using antibacterial compounds that inhibit biofilm formation by interfering with the bacterial communication mechanism known as quorum sensing (QS). This study focuses on covalent attachment of potent quorum sensing (QS) inhibiting compounds, halogenated furanones (FUs) and dihydropyrrol-2-ones (DHPs), onto glass surfaces. The FUs were attached by photoactivating the azide groups on the surface, and the acid functionalized DHPs were immobilized on amine surface via EDC/NHS coupling. The modified surfaces were tested in vitro against pathogenic organisms such as Staphylococcus aureus and Pseudomonas aeruginosa using confocal laser scanning microscopy (CLSM). Successful attachment of compounds on the substrates was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antibacterial efficacy was assessed, and significant reduction in bacterial adhesion and biofilm formation was observed on the FU and DHP coated surfaces. The activity of the coating was dependent upon the type of substituent present on the phenyl group of the DHP compound. For example, the ortho-fluorophenyl DHP (DHP-2) exhibited 79% reduction in bacterial adhesion against S. aureus and para-fluorophenyl DHP (DHP-3) exhibited 70% reduction against P. aeruginosa. The results were found to be comparable to DHP coated surfaces prepared in earlier study via Michael addition reaction. FUs and DHPs were able to retain their in vitro antibacterial efficacy after covalent attachment via azide chemistry. This approach is a promising strategy to develop efficient antibacterial biomaterials to reduce device related infections.Keywords: antibacterial biomaterials, biomedical device-related infections, quorum sensing, surface functionalization
Procedia PDF Downloads 2681449 Evaluation of the Urban Landscape Structures and Dynamics of Hawassa City, Using Satellite Images and Spatial Metrics Approaches, Ethiopia
Authors: Berhanu Terfa, Nengcheng C.
Abstract:
The study deals with the analysis of urban expansion and land transformation of Hawass City using remote sensing data and landscape metrics during last three decades (1987–2017). Remote sensing data from Various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used to examine the urban expansion, growth types, and spatial isolation within the urban landscape to develop an understanding the trends of built-up growth in Hawassa City, Ethiopia. Landscape metrics and built-up density were employed to analyze the pattern, process and overall growth status. The area under investigation was divided into concentric circles with a consecutive circle of 1 km incremental radius from the central pixel (Central Business District) for analysis. The result exhibited that the built-up area had increased by 541.32% between 1987 and 2017and an extension growth types (more than 67 %) was observed. The major growth took place in north-west direction followed by north direction in haphazard manner during 1987–1995 period, whereas predominant built-up development was observed in south and southwest direction during 1995–2017 period. Land scape metrics result revealed that the of urban patches density, total edge and edge density increased, while mean nearest neighbors’ distance decreased showing the tendency of sprawl.Keywords: landscape metrics, spatial patterns, remote sensing, multi-temporal, urban sprawl
Procedia PDF Downloads 2861448 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria
Authors: Amina Naidja, Zedira Khammar, Ines Soltani
Abstract:
This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception
Procedia PDF Downloads 411447 Effect of Ambient Oxygen Content and Lifting Frequency on the Participant’s Lifting Capabilities, Muscle Activities, and Perceived Exertion
Authors: Atef M. Ghaleb, Mohamed Z. Ramadan, Khalid Saad Aljaloud
Abstract:
The aim of this study is to assesses the lifting capabilities of persons experiencing hypoxia. It also examines the behavior of the physiological response induced through the lifting process related to changing in the hypoxia and lifting frequency variables. For this purpose, the study performed two consecutive tests by using; (1) training and acclimatization; and (2) an actual collection of data. A total of 10 male students from King Saud University, Kingdom of Saudi Arabia, were recruited in the study. A two-way repeated measures design, with two independent variables (ambient oxygen (15%, 18% and 21%)) and lifting frequency (1 lift/min and 4 lifts/min) and four dependent variables i.e., maximum acceptable weight of lift (MAWL), Electromyography (EMG) of four muscle groups (anterior deltoid, trapezius, biceps brachii, and erector spinae), rating of perceived exertion (RPE), and rating of oxygen feeling (ROF) were used in this study. The results show that lifting frequency has significantly impacted the MAWL and muscles’ activities. The oxygen content had a significant effect on the RPE and ROE. The study has revealed that acclimatization and training sessions significantly reduce the effect of the hypoxia on the human physiological parameters during the manual materials handling tasks.Keywords: lifting capabilities, muscle activities, oxygen content, perceived exertion
Procedia PDF Downloads 1291446 Simulation of Communication and Sensing Device in Automobiles Using VHDL
Authors: Anirudh Bhaikhel
Abstract:
The exclusive objective of this paper is to develop a device which can pass on the interpreted result of the sensed information to the interfaced communicable devices to avoid or minimise accidents. This device may also be used in case of emergencies like kidnapping, robberies, medical emergencies etc. The present era has seen a rapid metamorphosis in the automobile industry with increasing use of technology and speed. The increase in purchasing power of customers and price war of automobile companies has made an easy access to the automobile users. The use of automobiles has increased tremendously in last 4-5 years thus causing traffic congestions and thus making vehicles more prone to accidents. This device can be an effective measure to counteract cases of abduction. Risks of accidents can be decreased tremendously through the notifications received by these alerts. It will help to detect the upcoming emergencies. This paper includes the simulation of the communication and sensing device required in automobiles using VHDL.Keywords: automobiles, communication, component, cyclic redundancy check (CRC), modulo-2 arithmetic, parity bits, receiver, sensors, transmitter, turns, VHDL (VHSIC hardware descriptive language)
Procedia PDF Downloads 2671445 Cotton Crops Vegetative Indices Based Assessment Using Multispectral Images
Authors: Muhammad Shahzad Shifa, Amna Shifa, Muhammad Omar, Aamir Shahzad, Rahmat Ali Khan
Abstract:
Many applications of remote sensing to vegetation and crop response depend on spectral properties of individual leaves and plants. Vegetation indices are usually determined to estimate crop biophysical parameters like crop canopies and crop leaf area indices with the help of remote sensing. Cotton crops assessment is performed with the help of vegetative indices. Remotely sensed images from an optical multispectral radiometer MSR5 are used in this study. The interpretation is based on the fact that different materials reflect and absorb light differently at different wavelengths. Non-normalized and normalized forms of these datasets are analyzed using two complementary data mining algorithms; K-means and K-nearest neighbor (KNN). Our analysis shows that the use of normalized reflectance data and vegetative indices are suitable for an automated assessment and decision making.Keywords: cotton, condition assessment, KNN algorithm, clustering, MSR5, vegetation indices
Procedia PDF Downloads 3331444 Breast Cancer Sensing and Imaging Utilized Printed Ultra Wide Band Spherical Sensor Array
Authors: Elyas Palantei, Dewiani, Farid Armin, Ardiansyah
Abstract:
High precision of printed microwave sensor utilized for sensing and monitoring the potential breast cancer existed in women breast tissue was optimally computed. The single element of UWB printed sensor that successfully modeled through several numerical optimizations was multiple fabricated and incorporated with woman bra to form the spherical sensors array. One sample of UWB microwave sensor obtained through the numerical computation and optimization was chosen to be fabricated. In overall, the spherical sensors array consists of twelve stair patch structures, and each element was individually measured to characterize its electrical properties, especially the return loss parameter. The comparison of S11 profiles of all UWB sensor elements is discussed. The constructed UWB sensor is well verified using HFSS programming, CST programming, and experimental measurement. Numerically, both HFSS and CST confirmed the potential operation bandwidth of UWB sensor is more or less 4.5 GHz. However, the measured bandwidth provided is about 1.2 GHz due to the technical difficulties existed during the manufacturing step. The configuration of UWB microwave sensing and monitoring system implemented consists of 12 element UWB printed sensors, vector network analyzer (VNA) to perform as the transceiver and signal processing part, the PC Desktop/Laptop acting as the image processing and displaying unit. In practice, all the reflected power collected from whole surface of artificial breast model are grouped into several numbers of pixel color classes positioned on the corresponding row and column (pixel number). The total number of power pixels applied in 2D-imaging process was specified to 100 pixels (or the power distribution pixels dimension 10x10). This was determined by considering the total area of breast phantom of average Asian women breast size and synchronizing with the single UWB sensor physical dimension. The interesting microwave imaging results were plotted and together with some technical problems arisen on developing the breast sensing and monitoring system are examined in the paper.Keywords: UWB sensor, UWB microwave imaging, spherical array, breast cancer monitoring, 2D-medical imaging
Procedia PDF Downloads 1931443 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks
Authors: V. Revathi, J. Thaarrini, M. Venkob Rao
Abstract:
This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA:GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.Keywords: bottom ash, GGBS, alkali activation, paver block
Procedia PDF Downloads 3531442 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 4161441 Interpretation of Ultrasonic Backscatter of Linear FM Chirp Pulses from Targets Having Frequency-Dependent Scattering
Authors: Stuart Bradley, Mathew Legg, Lilyan Panton
Abstract:
Ultrasonic remote sensing is a useful tool for assessing the interior structure of complex targets. For these methods, significantly enhanced spatial resolution is obtained if the pulse is coded, for example using a linearly changing frequency during the pulse duration. Such pulses have a time-dependent spectral structure. Interpretation of the backscatter from targets is, therefore, complicated if the scattering is frequency-dependent. While analytic models are well established for steady sinusoidal excitations applied to simple shapes such as spheres, such models do not generally exist for temporally evolving excitations. Therefore, models are developed in the current paper for handling such signals so that the properties of the targets can be quantitatively evaluated while maintaining very high spatial resolution. Laboratory measurements on simple shapes are used to confirm the validity of the models.Keywords: linear FM chirp, time-dependent acoustic scattering, ultrasonic remote sensing, ultrasonic scattering
Procedia PDF Downloads 3161440 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing
Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule
Abstract:
Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing
Procedia PDF Downloads 1391439 Optimized Weight Selection of Control Data Based on Quotient Space of Multi-Geometric Features
Authors: Bo Wang
Abstract:
The geometric processing of multi-source remote sensing data using control data of different scale and different accuracy is an important research direction of multi-platform system for earth observation. In the existing block bundle adjustment methods, as the controlling information in the adjustment system, the approach using single observation scale and precision is unable to screen out the control information and to give reasonable and effective corresponding weights, which reduces the convergence and adjustment reliability of the results. Referring to the relevant theory and technology of quotient space, in this project, several subjects are researched. Multi-layer quotient space of multi-geometric features is constructed to describe and filter control data. Normalized granularity merging mechanism of multi-layer control information is studied and based on the normalized scale factor, the strategy to optimize the weight selection of control data which is less relevant to the adjustment system can be realized. At the same time, geometric positioning experiment is conducted using multi-source remote sensing data, aerial images, and multiclass control data to verify the theoretical research results. This research is expected to break through the cliché of the single scale and single accuracy control data in the adjustment process and expand the theory and technology of photogrammetry. Thus the problem to process multi-source remote sensing data will be solved both theoretically and practically.Keywords: multi-source image geometric process, high precision geometric positioning, quotient space of multi-geometric features, optimized weight selection
Procedia PDF Downloads 2841438 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value
Authors: Mostafa Ghasemi, Andrew Urquhart
Abstract:
In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor
Procedia PDF Downloads 751437 Performance Evaluation of Pilot Rotating Biological Contactor for Decentralised Management of Domestic Sewage in Delhi
Authors: T. R. Sreekrishnan, Mukesh Khare, Dinesh Upadhyay
Abstract:
In a Rotating Biological Contactor (RBC), the biological film responsible for removal of pollutants is formed on the surface of discs. Evaluation studies of a pilot RBC designed to treat sewage of 150 persons with BOD Loading Rate: 8.2–26.7 g/m2/d, Discharge: 57.6 – 115.2 m3/day, HRT 1.25 – 2.5 hrs, at STP Yamuna Vihar Delhi. Removal of organic materials through use of fixed film reactors such as RBC is accomplished by means of a biological film on the fixed media. May and June in Delhi are dry summer months where the ambient temperature is in the range of 35oC to 45oC. July is a wet monsoon month that receives occasional precipitation, cloud cover, high humidity, with ambient temperature in the range of 30oC to 35oC. The organic and inorganic loads to the RBC employed in this study are actual city sewage conditions. Average in fluent BOD concentrations have been 330 mg/l, 245 mg/l and 160 mg/l and the average COD concentrations have been 670 mg/l, 500 mg/l, and 275 mg/l. The city sewage also has high concentration of ammonia, phosphorous, total suspended solids (TSS). pH of the city sewage is near neutral. Overall, the substrate conditions of city sewage are conducive for biological treatment though aerobic process. The presentation is a part of the ongoing collaborative research initiative between IIT Delhi and Karlsruhe Institute of Technology, Germany which is going on for last 15 years or so in the treatment of sewage waste of Delhi using semi-decentralized treatment system based on Rotating Biological Contactor.Keywords: Rotating Biological Contactor (RBC), COD, BOD, HRT, STP
Procedia PDF Downloads 3891436 Real-Time Compressive Strength Monitoring for NPP Concrete Construction Using an Embedded Piezoelectric Self-Sensing Technique
Authors: Junkyeong Kim, Seunghee Park, Ju-Won Kim, Myung-Sug Cho
Abstract:
Recently, demands for the construction of Nuclear Power Plants (NPP) using high strength concrete (HSC) has been increased. However, HSC might be susceptible to brittle fracture if the curing process is inadequate. To prevent unexpected collapse during and after the construction of HSC structures, it is essential to confirm the strength development of HSC during the curing process. However, several traditional strength-measuring methods are not effective and practical. In this study, a novel method to estimate the strength development of HSC based on electromechanical impedance (EMI) measurements using an embedded piezoelectric sensor is proposed. The EMI of NPP concrete specimen was tracked to monitor the strength development. In addition, cross-correlation coefficient was applied in sequence to examine the trend of the impedance variations more quantitatively. The results confirmed that the proposed technique can be applied successfully monitoring of the strength development during the curing process of HSC structures.Keywords: concrete curing, embedded piezoelectric sensor, high strength concrete, nuclear power plant, self-sensing impedance
Procedia PDF Downloads 5151435 Instrumentation for Engine Start Cycle Characterization at Cold Weather High Altitude Condition
Authors: Amit Kumar Gupta, Rohit Vashistha, G. P. Ravishankar, Mahesh P. Padwale
Abstract:
A cold soaked gas turbine engine have known starting problems in high altitude and low temperature conditions. The high altitude results in lower ambient temperature, pressure, and density. Soaking at low temperature leads to higher oil viscosity, increasing the engine starter system torque requirement. Also, low temperature soaks results in a cold compressor rotor and casing. Since the thermal mass of rotor is higher than casing, casing expands faster, thereby, increasing the blade-casing tip clearance. The low pressure flow over the compressor blade coupled with the secondary flow through the compressor tip clearance during start result in stall inception. The present study discusses engine instrumentation required for capturing the stall inception event. The engine fan exit and combustion chamber were instrumented with dynamic pressure probes to capture the pressure characteristic and clamp-on current meter on primary igniter cable to capture ignition event during start cycle. The experiment was carried out at 10500 Ft. pressure altitude and -15°C ambient temperature. The high pressure compressor stall events were recorded during the starts.Keywords: compressor inlet, dynamic pressure probe, engine start cycle, flight test instrumentation
Procedia PDF Downloads 3171434 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances
Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè
Abstract:
Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds
Procedia PDF Downloads 621433 Non Enzymatic Electrochemical Sensing of Glucose Using Manganese Doped Nickel Oxide Nanoparticles Decorated Carbon Nanotubes
Authors: Anju Joshi, C. N. Tharamani
Abstract:
Diabetes is one of the leading cause of death at present and remains an important concern as the prevalence of the disease is increasing at an alarming rate. Therefore, it is crucial to diagnose the accurate levels of glucose for developing an efficient therapeutic for diabetes. Due to the availability of convenient and compact self-testing, continuous monitoring of glucose is feasible nowadays. Enzyme based electrochemical sensing of glucose is quite popular because of its high selectivity but suffers from drawbacks like complicated purification and immobilization procedures, denaturation, high cost, and low sensitivity due to indirect electron transfer. Hence, designing a robust enzyme free platform using transition metal oxides remains crucial for the efficient and sensitive determination of glucose. In the present work, manganese doped nickel oxide nanoparticles (Mn-NiO) has been synthesized onto the surface of multiwalled carbon nanotubes using a simple microwave assisted approach for non-enzymatic electrochemical sensing of glucose. The morphology and structure of the synthesized nanostructures were characterized using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). We demonstrate that the synthesized nanostructures show enormous potential for electrocatalytic oxidation of glucose with high sensitivity and selectivity. Cyclic voltammetry and square wave voltammetry studies suggest superior sensitivity and selectivity of Mn-NiO decorated carbon nanotubes towards the non-enzymatic determination of glucose. A linear response between the peak current and the concentration of glucose has been found to be in the concentration range of 0.01 μM- 10000 μM which suggests the potential efficacy of Mn-NiO decorated carbon nanotubes for sensitive determination of glucose.Keywords: diabetes, glucose, Mn-NiO decorated carbon nanotubes, non-enzymatic
Procedia PDF Downloads 2351432 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties
Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou
Abstract:
The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.Keywords: cellulose, spectroscopy, surface treatment, water absorption
Procedia PDF Downloads 202