Search results for: empathic accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3744

Search results for: empathic accuracy

234 An Approach to Determine the in Transit Vibration to Fresh Produce Using Long Range Radio (LORA) Wireless Transducers

Authors: Indika Fernando, Jiangang Fei, Roger Stanely, Hossein Enshaei

Abstract:

Ever increasing demand for quality fresh produce by the consumers, had increased the gravity on the post-harvest supply chains in multi-fold in the recent years. Mechanical injury to fresh produce was a critical factor for produce wastage, especially with the expansion of supply chains, physically extending to thousands of miles. The impact of vibration damages in transit was identified as a specific area of focus which results in wastage of significant portion of the fresh produce, at times ranging from 10% to 40% in some countries. Several studies were concentrated on quantifying the impact of vibration to fresh produce, and it was a challenge to collect vibration impact data continuously due to the limitations in battery life or the memory capacity in the devices. Therefore, the study samples were limited to a stretch of the transit passage or a limited time of the journey. This may or may not give an accurate understanding of the vibration impacts encountered throughout the transit passage, which limits the accuracy of the results. Consequently, an approach which can extend the capacity and ability of determining vibration signals in the transit passage would contribute to accurately analyze the vibration damage along the post-harvest supply chain. A mechanism was developed to address this challenge, which is capable of measuring the in transit vibration continuously through the transit passage subject to a minimum acceleration threshold (0.1g). A system, consisting six tri-axel vibration transducers installed in different locations inside the cargo (produce) pallets in the truck, transmits vibration signals through LORA (Long Range Radio) technology to a central device installed inside the container. The central device processes and records the vibration signals transmitted by the portable transducers, along with the GPS location. This method enables to utilize power consumption for the portable transducers to maximize the capability of measuring the vibration impacts in the transit passage extending to days in the distribution process. The trial tests conducted using the approach reveals that it is a reliable method to measure and quantify the in transit vibrations along the supply chain. The GPS capability enables to identify the locations in the supply chain where the significant vibration impacts were encountered. This method contributes to determining the causes, susceptibility and intensity of vibration impact damages to fresh produce in the post-harvest supply chain. Extensively, the approach could be used to determine the vibration impacts not limiting to fresh produce, but for products in supply chains, which may extend from few hours to several days in transit.

Keywords: post-harvest, supply chain, wireless transducers, LORA, fresh produce

Procedia PDF Downloads 265
233 A Clinical Cutoff to Identify Metabolically Unhealthy Obese and Normal-Weight Phenotype in Young Adults

Authors: Lívia Pinheiro Carvalho, Luciana Di Thommazo-Luporini, Rafael Luís Luporini, José Carlos Bonjorno Junior, Renata Pedrolongo Basso Vanelli, Manoel Carneiro de Oliveira Junior, Rodolfo de Paula Vieira, Renata Trimer, Renata G. Mendes, Mylène Aubertin-Leheudre, Audrey Borghi-Silva

Abstract:

Rationale: Cardiorespiratory fitness (CRF) and functional capacity in young obese and normal-weight people are associated with metabolic and cardiovascular diseases and mortality. However, it remains unclear whether their metabolically healthy (MH) or at risk (AR) phenotype influences cardiorespiratory fitness in this vulnerable population such as obese adults but also in normal-weight people. HOMA insulin resistance index (HI) and leptin-adiponectin ratio (LA) are strong markers for characterizing those phenotypes that we hypothesized to be associated with physical fitness. We also hypothesized that an easy and feasible exercise test could identify a subpopulation at risk to develop metabolic and related disorders. Methods: Thirty-nine sedentary men and women (20-45y; 18.530 kg.m-2) underwent a clinical evaluation, including the six-minute step test (ST), a well-validated and reliable test for young people. Body composition assessment was done by a tetrapolar bioimpedance in a fasting state and in the folicular phase for women. A maximal cardiopulmonary exercise testing, as well as the ST, evaluated the oxygen uptake at the peak of the test (VO2peak) by an ergospirometer Oxycon Mobile. Lipids, glucose, insulin were analysed and the ELISA method quantified the serum leptin and adiponectin from blood samples. Volunteers were divided in two groups: AR or MH according to a HI cutoff of 1.95, which was previously determined in the literature. T-test for comparison between groups, Pearson´s test to correlate main variables and ROC analysis for discriminating AR from up-and-down cycles in ST (SC) were applied (p<0.05). Results: Higher LA, fat mass (FM) and lower HDL, SC, leg lean mass (LM) and VO2peak were found in AR than in MH. Significant correlations were found between VO2peak and SC (r= 0.80) as well as between LA and FM (r=0.87), VO2peak (r=-0.73), and SC (r=-0.65). Area under de curve showed moderate accuracy (0.75) of SC <173 to discriminate AR phenotype. Conclusion: Our study found that at risk obese and normal-weight subjects showed an unhealthy metabolism as well as a poor CRF and functional daily activity capacity. Additionally, a simple and less costly functional test associated with above-mentioned aspects is able to identify ‘at risk’ subjects for primary intervention with important clinical and health implications.

Keywords: aerobic capacity, exercise, fitness, metabolism, obesity, 6MST

Procedia PDF Downloads 353
232 Stable Time Reversed Integration of the Navier-Stokes Equation Using an Adjoint Gradient Method

Authors: Jurriaan Gillissen

Abstract:

This work is concerned with stabilizing the numerical integration of the Navier-Stokes equation (NSE), backwards in time. Applications involve the detection of sources of, e.g., sound, heat, and pollutants. Stable reverse numerical integration of parabolic differential equations is also relevant for image de-blurring. While the literature addresses the reverse integration problem of the advection-diffusion equation, the problem of numerical reverse integration of the NSE has, to our knowledge, not yet been addressed. Owing to the presence of viscosity, the NSE is irreversible, i.e., when going backwards in time, the fluid behaves, as if it had a negative viscosity. As an effect, perturbations from the perfect solution, due to round off errors or discretization errors, grow exponentially in time, and reverse integration of the NSE is inherently unstable, regardless of using an implicit time integration scheme. Consequently, some sort of filtering is required, in order to achieve a stable, numerical, reversed integration. The challenge is to find a filter with a minimal adverse affect on the accuracy of the reversed integration. In the present work, we explore an adjoint gradient method (AGM) to achieve this goal, and we apply this technique to two-dimensional (2D), decaying turbulence. The AGM solves for the initial velocity field u0 at t = 0, that, when integrated forward in time, produces a final velocity field u1 at t = 1, that is as close as is feasibly possible to some specified target field v1. The initial field u0 defines a minimum of a cost-functional J, that measures the distance between u1 and v1. In the minimization procedure, the u0 is updated iteratively along the gradient of J w.r.t. u0, where the gradient is obtained by transporting J backwards in time from t = 1 to t = 0, using the adjoint NSE. The AGM thus effectively replaces the backward integration by multiple forward and backward adjoint integrations. Since the viscosity is negative in the adjoint NSE, each step of the AGM is numerically stable. Nevertheless, when applied to turbulence, the AGM develops instabilities, which limit the backward integration to small times. This is due to the exponential divergence of phase space trajectories in turbulent flow, which produces a multitude of local minima in J, when the integration time is large. As an effect, the AGM may select unphysical, noisy initial conditions. In order to improve this situation, we propose two remedies. First, we replace the integration by a sequence of smaller integrations, i.e., we divide the integration time into segments, where in each segment the target field v1 is taken as the initial field u0 from the previous segment. Second, we add an additional term (regularizer) to J, which is proportional to a high-order Laplacian of u0, and which dampens the gradients of u0. We show that suitable values for the segment size and for the regularizer, allow a stable reverse integration of 2D decaying turbulence, with accurate results for more then O(10) turbulent, integral time scales.

Keywords: time reversed integration, parabolic differential equations, adjoint gradient method, two dimensional turbulence

Procedia PDF Downloads 224
231 Accuracy of Computed Tomography Dose Monitor Values: A Multicentric Study in India

Authors: Adhimoolam Saravana Kumar, K. N. Govindarajan, B. Devanand, R. Rajakumar

Abstract:

The quality of Computed Tomography (CT) procedures has improved in recent years due to technological developments and increased diagnostic ability of CT scanners. Due to the fact that CT doses are the peak among diagnostic radiology practices, it is of great significance to be aware of patient’s CT radiation dose whenever a CT examination is preferred. CT radiation dose delivered to patients in the form of volume CT dose index (CTDIvol) values, is displayed on scanner monitors at the end of each examination and it is an important fact to assure that this information is accurate. The objective of this study was to estimate the CTDIvol values for great number of patients during the most frequent CT examinations, to study the comparison between CT dose monitor values and measured ones, as well as to highlight the fluctuation of CTDIvol values for the same CT examination at different centres and scanner models. The output CT dose indices measurements were carried out on single and multislice scanners for available kV, 5 mm slice thickness, 100 mA and FOV combination used. The 100 CT scanners were involved in this study. Data with regard to 15,000 examinations in patients, who underwent routine head, chest and abdomen CT were collected using a questionnaire sent to a large number of hospitals. Out of the 15,000 examinations, 5000 were head CT examinations, 5000 were chest CT examinations and 5000 were abdominal CT examinations. Comprehensive quality assurance (QA) was performed for all the machines involved in this work. Followed by QA, CT phantom dose measurements were carried out in South India using actual scanning parameters used clinically by the hospitals. From this study, we have measured the mean divergence between the measured and displayed CTDIvol values were 5.2, 8.4, and -5.7 for selected head, chest and abdomen procedures for protocols as mentioned above, respectively. Thus, this investigation revealed an observable change in CT practices, with a much wider range of studies being performed currently in South India. This reflects the improved capacity of CT scanners to scan longer scan lengths and at finer resolutions as permitted by helical and multislice technology. Also, some of the CT scanners have used smaller slice thickness for routine CT procedures to achieve better resolution and image quality. It leads to an increase in the patient radiation dose as well as the measured CTDIv, so it is suggested that such CT scanners should select appropriate slice thickness and scanning parameters in order to reduce the patient dose. If these routine scan parameters for head, chest and abdomen procedures are optimized than the dose indices would be optimal and lead to the lowering of the CT doses. In South Indian region all the CT machines were routinely tested for QA once in a year as per AERB requirements.

Keywords: CT dose index, weighted CTDI, volumetric CTDI, radiation dose

Procedia PDF Downloads 257
230 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization

Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller

Abstract:

The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.

Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization

Procedia PDF Downloads 34
229 Acrylate-Based Photopolymer Resin Combined with Acrylated Epoxidized Soybean Oil for 3D-Printing

Authors: Raphael Palucci Rosa, Giuseppe Rosace

Abstract:

Stereolithography (SLA) is one of the 3D-printing technologies that has been steadily growing in popularity for both industrial and personal applications due to its versatility, high accuracy, and low cost. Its printing process consists of using a light emitter to solidify photosensitive liquid resins layer-by-layer to produce solid objects. However, the majority of the resins used in SLA are derived from petroleum and characterized by toxicity, stability, and recalcitrance to degradation in natural environments. Aiming to develop an eco-friendly resin, in this work, different combinations of a standard commercial SLA resin (Peopoly UV professional) with a vegetable-based resin were investigated. To reach this goal, different mass concentrations (varying from 10 to 50 wt%) of acrylated epoxidized soybean oil (AESO), a vegetable resin produced from soyabean oil, were mixed with a commercial acrylate-based resin. 1.0 wt% of Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) was used as photo-initiator, and the samples were printed using a Peopoly moai 130. The machine was set to operate at standard configurations when printing commercial resins. After the print was finished, the excess resin was drained off, and the samples were washed in isopropanol and water to remove any non-reacted resin. Finally, the samples were post-cured for 30 min in a UV chamber. FT-IR analysis was used to confirm the UV polymerization of the formulated resin with different AESO/Peopoly ratios. The signals from 1643.7 to 1616, which corresponds to the C=C stretching of the AESO acrylic acids and Peopoly acrylic groups, significantly decreases after the reaction. The signal decrease indicates the consumption of the double bonds during the radical polymerization. Furthermore, the slight change of the C-O-C signal from 1186.1 to 1159.9 decrease of the signals at 809.5 and 983.1, which corresponds to unsaturated double bonds, are both proofs of the successful polymerization. Mechanical analyses showed a decrease of 50.44% on tensile strength when adding 10 wt% of AESO, but it was still in the same range as other commercial resins. The elongation of break increased by 24% with 10 wt% of AESO and swelling analysis showed that samples with a higher concentration of AESO mixed absorbed less water than their counterparts. Furthermore, high-resolution prototypes were printed using both resins, and visual analysis did not show any significant difference between both products. In conclusion, the AESO resin was successful incorporated into a commercial resin without affecting its printability. The bio-based resin showed lower tensile strength than the Peopoly resin due to network loosening, but it was still in the range of other commercial resins. The hybrid resin also showed better flexibility and water resistance than Peopoly resin without affecting its resolution. Finally, the development of new types of SLA resins is essential to provide new sustainable alternatives to the commercial petroleum-based ones.

Keywords: 3D-printing, bio-based, resin, soybean, stereolithography

Procedia PDF Downloads 128
228 Metacognitive Processing in Early Readers: The Role of Metacognition in Monitoring Linguistic and Non-Linguistic Performance and Regulating Students' Learning

Authors: Ioanna Taouki, Marie Lallier, David Soto

Abstract:

Metacognition refers to the capacity to reflect upon our own cognitive processes. Although there is an ongoing discussion in the literature on the role of metacognition in learning and academic achievement, little is known about its neurodevelopmental trajectories in early childhood, when children begin to receive formal education in reading. Here, we evaluate the metacognitive ability, estimated under a recently developed Signal Detection Theory model, of a cohort of children aged between 6 and 7 (N=60), who performed three two-alternative-forced-choice tasks (two linguistic: lexical decision task, visual attention span task, and one non-linguistic: emotion recognition task) including trial-by-trial confidence judgements. Our study has three aims. First, we investigated how metacognitive ability (i.e., how confidence ratings track accuracy in the task) relates to performance in general standardized tasks related to students' reading and general cognitive abilities using Spearman's and Bayesian correlation analysis. Second, we assessed whether or not young children recruit common mechanisms supporting metacognition across the different task domains or whether there is evidence for domain-specific metacognition at this early stage of development. This was done by examining correlations in metacognitive measures across different task domains and evaluating cross-task covariance by applying a hierarchical Bayesian model. Third, using robust linear regression and Bayesian regression models, we assessed whether metacognitive ability in this early stage is related to the longitudinal learning of children in a linguistic and a non-linguistic task. Notably, we did not observe any association between students’ reading skills and metacognitive processing in this early stage of reading acquisition. Some evidence consistent with domain-general metacognition was found, with significant positive correlations between metacognitive efficiency between lexical and emotion recognition tasks and substantial covariance indicated by the Bayesian model. However, no reliable correlations were found between metacognitive performance in the visual attention span and the remaining tasks. Remarkably, metacognitive ability significantly predicted children's learning in linguistic and non-linguistic domains a year later. These results suggest that metacognitive skill may be dissociated to some extent from general (i.e., language and attention) abilities and further stress the importance of creating educational programs that foster students’ metacognitive ability as a tool for long term learning. More research is crucial to understand whether these programs can enhance metacognitive ability as a transferable skill across distinct domains or whether unique domains should be targeted separately.

Keywords: confidence ratings, development, metacognitive efficiency, reading acquisition

Procedia PDF Downloads 150
227 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART

Procedia PDF Downloads 209
226 Offshore Wind Assessment and Analysis for South Western Mediterranean Sea

Authors: Abdallah Touaibia, Nachida Kasbadji Merzouk, Mustapha Merzouk, Ryma Belarbi

Abstract:

accuracy assessment and a better understand of the wind resource distribution are the most important tasks for decision making before installing wind energy operating systems in a given region, there where our interest come to the Algerian coastline and its Mediterranean sea area. Despite its large coastline overlooking the border of Mediterranean Sea, there is still no strategy encouraging the development of offshore wind farms in Algerian waters. The present work aims to estimate the offshore wind fields for the Algerian Mediterranean Sea based on wind data measurements ranging from 1995 to 2018 provided of 24 years of measurement by seven observation stations focusing on three coastline cities in Algeria under a different measurement time step recorded from 30 min, 60 min, and 180 min variate from one to each other, two stations in Spain, two other ones in Italy and three in the coast of Algeria from the east Annaba, at the center Algiers, and to Oran taken place at the west of it. The idea behind consists to have multiple measurement points that helping to characterize this area in terms of wind potential by the use of interpolation method of their average wind speed values between these available data to achieve the approximate values of others locations where aren’t any available measurement because of the difficulties against the implementation of masts within the deep depth water. This study is organized as follow: first, a brief description of the studied area and its climatic characteristics were done. After that, the statistical properties of the recorded data were checked by evaluating wind histograms, direction roses, and average speeds using MatLab programs. Finally, ArcGIS and MapInfo soft-wares were used to establish offshore wind maps for better understanding the wind resource distribution, as well as to identify windy sites for wind farm installation and power management. The study pointed out that Cap Carbonara is the windiest site with an average wind speed of 7.26 m/s at 10 m, inducing a power density of 902 W/m², then the site of Cap Caccia with 4.88 m/s inducing a power density of 282 W/m². The average wind speed of 4.83 m/s is occurred for the site of Oran, inducing a power density of 230 W/m². The results indicated also that the dominant wind direction where the frequencies are highest for the site of Cap Carbonara is the West with 34%, an average wind speed of 9.49 m/s, and a power density of 1722 W/m². Then comes the site of Cap Caccia, where the prevailing wind direction is the North-west, about 20% and 5.82 m/s occurring a power density of 452 W/m². The site of Oran comes in third place with the North dominant direction with 32% inducing an average wind speed of 4.59 m/s and power density of 189 W/m². It also shown that the proposed method is either crucial in understanding wind resource distribution for revealing windy sites over a large area and more effective for wind turbines micro-siting.

Keywords: wind ressources, mediterranean sea, offshore, arcGIS, mapInfo, wind maps, wind farms

Procedia PDF Downloads 146
225 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks

Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed

Abstract:

This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.

Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)

Procedia PDF Downloads 75
224 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects

Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town

Abstract:

The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.

Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry

Procedia PDF Downloads 92
223 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 19
222 Advancing Sustainable Seawater Desalination Technologies: Exploring the Sub-Atmospheric Vapor Pipeline (SAVP) and Energy-Efficient Solution for Urban and Industrial Water Management in Smart, Eco-Friendly, and Green Building Infrastructure

Authors: Mona Shojaei

Abstract:

The Sub-Atmospheric Vapor Pipeline (SAVP) introduces a distinct approach to seawater desalination with promising applications in both land and industrial sectors. SAVP systems exploit the temperature difference between a hot source and a cold environment to facilitate efficient vapor transfer, offering substantial benefits in diverse industrial and field applications. This approach incorporates dynamic boundary conditions, where the temperatures of hot and cold sources vary over time, particularly in natural and industrial environments. Such variations critically influence convection and diffusion processes, introducing challenges that require the refinement of the convection-diffusion equation and the derivation of temperature profiles along the pipeline through advanced engineering mathematics. This study formulates vapor temperature as a function of time and length using two mathematical approaches: Eigen functions and Green’s equation. Combining detailed theoretical modeling, mathematical simulations, and extensive field and industrial tests, this research underscores the SAVP system’s scalability for real-world applications. Results reveal a high degree of accuracy, highlighting SAVP’s significant potential for energy conservation and environmental sustainability. Furthermore, the integration of SAVP technology within smart and green building systems creates new opportunities for sustainable urban water management. By capturing and repurposing vapor for non-potable uses such as irrigation, greywater recycling, and ecosystem support in green spaces, SAVP aligns with the principles of smart and green buildings. Smart buildings emphasize efficient resource management, enhanced system control, and automation for optimal energy and water use, while green buildings prioritize environmental impact reduction and resource conservation. SAVP technology bridges both paradigms, enhancing water self-sufficiency and reducing reliance on external water supplies. The sustainable and energy-efficient properties of SAVP make it a vital component in resilient infrastructure development, addressing urban water scarcity while promoting eco-friendly living. This dual alignment with smart and green building goals positions SAVP as a transformative solution in the pursuit of sustainable urban resource management.

Keywords: sub-atmospheric vapor pipeline, seawater desalination, energy efficiency, vapor transfer dynamics, mathematical modeling, sustainable water solutions, smart buildings

Procedia PDF Downloads 12
221 Diagnostic Performance of Mean Platelet Volume in the Diagnosis of Acute Myocardial Infarction: A Meta-Analysis

Authors: Kathrina Aseanne Acapulco-Gomez, Shayne Julieane Morales, Tzar Francis Verame

Abstract:

Mean platelet volume (MPV) is the most accurate measure of the size of platelets and is routinely measured by most automated hematological analyzers. Several studies have shown associations between MPV and cardiovascular risks and outcomes. Although its measurement may provide useful data, MPV remains to be a diagnostic tool that is yet to be included in routine clinical decision making. The aim of this systematic review and meta-analysis is to determine summary estimates of the diagnostic accuracy of mean platelet volume for the diagnosis of myocardial infarction among adult patients with angina and/or its equivalents in terms of sensitivity, specificity, diagnostic odds ratio, and likelihood ratios, and to determine the difference of the mean MPV values between those with MI and those in the non-MI controls. The primary search was done through search in electronic databases PubMed, Cochrane Review CENTRAL, HERDIN (Health Research and Development Information Network), Google Scholar, Philippine Journal of Pathology, and Philippine College of Physicians Philippine Journal of Internal Medicine. The reference list of original reports was also searched. Cross-sectional, cohort, and case-control articles studying the diagnostic performance of mean platelet volume in the diagnosis of acute myocardial infarction in adult patients were included in the study. Studies were included if: (1) CBC was taken upon presentation to the ER or upon admission (within 24 hours of symptom onset); (2) myocardial infarction was diagnosed with serum markers, ECG, or according to accepted guidelines by the Cardiology societies (American Heart Association (AHA), American College of Cardiology (ACC), European Society of Cardiology (ESC); and, (3) if outcomes were measured as significant difference AND/OR sensitivity and specificity. The authors independently screened for inclusion of all the identified potential studies as a result of the search. Eligible studies were appraised using well-defined criteria. Any disagreement between the reviewers was resolved through discussion and consensus. The overall mean MPV value of those with MI (9.702 fl; 95% CI 9.07 – 10.33) was higher than in those of the non-MI control group (8.85 fl; 95% CI 8.23 – 9.46). Interpretation of the calculated t-value of 2.0827 showed that there was a significant difference in the mean MPV values of those with MI and those of the non-MI controls. The summary sensitivity (Se) and specificity (Sp) for MPV were 0.66 (95% CI; 0.59 - 0.73) and 0.60 (95% CI; 0.43 – 0.75), respectively. The pooled diagnostic odds ratio (DOR) was 2.92 (95% CI; 1.90 – 4.50). The positive likelihood ratio of MPV in the diagnosis of myocardial infarction was 1.65 (95% CI; 1.20 – 22.27), and the negative likelihood ratio was 0.56 (95% CI; 0.50 – 0.64). The intended role for MPV in the diagnostic pathway of myocardial infarction would perhaps be best as a triage tool. With a DOR of 2.92, MPV values can discriminate between those who have MI and those without. For a patient with angina presenting with elevated MPV values, it is 1.65 times more likely that he has MI. Thus, it is implied that the decision to treat a patient with angina or its equivalents as a case of MI could be supported by an elevated MPV value.

Keywords: mean platelet volume, MPV, myocardial infarction, angina, chest pain

Procedia PDF Downloads 87
220 Boussinesq Model for Dam-Break Flow Analysis

Authors: Najibullah M, Soumendra Nath Kuiry

Abstract:

Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.

Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model

Procedia PDF Downloads 231
219 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation

Authors: Ali Ashtiani, Hamid Shirazi

Abstract:

This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.

Keywords: airport pavement management, crack density, pavement evaluation, pavement management

Procedia PDF Downloads 185
218 Flood Vulnerability Zoning for Blue Nile Basin Using Geospatial Techniques

Authors: Melese Wondatir

Abstract:

Flooding ranks among the most destructive natural disasters, impacting millions of individuals globally and resulting in substantial economic, social, and environmental repercussions. This study's objective was to create a comprehensive model that assesses the Nile River basin's susceptibility to flood damage and improves existing flood risk management strategies. Authorities responsible for enacting policies and implementing measures may benefit from this research to acquire essential information about the flood, including its scope and susceptible areas. The identification of severe flood damage locations and efficient mitigation techniques were made possible by the use of geospatial data. Slope, elevation, distance from the river, drainage density, topographic witness index, rainfall intensity, distance from road, NDVI, soil type, and land use type were all used throughout the study to determine the vulnerability of flood damage. Ranking elements according to their significance in predicting flood damage risk was done using the Analytic Hierarchy Process (AHP) and geospatial approaches. The analysis finds that the most important parameters determining the region's vulnerability are distance from the river, topographic witness index, rainfall, and elevation, respectively. The consistency ratio (CR) value obtained in this case is 0.000866 (<0.1), which signifies the acceptance of the derived weights. Furthermore, 10.84m2, 83331.14m2, 476987.15m2, 24247.29m2, and 15.83m2 of the region show varying degrees of vulnerability to flooding—very low, low, medium, high, and very high, respectively. Due to their close proximity to the river, the northern-western regions of the Nile River basin—especially those that are close to Sudanese cities like Khartoum—are more vulnerable to flood damage, according to the research findings. Furthermore, the AUC ROC curve demonstrates that the categorized vulnerability map achieves an accuracy rate of 91.0% based on 117 sample points. By putting into practice strategies to address the topographic witness index, rainfall patterns, elevation fluctuations, and distance from the river, vulnerable settlements in the area can be protected, and the impact of future flood occurrences can be greatly reduced. Furthermore, the research findings highlight the urgent requirement for infrastructure development and effective flood management strategies in the northern and western regions of the Nile River basin, particularly in proximity to major towns such as Khartoum. Overall, the study recommends prioritizing high-risk locations and developing a complete flood risk management plan based on the vulnerability map.

Keywords: analytic hierarchy process, Blue Nile Basin, geospatial techniques, flood vulnerability, multi-criteria decision making

Procedia PDF Downloads 70
217 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 107
216 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 139
215 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction

Authors: Yanxue Shang, Jingbin Zeng

Abstract:

Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.

Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction

Procedia PDF Downloads 143
214 Vicarious Cues in Portraying Emotion: Musicians' Self-Appraisal

Authors: W. Linthicum-Blackhorse, P. Martens

Abstract:

This present study seeks to discover attitudinal commonalities and differences within a musician population relative to the communication of emotion via music. We hypothesized that instrument type, as well as age and gender, would bear significantly on musicians’ opinions. A survey was administered to 178 participants; 152 were current music majors (mean age 20.3 years, 62 female) and 26 were adult participants in a community choir (mean age 54.0 years, 12 female). The adult participants were all vocalists, while student participants represented the full range of orchestral instruments. The students were grouped by degree program, (performance, music education, or other) and instrument type (voice, brass, woodwinds, strings, percussion). The survey asked 'How important are each of the following areas to you for portraying emotion in music?' Participants were asked to rate each of 15 items on a scale of 1 (not at all important) to 10 (very important). Participants were also instructed to leave blank any item that they did not understand. The 15 items were: dynamic contrast, overall volume, phrasing, facial expression, staging (placement), pitch accuracy, tempo changes, bodily movement, your mood, your attitude, vibrato, rubato, stage/room lighting, clothing type, and clothing color. Contrary to our hypothesis, there was no overall effect of gender or age, and neither did any single response item show a significant difference due to these subject parameters. Among the student participants, however, one-way ANOVA revealed a significant effect of degree program on the rated importance of four items: dynamic contrast, tempo changes, vibrato, and rubato. Significant effects of instrument type were found in the responses to eight items: facial expression, staging, body movement, vibrato, rubato, lighting, clothing type, and clothing color. Post hoc comparisons (Tukey) show that some variation follows from obvious differences between instrument types (e.g. string players are more concerned with vibrato than everyone but woodwind players; vocalists are significantly more concerned with facial expression than everyone but string players), but other differences could point to communal mindsets toward vicarious cues within instrument type. These mindsets could be global (e.g. brass players deeming body movement significantly less important than string players, being less often featured as soloists and appearing less often at the front of the stage) or local (e.g. string players being significantly more concerned than all other groups about both clothing color and type, perhaps due to the strongly-expressed opinions of specific teachers). Future work will attempt to identify the source of these self-appraisals, whether enculturated via explicit pedagogy, or whether absorbed from individuals' observations and performance experience.

Keywords: performance, vicarious cues, communication, emotion

Procedia PDF Downloads 110
213 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model

Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle

Abstract:

In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.

Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model

Procedia PDF Downloads 103
212 Validation of Global Ratings in Clinical Performance Assessment

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study aimed to determine the reliability of clinical performance assessments, having been emphasized by ability-based education, and professors overall assessment methods. We addressed the following problems: First, we try to find out whether there is a difference in what we consider to be the main variables affecting the clinical performance test according to the evaluator’s working period and the number of evaluation experience. Second, we examined the relationship among the global rating score (G), analytic global rating score (Gc), and the sum of the analytical checklists (C). What are the main factors affecting clinical performance assessments in relation to the numbers of times the evaluator had administered evaluations and the length of their working period service? What is the relationship between overall assessment score and analytic checklist score? How does analytic global rating with 6 components in OSCE and 4 components in sub-domains (Gc) CPX: aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude overall assessment score and task-specific analytic checklist score sum (C) affect the professor’s overall global rating assessment score (G)? We studied 75 professors who attended a 2016 Bugyeoung Consortium clinical skills performances test evaluating third and fourth year medical students at the Pusan National University Medical school in South Korea (39 prof. in OSCE, 36 prof. in CPX; all consented to participate in our study). Each evaluator used 3 forms; a task-specific analytic checklist, subsequent analytic global rating scale with sub-6 domains, and overall global scale. After the evaluation, the professors responded to the questionnaire on the important factors of clinical performance assessment. The data were analyzed by frequency analysis, correlation analysis, and hierarchical regression analysis using SPSS 21.0. Their understanding of overall assessment was analyzed by dividing the subjects into groups based on experiences. As a result, they considered ‘precision’ most important in overall OSCE assessment, and ‘precise accuracy physical examination’, ‘systemic approaches to taking patient history’, and ‘diagnostic skill capability’ in overall CPX assessment. For OSCE, there was no clear difference of opinion about the main factors, but there was for CPX. Analytic global rating scale score, overall rating scale score, and analytic checklist score had meaningful mutual correlations. According to the regression analysis results, task-specific checklist score sum had the greatest effect on overall global rating. professors regarded task-specific analytic checklist total score sum as best reflecting overall OSCE test score, followed by aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude on a subsequent analytic global rating scale. For CPX, subsequent analytic global rating scale score, overall global rating scale score, and task-specific checklist score had meaningful mutual correlations. These findings support explanations for validity of professors’ global rating in clinical performance assessment.

Keywords: global rating, clinical performance assessment, medical education, analytic checklist

Procedia PDF Downloads 235
211 The Administration of Infection Diseases During the Pandemic COVID-19 and the Role of the Differential Diagnosis with Biomarkers VB10

Authors: Sofia Papadimitriou

Abstract:

INTRODUCTION: The differential diagnosis between acute viral and bacterial infections is an important cost-effectiveness parameter at the stage of the treatment process in order to achieve the maximum benefits in therapeutic intervention by combining the minimum cost to ensure the proper use of antibiotics.The discovery of sensitive and robust molecular diagnostic tests in response to the role of the host in infections has enhanced the accurate diagnosis and differentiation of infections. METHOD: The study used a sample of six independent blood samples (total=756) which are associated with human proteins-proteins, each of which at the transcription stage expresses a different response in the host network between viral and bacterial infections.Τhe individual blood samples are subjected to a sequence of computer filters that identify a gene panel corresponding to an autonomous diagnostic score. The data set and the correspondence of the gene panel to the diagnostic patents a new Bangalore -Viral Bacterial (BL-VB). FINDING: We use a biomarker based on the blood of 10 genes(Panel-VB) that are an important prognostic value for the detection of viruses from bacterial infections with a weighted average AUROC of 0.97(95% CL:0.96-0.99) in eleven independent samples (sets n=898). We discovered a base with a patient score (VB 10 ) according to the table, which is a significant diagnostic value with a weighted average of AUROC 0.94(95% CL: 0.91-0.98) in 2996 patient samples from 56 public sets of data from 19 different countries. We also studied VB 10 in a new cohort of South India (BL-VB,n=56) and found 97% accuracy in confirmed cases of viral and bacterial infections. We found that VB 10 (a)accurately identifies the type of infection even in unspecified cases negative to the culture (b) shows its clinical condition recovery and (c) applies to all age groups, covering a wide range of acute bacterial and viral infectious, including non-specific pathogens. We applied our VB 10 rating to publicly available COVID 19 data and found that our rating diagnosed viral infection in patient samples. RESULTS: Τhe results of the study showed the diagnostic power of the biomarker VB 10 as a diagnostic test for the accurate diagnosis of acute infections in recovery conditions. We look forward to helping you make clinical decisions about prescribing antibiotics and integrating them into your policies management of antibiotic stewardship efforts. CONCLUSIONS: Overall, we are developing a new property of the RNA-based biomarker and a new blood test to differentiate between viral and bacterial infections to assist a physician in designing the optimal treatment regimen to contribute to the proper use of antibiotics and reduce the burden on antimicrobial resistance, AMR.

Keywords: acute infections, antimicrobial resistance, biomarker, blood transcriptome, systems biology, classifier diagnostic score

Procedia PDF Downloads 155
210 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent

Authors: Faidon Kyriakou, William Dempster, David Nash

Abstract:

Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.

Keywords: AAA, efficiency, finite element analysis, stent deployment

Procedia PDF Downloads 191
209 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs

Authors: André Augusto Ceballos Melo

Abstract:

Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.

Keywords: stable diffusion, neural interface, smart prosthetic, augmenting

Procedia PDF Downloads 101
208 Willingness to Pay for Improvements of MSW Disposal: Views from Online Survey

Authors: Amornchai Challcharoenwattana, Chanathip Pharino

Abstract:

Rising amount of MSW every day, maximizing material diversions from landfills via recycling is a prefer method to land dumping. Characteristic of Thai MSW is classified as 40 -60 per cent compostable wastes while potentially recyclable materials in waste streams are composed of plastics, papers, glasses, and metals. However, rate of material recovery from MSW, excluding composting or biogas generation, in Thailand is still low. Thailand’s recycling rate in 2010 was only 20.5 per cent. Central government as well as local governments in Thailand have tried to curb this problem by charging some of MSW management fees at the users. However, the fee is often too low to promote MSW minimization. The objective of this paper is to identify levels of willingness-to-pay (WTP) for MSW recycling in different social structures with expected outcome of sustainable MSW managements for different town settlements to maximize MSW recycling pertaining to each town’s potential. The method of eliciting WTP is a payment card. The questionnaire was deployed using online survey during December 2012. Responses were categorized into respondents living in Bangkok, living in other municipality areas, or outside municipality area. The responses were analysed using descriptive statistics, and multiple linear regression analysis to identify relationships and factors that could influence high or low WTP. During the survey period, there were 168 filled questionnaires from total 689 visits. However, only 96 questionnaires could be usable. Among respondents in the usable questionnaires, 36 respondents lived in within the boundary of Bangkok Metropolitan Administration while 45 respondents lived in the chartered areas that were classified as other municipality but not in BMA. Most of respondents were well-off as 75 respondents reported positive monthly cash flow (77.32%), 15 respondents reported neutral monthly cash flow (15.46%) while 7 respondent reported negative monthly cash flow (7.22%). For WTP data including WTP of 0 baht with valid responses, ranking from the highest means of WTP to the lowest WTP of respondents by geographical locations for good MSW management were Bangkok (196 baht/month), municipalities (154 baht/month), and non-urbanized towns (111 baht/month). In-depth analysis was conducted to analyse whether there are additional room for further increase of MSW management fees from the current payment that each correspondent is currently paying. The result from multiple-regression analysis suggested that the following factors could impacts the increase or decrease of WTP: incomes, age, and gender. Overall, the outcome of this study suggests that survey respondents are likely to support improvement of MSW treatments that are not solely relying on landfilling technique. Recommendations for further studies are to obtain larger sample sizes in order to improve statistical powers and to provide better accuracy of WTP study.

Keywords: MSW, willingness to pay, payment card, waste seperation

Procedia PDF Downloads 290
207 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression

Authors: Anne M. Denton, Rahul Gomes, David W. Franzen

Abstract:

High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.

Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression

Procedia PDF Downloads 129
206 An Unified Model for Longshore Sediment Transport Rate Estimation

Authors: Aleksandra Dudkowska, Gabriela Gic-Grusza

Abstract:

Wind wave-induced sediment transport is an important multidimensional and multiscale dynamic process affecting coastal seabed changes and coastline evolution. The knowledge about sediment transport rate is important to solve many environmental and geotechnical issues. There are many types of sediment transport models but none of them is widely accepted. It is bacause the process is not fully defined. Another problem is a lack of sufficient measurment data to verify proposed hypothesis. There are different types of models for longshore sediment transport (LST, which is discussed in this work) and cross-shore transport which is related to different time and space scales of the processes. There are models describing bed-load transport (discussed in this work), suspended and total sediment transport. LST models use among the others the information about (i) the flow velocity near the bottom, which in case of wave-currents interaction in coastal zone is a separate problem (ii) critical bed shear stress that strongly depends on the type of sediment and complicates in the case of heterogeneous sediment. Moreover, LST rate is strongly dependant on the local environmental conditions. To organize existing knowledge a series of sediment transport models intercomparisons was carried out as a part of the project “Development of a predictive model of morphodynamic changes in the coastal zone”. Four classical one-grid-point models were studied and intercompared over wide range of bottom shear stress conditions, corresponding with wind-waves conditions appropriate for coastal zone in polish marine areas. The set of models comprises classical theories that assume simplified influence of turbulence on the sediment transport (Du Boys, Meyer-Peter & Muller, Ribberink, Engelund & Hansen). It turned out that the values of estimated longshore instantaneous mass sediment transport are in general in agreement with earlier studies and measurements conducted in the area of interest. However, none of the formulas really stands out from the rest as being particularly suitable for the test location over the whole analyzed flow velocity range. Therefore, based on the models discussed a new unified formula for longshore sediment transport rate estimation is introduced, which constitutes the main original result of this study. Sediment transport rate is calculated based on the bed shear stress and critical bed shear stress. The dependence of environmental conditions is expressed by one coefficient (in a form of constant or function) thus the model presented can be quite easily adjusted to the local conditions. The discussion of the importance of each model parameter for specific velocity ranges is carried out. Moreover, it is shown that the value of near-bottom flow velocity is the main determinant of longshore bed-load in storm conditions. Thus, the accuracy of the results depends less on the sediment transport model itself and more on the appropriate modeling of the near-bottom velocities.

Keywords: bedload transport, longshore sediment transport, sediment transport models, coastal zone

Procedia PDF Downloads 387
205 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 52