Search results for: miRNA:mRNA target prediction
1548 Climate Change Based Frontier Research in Landscape Architecture
Authors: Xiaoyan Wang, Zhongde Wang
Abstract:
The issue of climate change, which originated in the middle of the twentieth century, has become a focus of international political, academic, and non-governmental organizations and public attention. In order to address the problems caused by climate change, the Chinese government has proposed a dual-carbon target and taken some national measures, such as ecological priority and green low-carbon development. These goals and measures are highly aligned with the values of the landscape architecture industry. This is an opportunity for the architectural discipline and the landscape architecture industry, so it is very necessary to summarize and analyze the hotspots related to climate change in the field of building science in China, which can assist the landscape architecture industry and related organizations in formulating more rational professional goals and taking actions that contribute to the betterment of societal, environmental development. Through the study, it is found as follows: firstly, after 20 years of rapid development, the research on climate change in the major architectural disciplines has shown a trend of diversification of research perspectives, interdisciplinary cross-cutting, and broadening of content; secondly, the research contents of landscape architecture focuses on the strategies to adapt to climate change, such as selection of urban tree species, the urban green infrastructure space layout, and the resilient city. Finally, in the future, climate change-based landscape architecture research will make the content system more diversified, but at the same time, it is still necessary to further deepen the research on quantitative methodology and construct scale systematic planning and design methods.Keywords: climate change, landscape architecture, knowledge mapping, cites-pace
Procedia PDF Downloads 551547 Person-Led Organizations Nurture Bullying Behavior: A Qualitative Study
Authors: Shreya Mishra, Manosi Chaudhuri, Ajoy K. Dey
Abstract:
Workplace bullying is a social phenomenon which has proved to be hazardous not only for employees’ well-being but also organizations. Despite being prevalent across geographical boundaries, Indian organizations have failed to acknowledge its vices. This paper aims to understand targets’ perception on what makes bullying nurture in organizations. The paper suggests that person-led Indian work settings give birth to bullying behavior as it lacks professional acumen and systems. An analysis of 13 in-depth interviews of employees from the organized sector suggests that organizations, where decision making lies with single individual, may be a hub of hostile behavior due to the culture which promotes ‘yesmanship’, ‘authoritarianism’ and/or blind belief of leaders on certain set of employees. The study used constructivist grounded theory approach, and the data was analyzed using R Based Qualitative Data Analysis (RQDA) software. Respondents reported that bullying behavior is taken lightly by the management with 'just ignore it' attitude. According to the respondents, the behavior prolong as the perpetrator have a direct approach to the top authority. The study concludes that person-led organizations may create a family-like environment which is favored by employees; however, authoritative leaders are unable to gain the trust of employees. Also, employees who are close to the leader may either be a perpetrator or a target of bullying. It is recommended that leaders in such organizations need to acknowledge the presence of bullying which affects an employees’ commitment towards their job and/or organization. They need to have an assertive check on individuals who hide behind ‘yesman’ attitude. This may help employees feel safe in such work settings.Keywords: constructivist grounded theory, person-led organization, RQDA, workplace bullying
Procedia PDF Downloads 2061546 Rumination Time and Reticuloruminal Temperature around Calving in Eutocic and Dystocic Dairy Cows
Authors: Levente Kovács, Fruzsina Luca Kézér, Ottó Szenci
Abstract:
Prediction of the onset of calving and recognizing difficulties at calving has great importance in decreasing neonatal losses and reducing the risk of health problems in the early postpartum period. In this study, changes of rumination time, reticuloruminal pH and temperature were investigated in eutocic (EUT, n = 10) and dystocic (DYS, n = 8) dairy cows around parturition. Rumination time was continuously recorded using an acoustic biotelemetry system, whereas reticuloruminal pH and temperature were recorded using an indwelling and wireless data transmitting system. The recording period lasted from 3 d before calving until 7 days in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC, both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows (P = 0.023 and P = 0.017, respectively). After 20 h before calving, it decreased onwards to reach 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving (P = 0.003 and P = 0.008, respectively). Until 12 h after delivery rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively, however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period (P = 0.012 and P = 0.002, respectively). Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows (P = 0.012 and P = 0.016, respectively), but did not differ between groups before delivery. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02 °C (P = 0.012), whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05 °C, P < 0.01). AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows (P = 0.042). During the first 4 h after calving, it decreased from 39.7 ± 0.1 to 39.00 ± 0.1 °C and from 39.8 ± 0.1 to 38.8 ± 0.1 °C in EUT and DYS cows, respectively (P < 0.01 for both groups) and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed postpartum rumination time of DYS cows highlights the importance of the monitoring of cows experiencing difficulties at calving.Keywords: reticuloruminal pH, reticuloruminal temperature, rumination time, dairy cows, dystocia
Procedia PDF Downloads 3161545 Self-Care Behavior and Performance Level Associated with Algerian Chronically Ill Patients
Authors: S. Aberkane, N. Djabali, S. Fafi, A. Baghezza
Abstract:
Chronic illnesses affect many Algerians. It is possible to investigate the impact of illness representations and coping on quality of life and whether illness representations are indirectly associated with quality of life through their influence on coping. This study aims at investigating the relationship between illness perception, coping strategies and quality of life with chronic illness. Illness perceptions are indirectly associated with the quality of life through their influence on coping mediation. A sample of 316 participants with chronic illness living in the region of Batna, Algeria, has been adopted in this study. A correlation statistical analysis is used to determine the relationship between illness perception, coping strategies, and quality of life. Multiple regression analysis was employed to highlight the predictive ability of the dimensions of illness perception and coping strategies on the dependent variables of quality of life, where mediation analysis is considered in the exploration of the indirect effect significance of the mediator. This study provides insights about the relationship between illness perception, coping strategies and quality of life in the considered sample (r = 0.39, p < 0.01). Therefore, it proves that there is an effect of illness identity perception, external and medical attributions related to emotional role, physical functioning, and mental health perceived, and these were fully mediated by the asking for assistance (c’= 0.04, p < 0.05), the guarding (c’= 0.00, p < 0.05), and the task persistence strategy (c’= 0.05, p < 0.05). The findings imply partial support for the common-sense model of illness representations in a chronic illness population. Directions for future research are highlighted, as well as implications for psychotherapeutic interventions which target unhelpful beliefs and maladaptive coping strategies (e.g., cognitive behavioral therapy).Keywords: chronic illness, coping, illness perception, quality of life, self- regulation model
Procedia PDF Downloads 2251544 Robust Design of a Ball Joint Considering Uncertainties
Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee
Abstract:
An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.Keywords: ball joint, pull-out strength, robust design, design of experiments
Procedia PDF Downloads 4221543 Hidden Populations and Women: New Political, Methodological and Ethical Challenges
Authors: Renée Fregosi
Abstract:
The contribution presently proposed will report on the beginnings of a Franco-Chilean study to be launched in 2015 by a multidisciplinary team of Renée Fregosi Political Science University Paris 3 / CECIEC, Norma Muñoz Public Policies University of Santiago of Chile, Jean-Daniel Lelievre, Medicine Paris 11 University, Marcelo WOLFF Medicine University of Chile, Cecilia Blatrix Political Science University Paris-Tech, Ernesto OTTONE, Political Science University of Chile, Paul DENY Medicine Paris 13 University, Rafael Bugueno Medicine Hospital Urgencia Pública of Santiago, Eduardo CARRASCO Political Science Paris 3 University. The problem of hidden populations challenges some criteria and concepts to re-examine: in particular the concept of target population, sampling methods to "snowball" and the cost-effectiveness criterion that shows the connection of political and scientific fields. Furthermore, if the pattern of homosexual transmission still makes up the highest percentage of the modes of infection with HIV, there is a continuous increase in the number of people infected through heterosexual sex, including women and persons aged 50 years and older. This group can be described as " unknown risk people." Access to these populations is a major challenge and raises methodological, ethical and political issues of prevention, particularly on the issue of screening. This paper proposes an inventory of these types of problems and their articulation, to define a new phase in the prevention against HIV refocused on women.Keywords: HIV testing, hidden populations, difficult to reach PLWHA, women, unknown risk people
Procedia PDF Downloads 5231542 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes
Authors: Ritwik Dutta, Marylin Wolf
Abstract:
This paper describes the trade-offs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The back-end consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.Keywords: flask, Java, JavaScript, health monitoring, long-term care, Mongo, Python, smart home, software engineering, webserver
Procedia PDF Downloads 3911541 Cognitive Science Based Scheduling in Grid Environment
Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya
Abstract:
Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence
Procedia PDF Downloads 3951540 Streptavidin-Biotin Attachment on Modified Silicon Nanowires
Authors: Shalini Singh, Sanjay K. Srivastava, Govind, Mukhtar. A. Khan, P. K. Singh
Abstract:
Nanotechnology is revolutionizing the development of biosensors. Nanomaterials and nanofabrication technologies are increasingly being used to design novel biosensors. Sensitivity and other attributes of biosensors can be improved by using nanomaterials with unique chemical, physical, and mechanical properties in their construction. Silicon is a promising biomaterial that is non-toxic and biodegradable and can be exploited in chemical and biological sensing. Present study demonstrated the streptavidin–biotin interaction on silicon surfaces with different topographies such as flat and nanostructured silicon (nanowires) surfaces. Silicon nanowires with wide range of surface to volume ratio were prepared by electrochemical etching of silicon wafer. The large specific surface of silicon nanowires can be chemically modified to link different molecular probes (DNA strands, enzymes, proteins and so on), which recognize the target analytes, in order to enhance the selectivity and specificity of the sensor device. The interaction of streptavidin with biotin was carried out on 3-aminopropyltriethoxysilane (APTS) functionalized silicon surfaces. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) studies have been performed to characterize the surface characteristics to ensure the protein attachment. Silicon nanowires showed the enhance protein attachment, as compared to flat silicon surface due to its large surface area and good molecular penetration to its surface. The methodology developed herein could be generalized to a wide range of protein-ligand interactions, since it is relatively easy to conjugate biotin with diverse biomolecules such as antibodies, enzymes, peptides, and nucleotides.Keywords: FTIR, silicon nanowires, streptavidin-biotin, XPS
Procedia PDF Downloads 4201539 Quorum-Sensing Driven Inhibitors for Mitigating Microbial Influenced Corrosion
Authors: Asma Lamin, Anna H. Kaksonen, Ivan Cole, Paul White, Xiao-Bo Chen
Abstract:
Microbiologically influenced corrosion (MIC) is a process in which microorganisms initiate, facilitate, or accelerate the electrochemical corrosion reactions of metallic components. Several reports documented that MIC accounts for about 20 to 40 % of the total cost of corrosion. Biofilm formation due to the presence of microorganisms on the surface of metal components is known to play a vital role in MIC, which can lead to severe consequences in various environmental and industrial settings. Quorum sensing (QS) system plays a major role in regulating biofilm formation and control the expression of some microbial enzymes. QS is a communication mechanism between microorganisms that involves the regulation of gene expression as a response to the microbial cell density within an environment. This process is employed by both Gram-positive and Gram-negative bacteria to regulate different physiological functions. QS involves production, detection, and responses to signalling chemicals, known as auto-inducers. QS controls specific processes important for the microbial community, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms. The use of QS inhibitors (QSIs) has been proposed as a possible solution to biofilm related challenges in many different applications. Although QSIs have demonstrated some strength in tackling biofouling, QSI-based strategies to control microbially influenced corrosion have not been thoroughly investigated. As such, our research aims to target the QS mechanisms as a strategy for mitigating MIC on metal surfaces in engineered systems.Keywords: quorum sensing, quorum quenching, biofilm, biocorrosion
Procedia PDF Downloads 911538 Big Data and Cardiovascular Healthcare Management: Recent Advances, Future Potential and Pitfalls
Authors: Maariyah Irfan
Abstract:
Intro: Current cardiovascular (CV) care faces challenges such as low budgets and high hospital admission rates. This review aims to evaluate Big Data in CV healthcare management through the use of wearable devices in atrial fibrillation (AF) detection. AF may present intermittently, thus it is difficult for a healthcare professional to capture and diagnose a symptomatic rhythm. Methods: The iRhythm ZioPatch, AliveCor portable electrocardiogram (ECG), and Apple Watch were chosen for review due to their involvement in controlled clinical trials, and their integration with smartphones. The cost-effectiveness and AF detection of these devices were compared against the 12-lead ambulatory ECG (Holter monitor) that the NHS currently employs for the detection of AF. Results: The Zio patch was found to detect more arrhythmic events than the Holter monitor over a 2-week period. When patients presented to the emergency department with palpitations, AliveCor portable ECGs detected 6-fold more symptomatic events compared to the standard care group over 3-months. Based off preliminary results from the Apple Heart Study, only 0.5% of participants received irregular pulse notifications from the Apple Watch. Discussion: The Zio Patch and AliveCor devices have promising potential to be implemented into the standard duty of care offered by the NHS as they compare well to current routine measures. Nonetheless, companies must address the discrepancy between their target population and current consumers as those that could benefit the most from the innovation may be left out due to cost and access.Keywords: atrial fibrillation, big data, cardiovascular healthcare management, wearable devices
Procedia PDF Downloads 1321537 A Research on the Coordinated Development of Chengdu-Chongqing Economic Circle under the Background of New Urbanization
Authors: Deng Tingting
Abstract:
The coordinated and integrated development of regions is an inevitable requirement for China to move towards high-quality, sustainable development. As one of the regions with the best economic foundation and the strongest economic strength in western China, it is a typical area with national importance and strong network connection characteristics in terms of the comprehensive effect of linking the inland hinterland and connecting the western and national urban networks. The integrated development of the Chengdu-Chongqing economic circle is of great strategic significance for the rapid and high-quality development of the western region. In the context of new urbanization, this paper takes 16 urban units within the economic circle as the research object, based on the 5-year panel data of population, regional economy, and spatial construction and development from 2016 to 2020, using the entropy method and Theil index to analyze the three target layers, and cause analysis. The research shows that there are temporal and spatial differences in the Chengdu-Chongqing economic circle, and there are significant differences between the core city and the surrounding cities. Therefore, by reforming and innovating the regional coordinated development mechanism, breaking administrative barriers, and strengthening the "polar nucleus" radiation function to release the driving force for economic development, especially in the gully areas of economic development belts, not only promote the coordinated development of internal regions but also promote the coordinated and sustainable development of the western region and take a high-quality development path.Keywords: Chengdu-Chongqing economic circle, new urbanization, coordinated regional development, Theil Index
Procedia PDF Downloads 1181536 A Discrete Event Simulation Model to Manage Bed Usage for Non-Elective Admissions in a Geriatric Medicine Speciality
Authors: Muhammed Ordu, Eren Demir, Chris Tofallis
Abstract:
Over the past decade, the non-elective admissions in the UK have increased significantly. Taking into account limited resources (i.e. beds), the related service managers are obliged to manage their resources effectively due to the non-elective admissions which are mostly admitted to inpatient specialities via A&E departments. Geriatric medicine is one of specialities that have long length of stay for the non-elective admissions. This study aims to develop a discrete event simulation model to understand how possible increases on non-elective demand over the next 12 months affect the bed occupancy rate and to determine required number of beds in a geriatric medicine speciality in a UK hospital. In our validated simulation model, we take into account observed frequency distributions which are derived from a big data covering the period April, 2009 to January, 2013, for the non-elective admission and the length of stay. An experimental analysis, which consists of 16 experiments, is carried out to better understand possible effects of case studies and scenarios related to increase on demand and number of bed. As a result, the speciality does not achieve the target level in the base model although the bed occupancy rate decreases from 125.94% to 96.41% by increasing the number of beds by 30%. In addition, the number of required beds is more than the number of beds considered in the scenario analysis in order to meet the bed requirement. This paper sheds light on bed management for service managers in geriatric medicine specialities.Keywords: bed management, bed occupancy rate, discrete event simulation, geriatric medicine, non-elective admission
Procedia PDF Downloads 2241535 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model
Authors: Didier Auroux, Vladimir Groza
Abstract:
This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization
Procedia PDF Downloads 3171534 Assessment of Drought Tolerance Maize Hybrids at Grain Growth Stage in Mediterranean Area
Authors: Ayman El Sabagh, Celaleddin Barutçular, Hirofumi Saneoka
Abstract:
Drought is one of the most serious problems posing a grave threat to cereals production including maize. Maize improvement in drought-stress tolerance poses a great challenge as the global need for food and bio-enegry increases. Thus, the current study was planned to explore the variations and determine the performance of target traits of maize hybrids at grain growth stage under drought conditions during 2014 under Adana, Mediterranean climate conditions, Turkey. Maize hybrids (Sancia, Indaco, 71May69, Aaccel, Calgary, 70May82, 72May80) were evaluated under (irrigated and water stress). Results revealed that, grain yield and yield traits had a negative effects because of water stress conditions compared with the normal irrigation. As well as, based on the result under normal irrigation, the maximum biological yield and harvest index were recorded. According to the differences among hybrids were found that, significant differences were observed among hybrids with respect to yield and yield traits under current research. Based on the results, grain weight had more effect on grain yield than grain number during grain filling growth stage under water stress conditions. In this concern, according to low drought susceptibility index (less grain yield losses), the hybrid (Indaco) was more stable in grain number and grain weight. Consequently, it may be concluded that this hybrid would be recommended for use in the future breeding programs for production of drought tolerant hybrids.Keywords: drought susceptibility index, grain growth, grain yield, maize, water stress
Procedia PDF Downloads 3311533 Innovative Practices That Have Significantly Scaled up Depot Medroxy Progesterone Acetate-SC Self-Inject Services
Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu
Abstract:
Background The Delivering Innovations in Selfcare (DISC) project promotes universal access to quality selfcare services beginning with subcutaneous depot medroxy progesterone acetate (DMPA-SC) contraceptive self-injection (SI) option. Self-inject (SI) offers women a highly effective and convenient option that saves them frequent trips to providers. Its increased use has the potential to improve the efficiency of an overstretched healthcare system by reducing provider workloads. State Social and Behavioral Change Communications (SBCC) Officers lead project demand creation and service delivery innovations that have resulted in significant increases in SI uptake among women who opt for injectables. Strategies Service Delivery Innovations The implementation of the "Moment of Truth (MoT)" innovation helped providers overcome biases and address client fear and reluctance to self-inject. Bi-annual program audits and supportive mentoring visits helped providers retain their competence and motivation. Proper documentation, tracking, and replenishment of commodities were ensured through effective engagement with State Logistics Units. The project supported existing state monitoring and evaluation structures to effectively record and report subcutaneous depot medroxy progesterone acetate (DMPA-SC) service utilization. Demand creation Innovations SBCC Officers provide oversight, routinely evaluate performance, trains, and provides feedback for the demand creation activities implemented by community mobilizers (CMs). The scope and intensity of training given to CMs affect the outcome of their work. The project operates a demand creation model that uses a schedule to inform the conduct of interpersonal and group events. Health education sessions are specifically designed to counter misinformation, address questions and concerns, and educate target audience in an informed choice context. The project mapped facilities and their catchment areas and enlisted the support of identified influencers and gatekeepers to enlist their buy-in prior to entry. Each mobilization event began with pre-mobilization sensitization activities, particularly targeting male groups. Context-specific interventions were informed by the religious, traditional, and cultural peculiarities of target communities. Mobilizers also support clients to engage with and navigate online digital Family Planning (FP) online portals such as DiscoverYourPower website, Facebook page, digital companion (chat bot), interactive voice response (IVR), radio and television (TV) messaging. This improves compliance and provides linkages to nearby facilities. Results The project recorded 136,950 self-injection (SI) visits and a self-injection (SI) proportion rate that increased from 13 percent before the implementation of interventions in 2021 to 62 percent currently. The project cost-effectively demonstrated catalytic impact by leveraging state and partner resources, institutional platforms, and geographic scope to scale up interventions. The project also cost effectively demonstrated catalytic impact by leveraging on the state and partner resources, institutional platforms, and geographic scope to sustainably scale-up these strategies. Conclusion Using evidence-informed iterations of service delivery and demand creation models have been useful to significantly drive self-injection (SI) uptake. It will be useful to consider this implementation model during program design. Contemplation should also be given to systematic and strategic execution of strategies to optimize impact.Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, innovation, service delivery, demand creation.
Procedia PDF Downloads 751532 Quoting Jobshops Due Dates Subject to Exogenous Factors in Developing Nations
Authors: Idris M. Olatunde, Kareem B.
Abstract:
In manufacturing systems, especially job shops, service performance is a key factor that determines customer satisfaction. Service performance depends not only on the quality of the output but on the delivery lead times as well. Besides product quality enhancement, delivery lead time must be minimized for optimal patronage. Quoting accurate due dates is sine quo non for job shop operational survival in a global competitive environment. Quoting accurate due dates in job shops has been a herculean task that nearly defiled solutions from many methods employed due to complex jobs routing nature of the system. This class of NP-hard problems possessed no rigid algorithms that can give an optimal solution. Jobshop operational problem is more complex in developing nations due to some peculiar factors. Operational complexity in job shops emanated from political instability, poor economy, technological know-how, and the non-promising socio-political environment. The mentioned exogenous factors were hardly considered in the previous studies on scheduling problem related to due date determination in job shops. This study has filled the gap created in the past studies by developing a dynamic model that incorporated the exogenous factors for accurate determination of due dates for varying jobs complexity. Real data from six job shops selected from the different part of Nigeria, were used to test the efficacy of the model, and the outcomes were analyzed statistically. The results of the analyzes showed that the model is more promising in determining accurate due dates than the traditional models deployed by many job shops in terms of patronage and lead times minimization.Keywords: due dates prediction, improved performance, customer satisfaction, dynamic model, exogenous factors, job shops
Procedia PDF Downloads 4131531 Development of an Integrated Route Information Management Software
Authors: Oluibukun G. Ajayi, Joseph O. Odumosu, Oladimeji T. Babafemi, Azeez Z. Opeyemi, Asaleye O. Samuel
Abstract:
The need for the complete automation of every procedure of surveying and most especially, its engineering applications cannot be overemphasized due to the many demerits of the conventional manual or analogue approach. This paper presents the summarized details of the development of a Route Information Management (RIM) software. The software, codenamed ‘AutoROUTE’, was encoded using Microsoft visual studio-visual basic package, and it offers complete automation of the computational procedures and plan production involved in route surveying. It was experimented using a route survey data (longitudinal profile and cross sections) of a 2.7 km road which stretches from Dama to Lunko village in Minna, Niger State, acquired with the aid of a Hi-Target DGPS receiver. The developed software (AutoROUTE) is capable of computing the various simple curve parameters, horizontal curve, and vertical curve, and it can also plot road alignment, longitudinal profile, and cross-section with a capability to store this on the SQL incorporated into the Microsoft visual basic software. The plotted plans with AutoROUTE were compared with the plans produced with the conventional AutoCAD Civil 3D software, and AutoROUTE proved to be more user-friendly and accurate because it plots in three decimal places whereas AutoCAD plots in two decimal places. Also, it was discovered that AutoROUTE software is faster in plotting and the stages involved is less cumbersome compared to AutoCAD Civil 3D software.Keywords: automated systems, cross sections, curves, engineering construction, longitudinal profile, route surveying
Procedia PDF Downloads 1491530 Integrative Transcriptomic Profiling of NK Cells and Monocytes: Advancing Diagnostic and Therapeutic Strategies for COVID-19
Authors: Salma Loukman, Reda Benmrid, Najat Bouchmaa, Hicham Hboub, Rachid El Fatimy, Rachid Benhida
Abstract:
In this study, it use integrated transcriptomic datasets from the GEO repository with the purpose of investigating immune dysregulation in COVID-19. Thus, in this context, we decided to be focused on NK cells and CD14+ monocytes gene expression, considering datasets GSE165461 and GSE198256, respectively. Other datasets with PBMCs, lung, olfactory, and sensory epithelium and lymph were used to provide robust validation for our results. This approach gave an integrated view of the immune responses in COVID-19, pointing out a set of potential biomarkers and therapeutic targets with special regard to standards of physiological conditions. IFI27, MKI67, CENPF, MBP, HBA2, TMEM158, THBD, HBA1, LHFPL2, SLA, and AC104564.3 were identified as key genes from our analysis that have critical biological processes related to inflammation, immune regulation, oxidative stress, and metabolic processes. Consequently, such processes are important in understanding the heterogeneous clinical manifestations of COVID-19—from acute to long-term effects now known as 'long COVID'. Subsequent validation with additional datasets consolidated these genes as robust biomarkers with an important role in the diagnosis of COVID-19 and the prediction of its severity. Moreover, their enrichment in key pathophysiological pathways presented them as potential targets for therapeutic intervention.The results provide insight into the molecular dynamics of COVID-19 caused by cells such as NK cells and other monocytes. Thus, this study constitutes a solid basis for targeted diagnostic and therapeutic development and makes relevant contributions to ongoing research efforts toward better management and mitigation of the pandemic.Keywords: SARS-COV-2, RNA-seq, biomarkers, severity, long COVID-19, bio analysis
Procedia PDF Downloads 141529 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 891528 Optimizing the Window Geometry Using Fractals
Authors: K. Geetha Ramesh, A. Ramachandraiah
Abstract:
In an internal building space, daylight becomes a powerful source of illumination. The challenge therefore, is to develop means of utilizing both direct and diffuse natural light in buildings while maintaining and improving occupant's visual comfort, particularly at greater distances from the windows throwing daylight. The geometrical features of windows in a building have significant effect in providing daylight. The main goal of this research is to develop an innovative window geometry, which will effectively provide the daylight component adequately together with internal reflected component(IRC) and also the external reflected component(ERC), if any. This involves exploration of a light redirecting system using fractal geometry for windows, in order to penetrate and distribute daylight more uniformly to greater depths, minimizing heat gain and glare, and also to reduce building energy use substantially. Of late the creation of fractal geometrical window and the occurrence of daylight illuminance due to such windows is becoming an interesting study. The amount of daylight can change significantly based on the window geometry and sky conditions. This leads to the (i) exploration of various fractal patterns suitable for window designs, and (ii) quantification of the effect of chosen fractal window based on the relationship between the fractal pattern, size, orientation and glazing properties for optimizing daylighting. There are a lot of natural lighting applications able to predict the behaviour of a light in a room through a traditional opening - a regular window. The conventional prediction methodology involves the evaluation of the daylight factor, the internal reflected component and the external reflected component. Having evaluated the daylight illuminance level for a conventional window, the technical performance of a fractal window for an optimal daylighting is to be studied and compared with that of a regular window. The methodologies involved are highlighted in this paper.Keywords: daylighting, fractal geometry, fractal window, optimization
Procedia PDF Downloads 3011527 Recurrent Neural Networks for Complex Survival Models
Authors: Pius Marthin, Nihal Ata Tutkun
Abstract:
Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)
Procedia PDF Downloads 911526 Empowering Women through the Fishermen of Functional Skills for City Gorontalo Indonesia
Authors: Abdul Rahmat
Abstract:
Community-based education in the economic empowerment of the family is an attempt to accelerate human development index (HDI) Dumbo Kingdom District of Gorontalo economics (purchasing power) program developed in this activity is the manufacture of functional skills shredded fish, fish balls, fish nuggets, chips anchovies, and corn sticks fish. The target audience of this activity is fishing se mothers subdistrict Dumbo Kingdom include Talumolo Village, Village Botu, Kampung Bugis Village, Village North and Sub Leato South Leato that each village is represented by 20 participants so totaling 100 participants. Time activities beginning in October s/d November 2014 held once a week on every Saturday at 9.00 s/d 13:00/14:00. From the results of the learning process of testing the skills of functional skills of making shredded fish, fish balls, fish nuggets, chips anchovies, fish and corn sticks residents have additional knowledge and experience are: 1) Order the concept include: nutrient content, processing food with fish raw materials , variations in taste, packaging, pricing and marketing sales. 2) Products made: in accordance with the wishes of the residents learned that estimated Eligible selling, product packaging logo creation, preparation and realization of the establishment of Business Study Group (KBU) and pioneered the marketing network with restaurant, store / shop staple food vendors that are around CLC.Keywords: community development, functional skills, gender, HDI
Procedia PDF Downloads 3131525 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty
Authors: D. S. Gomes, A. T. Silva
Abstract:
Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation
Procedia PDF Downloads 2921524 American Slang: Perception and Connotations – Issues of Translation
Authors: Lison Carlier
Abstract:
The English language that is taught in school or used in media nowadays is defined as 'standard English,' although unstandardized Englishes, or 'parallel' Englishes, are practiced throughout the world. The existence of these 'parallel' Englishes has challenged standardization by imposing its own specific vocabulary or grammar. These non-standard languages tend to be regarded as inferior and, therefore, pose a problem regarding their translation. In the USA, 'slanguage', or slang, is a good example of a 'parallel' language. It consists of a particular set of vocabulary, used mostly in speech, and rarely in writing. Qualified as vulgar, often reduced to an urban language spoken by young people from lower classes, slanguage – or the language that is often first spoken between youths – is still the most common language used in the English-speaking world. Moreover, it appears that the prime meaning of 'informal' (as in an informal language) – a language that is spoken with persons the speaker knows – has been put aside and replaced in the general mind by the idea of vulgarity and non-appropriateness, when in fact informality is a sign of intimacy, not of vulgarity. When it comes to translating American slang, the main problem a translator encounters is the image and the cultural background usually associated with this 'parallel' language. Indeed, one will have, unwillingly, a predisposition to categorize a speaker of a 'parallel' language as being part of a particular group of people. The way one sees a speaker using it is paramount, and needs to be transposed into the target language. This paper will conduct an analysis of American slang – its use, perception and the image it gives of its speakers – and its translation into French, using the novel Is Everyone Hanging Out Without Me? (and other concerns) by way of example. In her autobiography/personal essay book, comedy writer, actress and author Mindy Kaling speaks with a very familiar English, including slang, which participates in the construction of her own voice and style, and enables a deeper connection with her readers.Keywords: translation, English, slang, French
Procedia PDF Downloads 3191523 Portfolio Optimization with Reward-Risk Ratio Measure Based on the Mean Absolute Deviation
Authors: Wlodzimierz Ogryczak, Michal Przyluski, Tomasz Sliwinski
Abstract:
In problems of portfolio selection, the reward-risk ratio criterion is optimized to search for a risky portfolio with the maximum increase of the mean return in proportion to the risk measure increase when compared to the risk-free investments. In the classical model, following Markowitz, the risk is measured by the variance thus representing the Sharpe ratio optimization and leading to the quadratic optimization problems. Several Linear Programming (LP) computable risk measures have been introduced and applied in portfolio optimization. In particular, the Mean Absolute Deviation (MAD) measure has been widely recognized. The reward-risk ratio optimization with the MAD measure can be transformed into the LP formulation with the number of constraints proportional to the number of scenarios and the number of variables proportional to the total of the number of scenarios and the number of instruments. This may lead to the LP models with huge number of variables and constraints in the case of real-life financial decisions based on several thousands scenarios, thus decreasing their computational efficiency and making them hardly solvable by general LP tools. We show that the computational efficiency can be then dramatically improved by an alternative model based on the inverse risk-reward ratio minimization and by taking advantages of the LP duality. In the introduced LP model the number of structural constraints is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios and therefore guaranteeing easy solvability. Moreover, we show that under natural restriction on the target value the MAD risk-reward ratio optimization is consistent with the second order stochastic dominance rules.Keywords: portfolio optimization, reward-risk ratio, mean absolute deviation, linear programming
Procedia PDF Downloads 4081522 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete
Authors: Farzad Danaei, Yilmaz Akkaya
Abstract:
In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient
Procedia PDF Downloads 801521 Correlation between Neck Circumference and Other Anthropometric Indices as a Predictor of Obesity
Authors: Madhur Verma, Meena Rajput, Kamal Kishore
Abstract:
Background: The general view that obesity is a problem of prosperous Western countries has been repealed with substantial evidence showing that middle-income countries like India are now at the heart of a fat explosion. Neck circumference has evolved as a promising index to measure obesity, because of the convenience of its use, even in culture sensitive population. Objectives: To determine whether neck circumference (NC) was associated with overweight and obesity and contributed to the prediction like other classical anthropometric indices. Methodology: Cross-sectional study consisting of 1080 adults (> 19 years) selected through Multi-stage random sampling between August 2013 and September 2014 using the pretested semi-structured questionnaire. After recruitment, the demographic and anthropometric parameters [BMI, Waist & Hip Circumference (WC, HC), Waist to hip ratio (WHR), waist to height ratio (WHtR), body fat percentage (BF %), neck circumference (NC)] were recorded & calculated as per standard procedures. Analysis was done using appropriate statistical tests. (SPSS, version 21.) Results: Mean age of study participants was 44.55+15.65 years. Overall prevalence of overweight & obesity as per modified criteria for Asian Indians (BMI ≥ 23 kg/m2) was 49.62% (Females-51.48%; Males-47.77%). Also, number of participants having high WHR, WHtR, BF%, WC & NC was 827(76.57%), 530(49.07%), 513(47.5%), 537(49.72%) & 376(34.81%) respectively. Variation of NC, BMI & BF% with age was non- significant. In both the genders, as per the Pearson’s correlational analysis, neck circumference was positively correlated with BMI (men, r=0.670 {p < 0.05}; women, r=0.564 {p < 0.05}), BF% (men, r=0.407 {p < 0.05}; women, r= 0.283 {p < 0.05}), WC (men, r=0.598{p < 0.05}; women, r=0.615 {p < 0.05}), HC (men, r=0.512{p < 0.05}; women, r=0.523{p < 0.05}), WHR (men, r= 0.380{p > 0.05}; women, r=0.022{p > 0.05}) & WHtR (men, r=0.318 {p < 0.05}; women, r=0.396{p < 0.05}). On ROC analysis, NC showed good discriminatory power to identify obesity with AUC (AUC for males: 0.822 & females: 0.873; p- value < 0.001) with maximum sensitivity and specificity at a cut-off value of 36.55 cms for males & 34.05cms for females. Conclusion: NC has fair validity as a community-based screener for overweight and obese individuals in the study context and has also correlated well with other classical indices.Keywords: neck circumference, obesity, anthropometric indices, body fat percentage
Procedia PDF Downloads 2481520 Sustainable Development: Soil Conservation with Cultivation of Cassava (Manihot esculenta) Based on Local Wisdom
Authors: Adiyasa Muda Zannatan
Abstract:
Cassava (Manihot esculenta) is a plant originating from Brazil. Cassava plants categorized as sixth major food in the world after wheat, rice, corn and potatoes. It has been cultivated on hilly land for 97 years since 1918 at Cireundeu village, West Java Province, Indonesia. Cireundeu traditional village located in the mountain valleys and has a hilly slope up to 38%. Cassava is used as the primary food in that area. Uniquely, Cassava productivity is stable and continues until now. The assessment of soil quality is taking soil samples in the area and analysis the soil in laboratory. The result of analysis that soil in the area is not degraded because it has optimum nutrient, organic matter, and high value of cation exchange capacity in soil even though it has been cultivated in scarp with high slope. Commonly, soil on scarp with high slope has a high rate erosion and poor nutrient. It proved that cassava is able to be an alternative technique of soil conservation in the areas that have a high slope. Beside that, cassava can be utilized as a plant food, feed, fertilizer, and energy. With the utilization of Cassava, the target of Sustainable Development Goals (SDG's) will be achieved with consideration three important components include economy, social, and environment. In economy, Cassava can to be the commercial product like processed food, feed, and alternative energy. In social, it will increase social welfare and will be hereditary. And for environment, Cassava prevents soil from erosion and keeps soil quality.Keywords: Cassava, local wisdom, conservation, soil quality, sustainable
Procedia PDF Downloads 3001519 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models
Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru
Abstract:
Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.Keywords: maize, stem borers, density, RapidEye, GLM
Procedia PDF Downloads 497