Search results for: teaching learning based algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34523

Search results for: teaching learning based algorithm

31013 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 122
31012 Examining Motivational Dynamics and L2 Learning Transitions of Air Cadets Between Year One and Year Two: A Retrodictive Qualitative Modelling Approach

Authors: Kanyaporn Sommeechai

Abstract:

Air cadets who aspire to become military pilots upon graduation undergo rigorous training at military academies. As first-year cadets are akin to civilian freshmen, they encounter numerous challenges within the seniority-based military academy system. Imposed routines, such as mandatory morning runs and restrictions on mobile phone usage for two semesters, have the potential to impact their learning process and motivation to study, including second language (L2) acquisition. This study aims to investigate the motivational dynamics and L2 learning transitions experienced by air cadets. To achieve this, a Retrodictive Qualitative Modelling approach will be employed, coupled with the adaptation of the three-barrier structure encompassing institutional factors, situational factors, and dispositional factors. Semi-structured interviews will be conducted to gather rich qualitative data. By analyzing and interpreting the collected data, this research seeks to shed light on the motivational factors that influence air cadets' L2 learning journey. The three-barrier structure will provide a comprehensive framework to identify and understand the institutional, situational, and dispositional factors that may impede or facilitate their motivation and language learning progress. Moreover, the study will explore how these factors interact and shape cadets' motivation and learning experiences. The outcomes of this research will yield fundamental data that can inform strategies and interventions to enhance the motivation and language learning outcomes of air cadets. By better understanding their motivational dynamics and transitions, educators and institutions can create targeted initiatives, tailored pedagogical approaches, and supportive environments that effectively inspire and engage air cadets as L2 learners.

Keywords: second language, education, motivational dynamics, learning transitions

Procedia PDF Downloads 75
31011 Interpreting Possibilities: Teaching Without Borders

Authors: Mira Kadric

Abstract:

The proposed paper deals with a new developed approach for interpreting teaching, combining traditional didactics with a new element. The fundamental principle of the approach is taken from the theatre pedagogy (Augusto Boal`s Theatre of the Oppressed) and includes the discussion on social power relations. From the point of view of education sociology this implies strengthening students’ individual potential for self-determination on a number of levels, especially in view of the present increase in social responsibility. This knowledge constitutes a starting point and basis for the process of self-determined action. This takes place in the context of a creative didactic policy which identifies didactic goals, provides clear sequences of content, specifies interdisciplinary methods and examines their practical adequacy and ultimately serves not only individual translators and interpreters, but all parties involved. The goal of the presented didactic model is to promote independent work and problem-solving strategies; this helps to develop creative potential and self-confident behaviour. It also conveys realistic knowledge of professional reality and thus also of the real socio-political and professional parameters involved. As well as providing a discussion of fundamental questions relevant to Translation and Interpreting Studies, this also serves to improve this interdisciplinary didactic approach which simulates interpreting reality and illustrates processes and strategies which (can) take place in real life. This idea is illustrated in more detail with methods taken from the Theatre of the Oppressed created by Augusto Boal. This includes examples from (dialogue) interpreting teaching based on documentation from recordings made in a seminar in the summer term 2014.

Keywords: augusto boal, didactic model, interpreting teaching, theatre of the oppressed

Procedia PDF Downloads 439
31010 MOOCs (E-Learning) Project Personnel Competency Analysis

Authors: Shang-Hua Wu, Rong-Chi Chang, Horng–Twu Liaw

Abstract:

Nowadays, competencies of e-learning project personnel are very important in assisting them in offering courses, serving students in an effective way, leveraging advantages, strengthen their relationships with potential students, etc. among e-learning platforms, MOOCs has recently attracted increasing focuses in distance education since it can be conducted for a large numbers of virtual learners. Nonetheless, since MOOCs is a relatively new e-learning platform, top concerns have been paid to what competencies are important for e-learning personnel to consider. Taking this need, this research aimed to carry out an in-depth exploration of competency requirements of MOOCs (e-learning) project personnel in Taiwan vocational schools. Data were collected through thorough literature reviews and discussions and competency analysis was carried out using Delphi technique questionnaires. The results show that that MOOCs (e-learning) project personnel’ professional competency lie in three main dimensions, among which ‘demand analysis competency’ (i.e., containing 10 major competences and 48 subordinate capabilities) is the most important competency, followed by ‘project management competency’ (i.e., comprising 6 major competences and 31 secondary capabilities), and finally ‘digital content production competency’ (i.e., including 12 major competences and 79 secondary capabilities). As such, in Taiwan context with different organizational scales and market sizes, the e-learning competency items and unique experience/ achievements throughout the promotion process obtained in this research will provide useful references for academic institutions in promoting e-learning.

Keywords: competency analysis, Delphi technique questionnaire, e-learning, massive open online courses

Procedia PDF Downloads 287
31009 Development of Electroencephalograph Collection System in Language-Learning Self-Study System That Can Detect Learning State of the Learner

Authors: Katsuyuki Umezawa, Makoto Nakazawa, Manabu Kobayashi, Yutaka Ishii, Michiko Nakano, Shigeichi Hirasawa

Abstract:

This research aims to develop a self-study system equipped with an artificial teacher who gives advice to students by detecting the learners and to evaluate language learning in a unified framework. 'Detecting the learners' means that the system understands the learners' learning conditions, such as each learner’s degree of understanding, the difference in each learner’s thinking process, the degree of concentration or boredom in learning, and problem solving for each learner, which can be interpreted from learning behavior. In this paper, we propose a system to efficiently collect brain waves from learners by focusing on only the brain waves among the biological information for 'detecting the learners'. The conventional Electroencephalograph (EEG) measurement method during learning using a simple EEG has the following disadvantages. (1) The start and end of EEG measurement must be done manually by the experiment participant or staff. (2) Even when the EEG signal is weak, it may not be noticed, and the data may not be obtained. (3) Since the acquired EEG data is stored in each PC, there is a possibility that the time of data acquisition will be different in each PC. This time, we developed a system to collect brain wave data on the server side. This system overcame the above disadvantages.

Keywords: artificial teacher, e-learning, self-study system, simple EEG

Procedia PDF Downloads 149
31008 Classroom Management Practices of Hotel, Restaurant, and Institution Management Instructors

Authors: Diana Ruth Caga-Anan

Abstract:

Classroom management is a critical skill but the styles are constantly evolving. It is constantly under pressure particularly in the college education level due to diversity in student profiles, modes of delivery, and marketization of higher education. This study sought to analyze the extent of implementation of classroom management practices (CMPs) of the college instructors of the Hotel, Restaurant, and Institution Management of a premier university in the Philippines. It was also determined if their length of teaching affects their classroom management style. A questionnaire with sixteen 'evidenced-based' CMPs grouped into five critical features of classroom management, adopted from the literature search of Simonsen et al. (2008), was administered to 4 instructor-respondents and to their 88 students. Weighted mean scores of each of the CMPs revealed that there were differences between the instructors’ self-scores and their students’ ratings on their implementation of CMPs. The critical feature of classroom management 'actively engage students in observable ways' got the highest mean score, corresponding to 'always' from the instructors’ self-rating and 'frequently' from their students’ ratings. However, 'use a continuum of strategies to respond to inappropriate behaviors' got the lowest scores from both the instructors and their students corresponding only to 'occasionally'. Analysis of variance showed that the only CMP affected by the length of teaching is the practice of 'prompting students to respond'. Based on the findings, some recommendations for the instructors to improve on the critical feature where they scored low are discussed and suggestions are included for future research.

Keywords: classroom management, CMPs, critical features, evidence-based classroom management practices

Procedia PDF Downloads 176
31007 Breaking the Barriers: Exploring the Barriers to LGBTQ+ Accessing Palliative Care and the Hospice

Authors: Emma Worley, Mhairi De Sainte Croix, Savneet Lochab, Christopher Roberts, Mark Stroud, Mo Salehan, Kevin Jones

Abstract:

Awareness about the importance of teaching about diversity at medical school is growing. In the realm of diversity includes discussion around the LGBTQ+ community. At Bristol, diversity is taught in first or second year. However, echoing and expanding that teaching throughout the curriculum is needed. This feeds into the spiral curriculum but also highlights the relevance of the topic. It is well known that some people in the LGBTQ+ community struggle the access healthcare due to previous negative experiences. In 2019, 1 in 7 LGBTQ+ people avoided seeking medical care due to fears about discrimination. If people have fears about seeking medical help, then seeking help from Palliative care when they are at their most vulnerable situation can be even harder. To improve positive healthcare situations for people who identify as LGBTQ+ needs to start with talking. Along with some of our CTAs (clinical teaching assistants) we created a teaching session to explore the barriers faced by LGBTQ+ and incorporated communication stations into this. Our plan is to run this session as a three-hour session first discussing different topics: ethnical diversity, ‘coming out’, LGBTQ+ in the older generation, transgender. This will be followed by looking more closely at the barriers to accessing the hospice. The next part of the session will encompass two or three communication scenarios hopefully prompting further discussion and reflection on ways to improve our communication. The first scenario outline is a gay man/lesbian woman with lung cancer discussing options around the hospice. The second scenario is a transgender person with female genitalia who now has cervical cancer (as was not followed up on pap smears after the change of name). The third scenario is a HIV homosexual male patient who has been admitted with dementia. He has a partner but is not married. His next of kin is down as his parents but his parents do not know about his sexuality and HIV status. It allows discussion around confidentiality as well as broaching the meaning of ‘family’ in the LGBTQ+ community. We have chosen to pitch this teaching session to Bristol Year 4 students. They will be currently doing their 6-week Palliative care block, which fits in well. Each session will have four students attend. We have been lucky enough to have two CTAs (clinical teaching assistants) who identify as LGBTQ+ offer their experiences and help. They have been able to help us with the preparation and delivery of the session. Given anecdotal evidence and stories helps to highlight the importance and relevance of this session. The aim is to increase awareness of some factors that may contribute to people who identify as LGBTQ+ having a negative healthcare experience. By starting to talk about it allows awareness and only then will we be able to start to change and improve. Our aim, if the sessions run well, is to expand these sessions to different academy hospitals. Therefore, all Bristol 4th year students would have the opportunity to take part in the teaching session. We would like to expand our portfolio of case scenarios, to address so tricker topics such as a transgender person with dementia who reverts back to a different gender. We would also like to recruit a diverse range of actors, ideally people who identify as the patient in the scenario does. For example, a transgender person acts the transgender scenario. This would give authenticity and enhance the student’s learning experience.

Keywords: communication skills, healthcare barriers, LGBTQ+, palliative care

Procedia PDF Downloads 129
31006 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 264
31005 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran

Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard

Abstract:

Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.

Keywords: data mining, ischemic stroke, decision tree, Bayesian network

Procedia PDF Downloads 178
31004 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.

Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC

Procedia PDF Downloads 411
31003 E-learning resources for radiology training: Is an ideal program available?

Authors: Eric Fang, Robert Chen, Ghim Song Chia, Bien Soo Tan

Abstract:

Objective and Rationale: Training of radiology residents hinges on practical, on-the-job training in all facets and modalities of diagnostic radiology. Although residency is structured to be comprehensive, clinical exposure depends on the case mix available locally and during the posting period. To supplement clinical training, there are several e-learning resources available to allow for greater exposure to radiological cases. The objective of this study was to survey residents and faculty on the usefulness of these e-learning resources. Methods: E-learning resources were shortlisted with input from radiology residents, Google search and online discussion groups, and screened by their purported focus. Twelve e-learning resources were found to meet the criteria. Both radiology residents and experienced radiology faculty were then surveyed electronically. The e-survey asked for ratings on breadth, depth, testing capability and user-friendliness for each resource, as well as for rankings for the top 3 resources. Statistical analysis was performed using SAS 9.4. Results: Seventeen residents and fifteen faculties completed an e-survey. Mean response rate was 54% ± 8% (Range: 14- 96%). Ratings and rankings were statistically identical between residents and faculty. On a 5-point rating scale, breadth was 3.68 ± 0.18, depth was 3.95 ± 0.14, testing capability was 2.64 ± 0.16 and user-friendliness was 3.39 ± 0.13. Top-ranked resources were STATdx (first), Radiopaedia (second) and Radiology Assistant (third). 9% of responders singled out R-ITI as potentially good but ‘prohibitively costly’. Statistically significant predictive factors for higher rankings are familiarity with the resource (p = 0.001) and user-friendliness (p = 0.006). Conclusion: A good e-learning system will complement on-the-job training with a broad case base, deep discussion and quality trainee evaluation. Based on our study on twelve e-learning resources, no single program fulfilled all requirements. The perception and use of radiology e-learning resources depended more on familiarity and user-friendliness than on content differences and testing capability.

Keywords: e-learning, medicine, radiology, survey

Procedia PDF Downloads 337
31002 The Role of Instruction in Knowledge Construction in Online Learning

Authors: Soo Hyung Kim

Abstract:

Two different learning approaches were suggested: focusing on factual knowledge or focusing on the embedded meaning in the statements. Each way of learning has positive effects on different question categories, where factual knowledge helps more with simple fact questions, and searching for meaning in given information helps learn causal relationship and the embedded meaning. To test this belief, two groups of learners (12 male and 39 female adults aged 18-37) watched a ten-minute long Youtube video about various factual events of American history, their meaning, and the causal relations of the events. The fact group was asked to focus on factual knowledge in the video, and the meaning group was asked to focus on the embedded meaning in the video. After watching the video, both groups took multiple-choice questions, which consisted of 10 questions asking the factual knowledge addressed in the video and 10 questions asking embedded meaning in the video, such as the causal relationship between historical events and the significance of the event. From ANCOVA analysis, it was found that the factual knowledge showed higher performance on the factual questions than the meaning group, although there was no group difference on the questions about the meaning between the two groups. The finding suggests that teacher instruction plays an important role in learners constructing a different type of knowledge in online learning.

Keywords: factual knowledge, instruction, meaning-based knowledge, online learning

Procedia PDF Downloads 137
31001 Heart Murmurs and Heart Sounds Extraction Using an Algorithm Process Separation

Authors: Fatima Mokeddem

Abstract:

The phonocardiogram signal (PCG) is a physiological signal that reflects heart mechanical activity, is a promising tool for curious researchers in this field because it is full of indications and useful information for medical diagnosis. PCG segmentation is a basic step to benefit from this signal. Therefore, this paper presents an algorithm that serves the separation of heart sounds and heart murmurs in case they exist in order to use them in several applications and heart sounds analysis. The separation process presents here is founded on three essential steps filtering, envelope detection, and heart sounds segmentation. The algorithm separates the PCG signal into S1 and S2 and extract cardiac murmurs.

Keywords: phonocardiogram signal, filtering, Envelope, Detection, murmurs, heart sounds

Procedia PDF Downloads 146
31000 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 169
30999 Assessing the Pre-Service and In-Service Teachers’ Continuation of Use of Technology After Participation in Professional Development

Authors: Ayoub Kafyulilo, Petra Fisser, Joke Voogt

Abstract:

This study was conducted to assess the continuation of the use of technology in science and mathematics teaching of the pre-service and in-service teachers who attended the professional development programme. It also assessed professional development, personal, institutional, and technological factors contributing to the continuous use of technology in teaching. The study involved 42 teachers, thirteen pre-service teachers, and twenty-nine in-service teachers. A mixed-method research approach was used to collect data for this study. Findings showed that the continuous use of technology in teaching after the termination of the professional development arrangement was high among the pre-service teachers, and differed for the in-service teachers. The regression model showed that knowledge and skills, access to technology and ease of use were strong predictors (R2 = 55.3%) of the teachers’ continuous use of technology after the professional development arrangement. The professional development factor did not have a direct effect on the continuous use of technology, rather had an influence on personal factors (knowledge and skills). In turn, the personal factors had influence on the institutional factors (access to technology) and technological factors (ease of use), which together had an effect on the teachers’ continuous use of technology in teaching.

Keywords: technology, professional development, teachers, science and mathematics

Procedia PDF Downloads 164
30998 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL

Procedia PDF Downloads 166
30997 Using Technology to Enhance the Student Assessment Experience

Authors: Asim Qayyum, David Smith

Abstract:

The use of information tools is a common activity for students of any educational stage when they encounter online learning activities. Finding the relevant information for particular learning tasks is the topic of this paper as it investigates the use of information tools for a group of student participants. The paper describes and discusses the results with particular implications for use in higher education, and the findings suggest that improvement in assessment design and subsequent student learning may be achieved by structuring the purposefulness of information tools usage and online reading behaviors of university students.

Keywords: information tools, assessment, online learning, student assessment experience

Procedia PDF Downloads 564
30996 Efficiency of Secondary Schools by ICT Intervention in Sylhet Division of Bangladesh

Authors: Azizul Baten, Kamrul Hossain, Abdullah-Al-Zabir

Abstract:

The objective of this study is to develop an appropriate stochastic frontier secondary schools efficiency model by ICT Intervention and to examine the impact of ICT challenges on secondary schools efficiency in the Sylhet division in Bangladesh using stochastic frontier analysis. The Translog stochastic frontier model was found an appropriate than the Cobb-Douglas model in secondary schools efficiency by ICT Intervention. Based on the results of the Cobb-Douglas model, it is found that the coefficient of the number of teachers, the number of students, and teaching ability had a positive effect on increasing the level of efficiency. It indicated that these are related to technical efficiency. In the case of inefficiency effects for both Cobb-Douglas and Translog models, the coefficient of the ICT lab decreased secondary school inefficiency, but the online class in school was found to increase the level of inefficiency. The coefficients of teacher’s preference for ICT tools like multimedia projectors played a contributor role in decreasing the secondary school inefficiency in the Sylhet division of Bangladesh. The interaction effects of the number of teachers and the classrooms, and the number of students and the number of classrooms, the number of students and teaching ability, and the classrooms and teaching ability of the teachers were recorded with the positive values and these have a positive impact on increasing the secondary school efficiency. The overall mean efficiency of urban secondary schools was found at 84.66% for the Translog model, while it was 83.63% for the Cobb-Douglas model. The overall mean efficiency of rural secondary schools was found at 80.98% for the Translog model, while it was 81.24% for the Cobb-Douglas model. So, the urban secondary schools performed better than the rural secondary schools in the Sylhet division. It is observed from the results of the Tobit model that the teacher-student ratio had a positive influence on secondary school efficiency. The teaching experiences of those who have 1 to 5 years and 10 years above, MPO type school, conventional teaching method have had a negative and significant influence on secondary school efficiency. The estimated value of σ-square (0.0625) was different from Zero, indicating a good fit. The value of γ (0.9872) was recorded as positive and it can be interpreted as follows: 98.72 percent of random variation around in secondary school outcomes due to inefficiency.

Keywords: efficiency, secondary schools, ICT, stochastic frontier analysis

Procedia PDF Downloads 156
30995 Battery Grading Algorithm in 2nd-Life Repurposing LI-Ion Battery System

Authors: Ya L. V., Benjamin Ong Wei Lin, Wanli Niu, Benjamin Seah Chin Tat

Abstract:

This article introduces a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as an energy storage system (ESS). Most of the 2nd-life retired battery systems in the market have module/pack-level state-of-health (SOH) indicator, which is utilized for guiding appropriate depth-of-discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end-of-life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization.

Keywords: battery grading algorithm, 2nd-life repurposing battery system, semi-analytic methodology, reliability and cyclability

Procedia PDF Downloads 208
30994 A development of Innovator Teachers Training Curriculum to Create Instructional Innovation According to Active Learning Approach to Enhance learning Achievement of Private School in Phayao Province

Authors: Palita Sooksamran, Katcharin Mahawong

Abstract:

This research aims to offer the development of innovator teachers training curriculum to create instructional innovation according to active learning approach to enhance learning achievement. The research and development process is carried out in 3 steps: Step 1 The study of the needs necessary to develop a training curriculum: the inquiry was conducted by a sample of teachers in private schools in Phayao province that provide basic education at the level of education. Using a questionnaire of 176 people, the sample was defined using a table of random numbers and stratified samples, using the school as a random layer. Step 2 Training curriculum development: the tools used are developed training curriculum and curriculum assessments, with nine experts checking the appropriateness of the draft curriculum. The statistic used in data analysis is the average ( ) and standard deviation (S.D.) Step 3 study on effectiveness of training curriculum: one group pretest/posttest design applied in this study. The sample consisted of 35 teachers from private schools in Phayao province. The participants volunteered to attend on their own. The results of the research showed that: 1.The essential demand index needed with the list of essential needs in descending order is the choice and create of multimedia media, videos, application for learning management at the highest level ,Developed of multimedia, video and applications for learning management and selection of innovative learning management techniques and methods of solve the problem Learning , respectively. 2. The components of the training curriculum include principles, aims, scope of content, training activities, learning materials and resources, supervision evaluation. The scope of the curriculum consists of basic knowledge about learning management innovation, active learning, lesson plan design, learning materials and resources, learning measurement and evaluation, implementation of lesson plans into classroom and supervision and motoring. The results of the evaluation of quality of the draft training curriculum at the highest level. The Experts suggestion is that the purpose of the course should be used words that convey the results. 3. The effectiveness of training curriculum 1) Cognitive outcomes of the teachers in creating innovative learning management was at a high level of relative gain score. 2) The assessment results of learning management ability according to the active learning approach to enhance learning achievement by assessing from 2 education supervisor as a whole were very high , 3) Quality of innovation learning management based on active learning approach to enhance learning achievement of the teachers, 7 instructional Innovations were evaluated as outstanding works and 26 instructional Innovations passed the standard 4) Overall learning achievement of students who learned from 35 the sample teachers was at a high level of relative gain score 5) teachers' satisfaction towards the training curriculum was at the highest level.

Keywords: training curriculum, innovator teachers, active learning approach, learning achievement

Procedia PDF Downloads 58
30993 Stochastic Programming and C-Somga: Animal Ration Formulation

Authors: Pratiksha Saxena, Dipti Singh, Neha Khanna

Abstract:

A self-organizing migrating genetic algorithm(C-SOMGA) is developed for animal diet formulation. This paper presents animal diet formulation using stochastic and genetic algorithm. Tri-objective models for cost minimization and shelf life maximization are developed. These objectives are achieved by combination of stochastic programming and C-SOMGA. Stochastic programming is used to introduce nutrient variability for animal diet. Self-organizing migrating genetic algorithm provides exact and quick solution and presents an innovative approach towards successful application of soft computing technique in the area of animal diet formulation.

Keywords: animal feed ration, feed formulation, linear programming, stochastic programming, self-migrating genetic algorithm, C-SOMGA technique, shelf life maximization, cost minimization, nutrient maximization

Procedia PDF Downloads 448
30992 The Role of Interactive White Boards towards Achieving Transactional Learning in the Context of Open Distance Learning

Authors: M. Van Zyl, M. H. A. Combrinck, E. J. Spamer

Abstract:

Due to the need for higher education in South Africa, the country experiences a rapid growth in open distance learning, especially in rural areas. It is difficult for people to enrol fulltime at contact universities, owing to work and financial constraints. The Unit for Open Distance Learning (UODL) at the North-West University (NWU), Potchefstroom campus, South Africa was established in 2013 with its main function to deliver open distance learning programmes to 30 000 students from the Faculties of Education Sciences, Theology and Health Sciences. With the use of interactive whiteboards (IWBs), the NWU and UODL are now able to deliver lectures to students concurrently at 60 regional open learning centres across Southern Africa as well as to an unlimited number of individuals with Internet access worldwide. Although IWBs are not new, our initiative is to use them more extensively in order to create more contact between lecturers and students. To be able to ensure and enhance quality education it is vital to determine students’ perceptions on the delivery of programmes by means of IWBs. Therefore, the aim of the study is to explore students’ perceptions for the use of IWBs in the delivery of programmes in terms of Moore’s Theory of Transactional Distance.

Keywords: interactive white board, open distance learning, technology, transactional learning

Procedia PDF Downloads 460
30991 Antarctica, Global Change and Deaf Education in Brazil

Authors: Luiz Antonio Da Costa Rodrigues, Mara Aparecida De Castilho Lopes, Alexandre Santos Alencar

Abstract:

Teaching of science must transcend simple transmission of fundamental concepts and allow scientific literacy, as a process for understanding the human being as an integral part of a complex and interdependent whole. In this context, approaching the theme ‘Antarctica’ in deaf education is an important advance for teaching, considering that that continent has direct interactions with the climatic and environmental system of the planet. Therefore, textbooks can be important tools to enable the Deaf Community to access the discussion about the natural environment. A specific script was used to analyze textbooks adopted by schools in the Rio de Janeiro Metropolitan Region. Results show that none of the 14 analyzed books have a specific chapter on the theme, some presents images of the continent without reference to their environmental importance, and the complementary texts present in the analyzed material do not address the theme either. It is concluded that the study on Antarctica and global changes in elementary education is still incipient and the material used by most Brazilian public schools does not contemplate that subject in an accessible way for the deaf person. This fact represents the distance between deaf students and their environment, denoting the need for actions to promote that and other neglected themes in Science teaching.

Keywords: Antarctica, deaf education, science teaching, textbook

Procedia PDF Downloads 284
30990 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving k-means clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: acute leukaemia images, clustering algorithms, image segmentation, moving k-means

Procedia PDF Downloads 294
30989 Quality of Education in Dilla Zone

Authors: Gezahegn Bekele Welldgiyorgise

Abstract:

It is obvious that the economics, politics and social conditions of a country are determined by the quality and standard of its education. Indeed, education plays a vital role in changing the consciousness and awareness of society and transforming it on a large scale. Moreover, education contributes a lot to the advancement of science and technology, information and communication, and above all, it speeds up its progress in no time if it focuses mainly on the qualitative approach to education. Education brings about universal change and transformation and lightens mankind in all dimensions. It creates an educated, enlightened and brightened generation in society. The generation will be sharped, sharpened and well-oriented if it gets modern, sophisticated and standardized education in its field of study. The main goal of education is to produce well-qualified, well-trained and disciplined young offers in a given community. If the youth is well trained and well-mannered, he will certainly be enlightened, problem solvers and solution seekers, researchers, and innovators. In this respect, we have to provide the youth with modern education, a teaching-learning process led by active learning and a participatory approach with a new curriculum preparation for the age of children supported by modern facilities (ICT).In addition to that, the curriculum should have to give attention to mathematics and science lessons that include international experience in a comfortable school and classrooms. Therefore, the generation that will be created through such kinds of the guided education system will make the students active participants, self-confident, researchers and problem solvers, besides that result in changed life standards and a developed country. Similarly, our country, Ethiopia, has aimed to get such change in youth (generation) through modern education, designing a new educational policy and curriculum which was implemented for many years, although the goal of education has not reached the required level. To get the main idea of the article, I should have answered the question of why our country's educational goal had not reached the desired level because it is necessary to lay the foundation for research in finding out problems seen through students learning performance, the first task is selecting primary-school as a sample. Therefore, we selected “Dilla primary school (5-8)” which is a workplace for a teacher and gives me a chance to recognize students’ learning performance to recognize their learning grades (internal and external) and measure performance (achievement) of students easily’.

Keywords: curriculum, performance, innovation, learning

Procedia PDF Downloads 82
30988 Importance of Positive Education: A Focus on the Importance of Character Strength Building

Authors: Hajra Hussain

Abstract:

Positive education, the inclusion of social, emotional and intellectual skills across a curriculum, is fundamental to the optimal functioning of young people in any society because it combines the best teaching practices with the principles of positive psychology. While learning institutions foster academic skills, little attention is being paid to the identification and development of character strengths and their integration into teaching. There is an increasing recognition of the important role education plays in equipping today’s youth with 21st century social skills. For youth to succeed in this highly competitive environment, there is a need for positive education that is focused on character strengths such as the growth of social, emotional and intellectual skills that promote the flourishing of well-rounded individuals. Character strength programs and awareness are a necessity if the human capital within a region is to be competitive, productive and happy. The Counselling & Wellbeing Centre at Amity University Dubai has consistently implemented Character Strength awareness workshops and has found that such workshops have increased student life satisfaction due to individual awareness of signature strengths. A positive education/positive psychology framework with its key focus on the development of character strengths can be fundamental to individual's confidence and self-awareness; thus allowing both optimum flourishing and functioning.

Keywords: positive psychology, positive education, strengths, youth, happiness

Procedia PDF Downloads 279
30987 Exploring Problem-Based Learning and University-Industry Collaborations for Fostering Students’ Entrepreneurial Skills: A Qualitative Study in a German Urban Setting

Authors: Eylem Tas

Abstract:

This empirical study aims to explore the development of students' entrepreneurial skills through problem-based learning within the context of university-industry collaborations (UICs) in curriculum co-design and co-delivery (CDD). The research question guiding this study is: "How do problem-based learning and university-industry collaborations influence the development of students' entrepreneurial skills in the context of curriculum co-design and co-delivery?” To address this question, the study was conducted in a big city in Germany and involved interviews with stakeholders from various industries, including the private sector, government agencies (govt), and non-governmental organizations (NGOs). These stakeholders had established collaborative partnerships with the targeted university for projects encompassing entrepreneurial development aspects in CDD. The study sought to gain insights into the intricacies and subtleties of UIC dynamics and their impact on fostering entrepreneurial skills. Qualitative content analysis, based on Mayring's guidelines, was employed to analyze the interview transcriptions. Through an iterative process of manual coding, 442 codes were generated, resulting in two main sections: "the role of problem-based learning and UIC in fostering entrepreneurship" and "challenges and requirements of problem-based learning within UIC for systematical entrepreneurship development.” The chosen experimental approach of semi-structured interviews was justified by its capacity to provide in-depth perspectives and rich data from stakeholders with firsthand experience in UICs in CDD. By enlisting participants with diverse backgrounds, industries, and company sizes, the study ensured a comprehensive and heterogeneous sample, enhancing the credibility of the findings. The first section of the analysis delved into problem-based learning and entrepreneurial self-confidence to gain a deeper understanding of UIC dynamics from an industry standpoint. It explored factors influencing problem-based learning, alignment of students' learning styles and preferences with the experiential learning approach, specific activities and strategies, and the role of mentorship from industry professionals in fostering entrepreneurial self-confidence. The second section focused on various interactions within UICs, including communication, knowledge exchange, and collaboration. It identified key elements, patterns, and dynamics of interaction, highlighting challenges and limitations. Additionally, the section emphasized success stories and notable outcomes related to UICs' positive impact on students' entrepreneurial journeys. Overall, this research contributes valuable insights into the dynamics of UICs and their role in fostering students' entrepreneurial skills. UICs face challenges in communication and establishing a common language. Transparency, adaptability, and regular communication are vital for successful collaboration. Realistic expectation management and clearly defined frameworks are crucial. Responsible data handling requires data assurance and confidentiality agreements, emphasizing the importance of trust-based relationships when dealing with data sharing and handling issues. The identified key factors and challenges provide a foundation for universities and industrial partners to develop more effective UIC strategies for enhancing students' entrepreneurial capabilities and preparing them for success in today's digital age labor market. The study underscores the significance of collaborative learning and transparent communication in UICs for entrepreneurial development in CDD.

Keywords: collaborative learning, curriculum co-design and co-delivery, entrepreneurial skills, problem-based learning, university-industry collaborations

Procedia PDF Downloads 64
30986 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 251
30985 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 118
30984 Novel GPU Approach in Predicting the Directional Trend of the S&P500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: financial algorithm, GPU, S&P 500, stock market prediction

Procedia PDF Downloads 352