Search results for: thermal barrier coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4661

Search results for: thermal barrier coating

1151 Pro-Ecological Antioxidants for Polymeric Composites

Authors: Masek A., Zaborski M.

Abstract:

In our studies, we propose the use of natural, pro-ecological substances such as polyphenols to protect polymers against ageing. In our studies, we plan to focus on the following compounds: polyphenols, gallic acid esters, flavonoides, carotenoids, curcumin and its derivatives, vitamin A, tocochromanoles, betalain. Phyto-compounds will be selected on the basis of available literature and our preliminary studies. So, we will select compounds with various contents of hydroxyl groups and colored substances capable of participating in color oxidation processes. The natural antioxidants which were added to ethylene-octene elastomer (polyolefin elastomer-Engage) and ethylene-nonbornene (TOPAS). Composites were then subjected to numerous ageing: weathering (climat of Floryda), UV (0,7 W/m2), thermo-oxidation ageing (1000C/10days) and thermal-shock (-600C/+1000C) as a function of the aging time. The efficiency of used anti-ageing agents was checked on the base of the changes after the degradation in deformation energy (tensile strength and elongation at the break), cross-link density, color (parameters L,a,b) and values of carbonyl index (based on the spectrum of infra red spectroscopy), OIT (induction oxygen time as performed in using differential scanning calorimeter -DSC) of the vulcanizates. Therefore polyphenols are considered to be the best stabilisers for polymeric composites against to oxidation processes.

Keywords: polymers, flavonoids, stabilization, ageing, oxidation

Procedia PDF Downloads 281
1150 Strategies to Synthesize Ambient Stable Ultrathin Ag Film Supported on Oxide Substrate

Authors: Allamula Ashok, Peela Lasya, Daljin Jacob, P. Muhammed Razi, Satyesh Kumar Yadav

Abstract:

We report zinc (Zn) as a seed layer material and a need for a specific disposition sequence to grow ultrathin silver (Ag) films on quartz (SiO₂). Ag films of thickness 4, 6, 8 and 10 nm were deposited by DC magnetron sputtering without and with Zn seed layer thickness of 1, 2 and 4 nm. The effect of Zn seed layer thickness and its annealing on the surface morphology, sheet resistance, and stability of ultrathin Ag films is investigated. We show that by increasing Zn seed layer thickness from 1 to 2 nm, there is a 5-order reduction in sheet resistance of 6 nm Ag films. We find that annealing of the seed layer is crucial to achieving stability of ultrathin Ag films. 6 nm Ag film with 2 nm Zn is unstable to 100 oC annealing, while the 6 nm Ag film with annealed 2 nm Zn seed layer is stable. 2 nm Zn seeded 8 nm Ag film maintained a constant sheet resistance of 7 Ω/□ for all 6 months of exposure to ambient conditions. Among the ultrathin film grown, 8nm Ag film with 2nm Zn seed layer had the best figure of merit with sheet resistance of 7 Ω/□, mean absolute surface roughness (Ra) ~1 nm, and optical transparency of 61 %. Such stable exposed ultrathin Ag films can find applications as catalysts, sensors, and transparent and conductive electrodes for solar cells, LEDs and plasmonic devices.

Keywords: ultrathin Ag films, magnetron sputtering, thermal stability, seed layer, exposed silver, zinc.

Procedia PDF Downloads 12
1149 Urban Waste Management for Health and Well-Being in Lagos, Nigeria

Authors: Bolawole F. Ogunbodede, Mokolade Johnson, Adetunji Adejumo

Abstract:

High population growth rate, reactive infrastructure provision, inability of physical planning to cope with developmental pace are responsible for waste water crisis in the Lagos Metropolis. Septic tank is still the most prevalent waste-water holding system. Unfortunately, there is a dearth of septage treatment infrastructure. Public waste-water treatment system statistics relative to the 23 million people in Lagos State is worrisome. 1.85 billion Cubic meters of wastewater is generated on daily basis and only 5% of the 26 million population is connected to public sewerage system. This is compounded by inadequate budgetary allocation and erratic power supply in the last two decades. This paper explored community participatory waste-water management alternative at Oworonshoki Municipality in Lagos. The study is underpinned by decentralized Waste-water Management systems in built-up areas. The initiative accommodates 5 step waste-water issue including generation, storage, collection, processing and disposal through participatory decision making in two Oworonshoki Community Development Association (CDA) areas. Drone assisted mapping highlighted building footage. Structured interviews and focused group discussion of land lord associations in the CDA areas provided collaborator platform for decision-making. Water stagnation in primary open drainage channels and natural retention ponds in framing wetlands is traceable to frequent of climate change induced tidal influences in recent decades. Rise in water table resulting in septic-tank leakage and water pollution is reported to be responsible for the increase in the water born infirmities documented in primary health centers. This is in addition to unhealthy dumping of solid wastes in the drainage channels. The effect of uncontrolled disposal system renders surface waters and underground water systems unsafe for human and recreational use; destroys biotic life; and poisons the fragile sand barrier-lagoon urban ecosystems. Cluster decentralized system was conceptualized to service 255 households. Stakeholders agreed on public-private partnership initiative for efficient wastewater service delivery.

Keywords: health, infrastructure, management, septage, well-being

Procedia PDF Downloads 146
1148 Biobased Polyurethane Derived from Transesterified Castor Oil: Synthesis and Charecterization

Authors: Sonalee Das, Smita Mohanty, S. K. Nayak

Abstract:

Recent years has witnessed the increasing demand for natural resources and products in polyurethane synthesis because of global warming, sustainable development and oil crisis. For this purpose, different plant oils such as soybean oil, castor oil and linseed oil are extensively used. Moreover, the isocyanate used for the synthesis of polyurethane is derived from petroleum resources. In this present work attempts have been made for the successful synthesis of biobased isocyanate from castor oil with partially biobased isocyanate in presence of catalyst dibutyltin dilaurate (DBTDL). The goal of the present study was to investigate the thermal, mechanical, morphological and chemical properties of the synthesized polyurethane in terms of castor oil modification. The transesterified polyol shows broad and higher hydroxyl value as compared to castor oil which was confirmed by FTIR studies. The FTIR studies also revealed the successful synthesis of bio based polyurethane by showing characteristic peaks at 3300cm-1, 1715cm-1 and 1532cm-1 respectively. The TGA results showed three step degradation mechanism for the synthesized polyurethane from modified and unmodified castor oil. However, the modified polyurethane exhibited higher degradation temperature as compared to unmodified one. The mechanical properties also demonstrated higher tensile strength for modified polyurethane as compared to unmodified one.

Keywords: castor oil, partially biobased Isocyanate, polyurethane synthesis, FTIR

Procedia PDF Downloads 326
1147 A Review of Energy in the Democratic Republic of Congo

Authors: Kanzumba Kusakana

Abstract:

The Democratic Republic of Congo (DRC) is currently experiencing a general energy crisis due to lack of proper investment and management in the energy sector. 93, 6% of the country is highly dependent on wood fuels as main source of energy having severe impacts such as deforestation and general degradation of the environment. On the other hand, the major share of the electricity produced mainly from ill-conditioned hydro and thermal power stations is principally used to supply the industrial sector as well as very few urban areas. Nevertheless, DRC possesses huge potential in renewable resources such as hydropower, biomass, methane gas, solar geothermal and moderate wind potential that can be used for energy generation. Recently the country has initiated projects to build decentralized micro hydropower station to supply remotes and isolated areas; to rehabilitate its existent main hydropower plants and transmission lines as well as to extend its current generation capacity by building new hydropower stations able to respond to a major part of the African continent energy needs. This paper presents a comprehensive review of current energy resources as well as of the electricity situation in DRC. Recent energy projects, the energy policy as well as the energy challenges in the DRC are also presented.

Keywords: energy, biomass, hydro power, renewable energy, energy policy, Democratic Republic of Congo

Procedia PDF Downloads 310
1146 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger

Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani

Abstract:

Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.

Keywords: heat transfer coefficient, aluminium, entry length, design

Procedia PDF Downloads 305
1145 Simulation of Single-Track Laser Melting on IN718 using Material Point Method

Authors: S. Kadiyala, M. Berzins, D. Juba, W. Keyrouz

Abstract:

This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance.

Keywords: dditive manufacturing simulation, material point method, phase change, melt pool physics

Procedia PDF Downloads 40
1144 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment

Authors: B. A. Mir, Asim Malik

Abstract:

Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.

Keywords: bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization

Procedia PDF Downloads 232
1143 Geothermal Energy Evaluation of Lower Benue Trough Using Spectral Analysis of Aeromagnetic Data

Authors: Stella C. Okenu, Stephen O. Adikwu, Martins E. Okoro

Abstract:

The geothermal energy resource potential of the Lower Benue Trough (LBT) in Nigeria was evaluated in this study using spectral analysis of high-resolution aeromagnetic (HRAM) data. The reduced to the equator aeromagnetic data was divided into sixteen (16) overlapping blocks, and each of the blocks was analyzed to obtain the radial averaged power spectrum which enabled the computation of the top and centroid depths to magnetic sources. The values were then used to assess the Curie Point Depth (CPD), geothermal gradients, and heat flow variations in the study area. Results showed that CPD varies from 7.03 to 18.23 km, with an average of 12.26 km; geothermal gradient values vary between 31.82 and 82.50°C/km, with an average of 51.21°C/km, while heat flow variations range from 79.54 to 206.26 mW/m², with an average of 128.02 mW/m². Shallow CPD zones that run from the eastern through the western and southwestern parts of the study area correspond to zones of high geothermal gradient values and high subsurface heat flow distributions. These areas signify zones associated with anomalous subsurface thermal conditions and are therefore recommended for detailed geothermal energy exploration studies.

Keywords: geothermal energy, curie-point depth, geothermal gradient, heat flow, aeromagnetic data, LBT

Procedia PDF Downloads 48
1142 Influence of Optical Fluence Distribution on Photoacoustic Imaging

Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim

Abstract:

Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.

Keywords: finite element method, fluence distribution, Monte Carlo method, photoacoustic imaging

Procedia PDF Downloads 358
1141 Analysis of CO₂ Capture Products from Carbon Capture and Utilization Plant

Authors: Bongjae Lee, Beom Goo Hwang, Hye Mi Park

Abstract:

CO₂ capture products manufactured through Carbon Capture and Utilization (CCU) Plant that collect CO₂ directly from power plants require accurate measurements of the amount of CO₂ captured. For this purpose, two tests were carried out on the weight loss test. And one was analyzed using a carbon dioxide quantification device. First, the ignition loss analysis was performed by measuring the weight of the sample at 550°C after the first conversation and then confirming the loss when ignited at 950°C. Second, in the thermogravimetric analysis, the sample was divided into two sections of 40 to 500°C and 500 to 800°C to confirm the reduction. The results of thermal weight loss analysis and thermogravimetric analysis were confirmed to be almost similar. However, the temperature of the ignition loss analysis method was 950°C, which was 150°C higher than that of the thermogravimetric method at a temperature of 800°C, so that the difference in the amount of weight loss was 3 to 4% higher by the heat loss analysis method. In addition, the tendency that the CO₂ content increases as the reaction time become longer is similarly confirmed. Third, the results of the wet titration method through the carbon dioxide quantification device were found to be significantly lower than the weight loss method. Therefore, based on the results obtained through the above three analysis methods, we will establish a method to analyze the accurate amount of CO₂. Acknowledgements: This work was supported by the Korea Institute of Energy Technology Evaluation and planning (No. 20152010201850).

Keywords: carbon capture and utilization, CCU, CO2, CO2 capture products, analysis method

Procedia PDF Downloads 191
1140 Reintegrating Forensic Mental Health Service Users into Communities in the Western Cape, South Africa

Authors: Zolani Metu

Abstract:

The death of more than 140 psychiatric patients who were unethically deinstitutionalized from the Life Esidimeni hospital Johannesburg, in 2016, shined a light on South Africa’s failing public mental healthcare system. Compounded by insufficient research evidence on African deinstitutionalization, this necessitates inquiries into deinstitutionalized mental healthcare, reintegration and community-based mental healthcare within the South African context. This study employed a quantitative research approach which utilized a cross-sectional research design, to investigate experiences with the reintegration of institutionalized forensic mental health service users into communities in the Western Cape, South Africa. A convenience sample of 100 mental health care workers from different occupational and organizational backgrounds in the Western Cape was purposively selected using the Western Cape Health Directorate as a sampling frame. A self-administered questionnaire (SAQ) was used as the data collection instrument. The results of the study indicate that criminogenic factors such as substance use, history of violent behaviour, criminal history and disruptive social behaviour complicate the reintegration of forensic mental health service users into communities. The current extent of reintegration of forensic mental health service users was found to be 'poor' (46%; n= 46); and financial difficulties, criminogenic factors and limited Community-Based Care (CBC) facilities were identified as key barriers to the reintegration process. 56% of all job applications for forensic mental health service users were unsuccessful, and 53% of all applications for their admission into CBC facilities were declined. Although social support (informal) was found to be essential for successful reintegration, institutional support (formal) through assertive community treatment (35%; n= 35) and CBC facilities (21%) and the disability grant (DG=50%) was found to be more important for family coping and reintegration. Moreover, 72% of respondents had positive perceptions about the process of reintegration; no statistically significant relationship was found between years of experience and perceptions about reintegration (P-value = 0.062); and perceptions were not found to be a barrier to reintegration. No statistically significant relationship was found between years of working experience and understanding the legislative framework of deinstitutionalization (P-Value =.0.061). However, using a Chi-square test, a significant relationship (P-value = 0.021) was found between sex and understanding the legal framework involved in the process of reintegration. The study recommends a post-2020 deinstitutionalization agenda that factors-in criminogenic realities associated with forensic mental health service users, and affirms the strengthening of PHC and community based care systems as precedents of successful deinstitutionalization and reintegration of mental health service users.

Keywords: forensic mental health, deinstitutionalization, reintegration, mental health service users

Procedia PDF Downloads 140
1139 Study of Poly(Ethylene Terephthalate)-Clay Nanocomposites Prepareted by Extrusion Reactive Method

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

A method for the exfoliation of polyethylene terephtalate (PET) - clay nanocomposites has been reported in this study. Montmorillonite clay based polyethylene terephtalate nanocomposites were prepared by reactive melt-mixing. To achieve this, untreated clay was first functionalized with the crosslinking agent compound based mainly on peroxide/sulphur and TMTD as accelerator or activator for sulphur. Furthermore, the different blends composition of PET/clay were directly mixed in melt state in closed chamber of plastograph at given working conditions for short time and in one step process. To investigate the microstructure modification and thermal, mechanical and rheological properties the DSC, WAXS, microhardness, FTIR and tensile properties were performed. The resulting structure of the modified samples shows that total exfoliation appears at 4% w/w of clay to PET matrices. The crystallinity and tensile modulus were correlated by the H microhardness and the DSC shows no significant effect on the cristallinity degree. The mechanical properties were improved significantly. The viscosity decreases for 4% clay and the activation energy is the minimum. The WAXS measurement shows a partial exfoliation without any intercalation which is the most relevant point. The grafting of organic to inorganic nanolayers was observed by Si—O—C and Si—C bonds by FTIR.

Keywords: PET, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing

Procedia PDF Downloads 237
1138 Principal Component Analysis in Drug-Excipient Interactions

Authors: Farzad Khajavi

Abstract:

Studies about the interaction between active pharmaceutical ingredients (API) and excipients are so important in the pre-formulation stage of development of all dosage forms. Analytical techniques such as differential scanning calorimetry (DSC), Thermal gravimetry (TG), and Furrier transform infrared spectroscopy (FTIR) are commonly used tools for investigating regarding compatibility and incompatibility of APIs with excipients. Sometimes the interpretation of data obtained from these techniques is difficult because of severe overlapping of API spectrum with excipients in their mixtures. Principal component analysis (PCA) as a powerful factor analytical method is used in these situations to resolve data matrices acquired from these analytical techniques. Binary mixtures of API and interested excipients are considered and produced. Peaks of FTIR, DSC, or TG of pure API and excipient and their mixtures at different mole ratios will construct the rows of the data matrix. By applying PCA on the data matrix, the number of principal components (PCs) is determined so that it contains the total variance of the data matrix. By plotting PCs or factors obtained from the score of the matrix in two-dimensional spaces if the pure API and its mixture with the excipient at the high amount of API and the 1:1mixture form a separate cluster and the other cluster comprise of the pure excipient and its blend with the API at the high amount of excipient. This confirms the existence of compatibility between API and the interested excipient. Otherwise, the incompatibility will overcome a mixture of API and excipient.

Keywords: API, compatibility, DSC, TG, interactions

Procedia PDF Downloads 102
1137 Temperature-Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat Vs. Open Flame

Authors: Caighley Logan

Abstract:

The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FT-IR), and X-Ray Fluorescence (XRF), the data collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (8.5ft x 8ft) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p=<0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.

Keywords: forensic anthropology, thermal alterations, porcine bone, FTIR, XRF

Procedia PDF Downloads 62
1136 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application

Authors: S. Nqayi

Abstract:

Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.

Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics

Procedia PDF Downloads 34
1135 Optimization of Parameters for Electrospinning of Pan Nanofibers by Taguchi Method

Authors: Gamze Karanfil Celep, Kevser Dincer

Abstract:

The effects of polymer concentration and electrospinning process parameters on the average diameters of electrospun polyacrylonitrile (PAN) nanofibers were experimentally investigated. Besides, mechanical and thermal properties of PAN nanofibers were examined by tensile test and thermogravimetric analysis (TGA), respectively. For this purpose, the polymer concentration, solution feed rate, supply voltage and tip-to-collector distance were determined as the control factors. To succeed these aims, Taguchi’s L16 orthogonal design (4 parameters, 4 level) was employed for the experimental design. Optimal electrospinning conditions were defined using the signal-to-noise (S/N) ratio that was calculated from diameters of the electrospun PAN nanofibers according to "the-smaller-the-better" approachment. In addition, analysis of variance (ANOVA) was evaluated to conclude the statistical significance of the process parameters. The smallest diameter of PAN nanofibers was observed. According to the S/N ratio response results, the most effective parameter on finding out of nanofiber diameter was determined. Finally, the Taguchi design of experiments method has been found to be an effective method to statistically optimize the critical electrospinning parameters used in nanofiber production. After determining the optimum process parameters of nanofiber production, electrical conductivity and fuel cell performance of electrospun PAN nanofibers on the carbon papers will be evaluated.

Keywords: nanofiber, electrospinning, polyacrylonitrile, Taguchi method

Procedia PDF Downloads 173
1134 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cell (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂ and two different ligands, namely oleic acid (OA) oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA, OAm and DDAB were studied. For this purpose, ITO/PQDs as well as ITO/PQDs/MAPI perovskite structures were prepared by spin coating and the effect of the ligand and oxygen plasma treatment was analyzed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA, OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA, OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA, OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behavior of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., Perovskite Solar Cells

Procedia PDF Downloads 41
1133 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cells (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂, and two different ligands, namely oleic acid (OA)@oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA@OAm and DDAB were studied. For this purpose, ITO/PQDs, as well as ITO/PQDs/MAPI perovskite structures, were prepared by spin coating, and the effect of the ligand and oxygen plasma treatment was analysed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA@OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA@OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA@OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behaviour of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., perovskite solar cells

Procedia PDF Downloads 42
1132 Electric Field Impact on the Biomass Gasification and Combustion Dynamics

Authors: M. Zake, I. Barmina, R. Valdmanis, A. Kolmickovs

Abstract:

Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3 % and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10 % increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10 %

Keywords: biomass, combustion, electrodynamic control, gasification

Procedia PDF Downloads 424
1131 Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas

Authors: Vijayakumar Kunche

Abstract:

Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap.

Keywords: clinker cooler, energy efficiency, organic rankine cycle, waste heat recovery

Procedia PDF Downloads 214
1130 Development of Rh/Ce-Zr-La/Al2O3 TWCs’ Wash Coat: Effect of Reactor on Catalytic and Thermal Stability

Authors: Su-Ning Wang, Yao-Qiang Chen

Abstract:

The CeO2-ZrO2-La2O3-Al2O3 composite oxides are synthesized using co-precipitation method by two different reactors (i.e. continuous stirred-tank reactor and batch reactor), and the corresponding Rh-only three-way catalysts are obtained by wet-impregnation approach. The textural, structural, morphology and redox properties of the support materials, as well as the catalytic performance of the Rh-only catalyst are investigated systematically. The results reveal that the materials (CZLA-C) synthesized by continuous stirred-tank reactor have a better physic-chemical properties than the counterpart material (CZLA-B) prepared by batch reactor. After aging treatment at 1000 ℃ for 5 h, the BET surface area and pore volume of S1 reach up to 76 m2 g-1 and 0.36 mL/g, respectively, which is higher than that of S2. The XRD and Raman results demonstrate that a high structural stability is obtained by S1 because of the negligible lattice variation and the slight grain growth after aging treatment. The SEM and TEM images display that the morphology of S1 is assembled by many homogeneous primary nanoparticles (about 6.12 nm) that are connected to form mesoporous structure The TPR measurement shows that S1 possesses a higher reduction ability than S2. Compared with the catalyst supported on the CZLA-B, the as-prepared CZLA-C demonstrates an improved three-way catalytic activity both before and after aging treatment.

Keywords: composite oxides, reactor, catalysis, catalytic performance

Procedia PDF Downloads 272
1129 Laser Based Microfabrication of a Microheater Chip for Cell Culture

Authors: Daniel Nieto, Ramiro Couceiro

Abstract:

Microfluidic chips have demonstrated their significant application potentials in microbiological processing and chemical reactions, with the goal of developing monolithic and compact chip-sized multifunctional systems. Heat generation and thermal control are critical in some of the biochemical processes. The paper presents a laser direct-write technique for rapid prototyping and manufacturing of microheater chips and its applicability for perfusion cell culture outside a cell incubator. The aim of the microheater is to take the role of conventional incubators for cell culture for facilitating microscopic observation or other online monitoring activities during cell culture and provides portability of cell culture operation. Microheaters (5 mm × 5 mm) have been successfully fabricated on soda-lime glass substrates covered with aluminum layer of thickness 120 nm. Experimental results show that the microheaters exhibit good performance in temperature rise and decay characteristics, with localized heating at targeted spatial domains. These microheaters were suitable for a maximum long-term operation temperature of 120ºC and validated for long-time operation at 37ºC. for 24 hours. Results demonstrated that the physiology of the cultured SW480 adenocarcinoma of the colon cell line on the developed microheater chip was consistent with that of an incubator.

Keywords: laser microfabrication, microheater, bioengineering, cell culture

Procedia PDF Downloads 269
1128 Impact of Financial and Nutrition Support on Blood Health, Dietary Intake, and Well-Being among Female Student-Athletes

Authors: Kaila A. Vento

Abstract:

Within the field of sports science, financial situations have been reported as a key barrier in purchasing high-quality foods. A lack of proper nutrition leads to insecurities of health, impairs training, and diminishes optimal performances. Consequently, insufficient nutrient intake, disordered eating patterns, and eating disorders may arise, leading to poor health and well-being. Athletic scholarships, nutrition resources, and meal programs are available, yet are disproportionally allocated, favoring male sports, Caucasian athletes, and higher sport levels. Direct athlete finances towards nutrition at various sport levels and the role race influences aid received has yet to be examined. Additionally, a diverse female athlete population is missing in the sports science literature, specifically in nutrition. To address this gap, the current project assesses how financial and nutrition support and nutrition knowledge impacts physical health, dietary intake, and overall quality of life of a diverse sample of female athletes at the National Collegiate Athletic Association (NCAA), National Junior Collegiate Athletic Association (NJCAA), and cub sport levels. The project will identify differences in financial support in relation to race, as well. Approximately (N = 120) female athletes will participate in a single 30-minute lab visit. At this visit, body composition (i.e., height, weight, body mass index, and fat percent), blood health indicators (fasted blood glucose and lipids), and resting blood pressure are measured. In addition, three validated questionnaires pertaining to nutrition knowledge (Sports Nutrition Knowledge Questionnaire; SNKQ), dietary intake (Rapid Eating Assessment for Participants; REAP), and quality of life (World Health Organization Quality of Life Brief; WHOQL-B) are gathered. Body composition and blood health indicators will be compared with the results of self-reported sports nutrition knowledge, dietary intake, and quality of life questionnaires. It is hypothesized that 1) financial and nutrition support and nutrition knowledge will differ between the sport levels and 2) financial and nutrition support and nutrition knowledge will have a positive association with quality of dietary intake and blood health indicators, 3) financial and nutrition support will differ significantly among racial background across the various competition levels, and 4) dietary intake will influence blood health indicators and quality of life. The findings from this study could have positive implications on athletic associations' policies on equity of financial and nutrition support to improve the health and safety of all female athletes across several sport levels.

Keywords: athlete, equity, finances, health, resources

Procedia PDF Downloads 84
1127 Numerical Study of Rayleight Number and Eccentricity Effect on Free Convection Fluid Flow and Heat Transfer of Annulus

Authors: Ali Reza Tahavvor‚ Saeed Hosseini, Behnam Amiri

Abstract:

Concentric and eccentric annulus is used frequently in technical and industrial applications such as nuclear reactors, thermal storage system and etc. In this paper, computational fluid dynamics (CFD) is used to investigate two dimensional free convection of laminar flow in annulus with isotherm cylinders surface and cooler inner surface. Problem studied in thirty different cases. Due to natural convection continuity and momentum equations are coupled and must be solved simultaneously. Finite volume method is used for solving governing equations. The purpose was to obtain the eccentricity effect on Nusselt number in different Rayleight numbers, so streamlines and temperature fields must be determined. Results shown that the highest Nusselt number values occurs in degree of eccentricity equal to 0.5 upward for inner cylinder and degree of eccentricity equal to 0.3 upward for outer cylinder. Side eccentricity reduces the outer cylinder Nusselt number but increases inner cylinder Nusselt number. The trend in variation of Nusselt number with respect to eccentricity remain similar in different Rayleight numbers. Correlations are included to calculate the Nusselt number of the cylinders.

Keywords: natural convection, concentric, eccentric, Nusselt number, annulus

Procedia PDF Downloads 342
1126 Freezing Characteristics and Texture Variation of Apple Fruits after Dehydrofreezing Assisted by Instant Controlled Pressure Drop Treatment

Authors: Leila Ben Haj Said, Sihem Bellagha, Karim Allaf

Abstract:

The present study deals with the dehydrofreezing assisted by instant controlled pressure drop (DIC) treatment of apple fruits. Samples previously dehydrated until different water contents (200, 100, and 30% dry basis (db)) and DIC treated were frozen at two different freezing velocities (V+ and V-), depending on the thermal resistance established between the freezing airflow and the sample surface. The effects of sample water content (W) and freezing velocity (V) on freezing curves and characteristics, exudate water (EW) and texture variation were examined. Lower sample water content implied higher freezing rates, lower initial freezing points (IFP), lower practical freezing time (PFT), and lower specific freezing time (SFT). EW (expressed in g exudate water/100 g water in the product) of 200% and 100% db apple samples was approximately 3%, at low freezing velocity (V-). Whereas, it was lower than 0.5% for apple samples with 30% db water content. Moreover, the impact of freezing velocity on EW was significant and very important only for high water content samples. For samples whose water content was lower than 100% db, firmness (maximum puncture force) was as higher as the water content was lower, without any insignificant impact of freezing velocity.

Keywords: dehydrofreezing, instant controlled pressure drop DIC, freezing time, texture

Procedia PDF Downloads 359
1125 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine

Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose

Abstract:

The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPG-CNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 100 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.

Keywords: diesel engine, hydrogen, BTHE, BSEC, soot, NOx

Procedia PDF Downloads 514
1124 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst

Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba

Abstract:

Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.

Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations

Procedia PDF Downloads 305
1123 Recovery the Regeneration Gas from Liquefied Petroleum Gas Dryer to Off Gas Compressors

Authors: Hassan Hussin Zwida

Abstract:

The liquified LPG (Liquefied Petroleum Gas) drying system at the Complex is designed to remove water and mercaptans from the LPG stream. Upon saturation of the desiccant beds, a regeneration cycle becomes necessary. The original design routed the regeneration gas, produced during the LPG dryer heating cycle, to the sulfur recovery unit to the incineration. However, concerns regarding high temperatures and potential unit disruptions led to a modification where the gas is currently vented to the acid flare for the initial hour before being diverted to the LP network fuel gas system. While this addresses the temperature concerns, it generates significant smoke due to the presence of liquid hydrocarbons. This paper proposes an approach to recover the regeneration gas and redirect it back to the gas plant's (off-gas compressors) instead of sending it to the AC (Acid Flare), by utilizing the existing pipe 6” and connected to off gas compressor KO (Knock-Out ) Drums . This option is simple to operate, flexible, environment-friendly solution as long-term solution, lower in capital expenditure and increase the company's profitability. The feasibility of this proposal is supported by dynamic simulations. The simulations suggest the possibility of operating two out of the three off-gas compressors and LPG (Liquefied petroleum gas) as a liquid phase, is foreseen to be carried over and gathered at the bottom level of the KO (Knock-Out) Drum.

Keywords: thermal incinerator, off-gas compressors, environment, knock-out drums, acid flare

Procedia PDF Downloads 13
1122 A Review of Paleo-Depositional Environment and Thermal Alteration Index of Carboniferous, Permian and Triassic of A1-9 well, NW Libya

Authors: Mohamed Ali Alrabib

Abstract:

This paper introduces a paleoenvironmental and hydrocarbon show in this well was identified in the interval of Dembaba formation to the Hassaona formation was poor to very poor oil show. And from palaeoenvironmental analysis there is neither particularly good reservoir nor source rock have been developed in the area. Recent palaeoenvironment work undertakes that the sedimentary succession in this area comprises the Upper Paleozoic rock of the Carboniferous and Permian and the Mesozoic (Triassic) sedimentary sequences. No early Paleozoic rocks have been found in this area, these rocks were eroding during the Late Carboniferous and Early Permian time. During Latest Permian and earliest Triassic time evidence for major marine transgression has occurred. From depths 5930-5940 feet, to 10800-10810 feet, the TAI of the Al Guidr, the Bir Al Jaja Al Uotia, Hebilia and the top varies between 3+ to 4-(mature-dry gas). This interval corporate the rest part of the Dembaba Formation. From depth 10800- 10810 feet, until total sediment depth (11944 feet Log) which corporate the rest of the Dembaba and underlying equivalents of the Assedjefar and M rar Formations and the underlying Indeterminate unit (Hassouna Formation) the TAI varies between 4 and 5 (dry gas-black& deformed).

Keywords: paleoenveronments, thermail index, carboniferous, Libya

Procedia PDF Downloads 398