Search results for: Gagne’s learning model
18712 Machine Learning Assisted Performance Optimization in Memory Tiering
Authors: Derssie Mebratu
Abstract:
As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline.Keywords: machine learning, bayesian optimization, memory tiering, CXL, DRAM
Procedia PDF Downloads 9718711 Structural Behavior of Composite Hollow RC Column under Combined Loads
Authors: Abdul Qader Melhm, Hussein Elrafidi
Abstract:
This paper is dealing with studying the structural behavior of a steel-composite hollow reinforced concrete (RC) column model under combined eccentric loading. The composite model consists of an inner steel tube surrounded via a concrete core with longitudinal and circular transverse reinforcement. The radius of gyration according to American and Euro specifications be calculated, in order to calculate the thinnest ratio for this type of composite column model, in addition to the flexural rigidity. Formulas for interaction diagram is given for this type of model, which is a general loading conditions in which an element is exposed to an axial load with bending at the same time. The structural capacity of this model, elastic, plastic loads and strains will be computed and compared with experimental results. The total eccentric axial load of the column model is calculated based on the effective length KL available from several relationships provided in the paper. Furthermore, the inner tube experiences buckling failure after reaching its maximum strength will be investigated.Keywords: column, composite, eccentric, inner tube, interaction, reinforcement
Procedia PDF Downloads 19418710 On Unification of the Electromagnetic, Strong and Weak Interactions
Authors: Hassan Youssef Mohamed
Abstract:
In this paper, we show new wave equations, and by using the equations, we concluded that the strong force and the weak force are not fundamental, but they are quantum effects for electromagnetism. This result is different from the current scientific understanding about strong and weak interactions at all. So, we introduce three evidences for our theory. First, we prove the asymptotic freedom phenomenon in the strong force by using our model. Second, we derive the nuclear shell model as an approximation of our model. Third, we prove that the leptons do not participate in the strong interactions, and we prove the short ranges of weak and strong interactions. So, our model is consistent with the current understanding of physics. Finally, we introduce the electron-positron model as the basic ingredients for protons, neutrons, and all matters, so we can study all particles interactions and nuclear interaction as many-body problems of electrons and positrons. Also, we prove the violation of parity conservation in weak interaction as evidence of our theory in the weak interaction. Also, we calculate the average of the binding energy per nucleon.Keywords: new wave equations, the strong force, the grand unification theory, hydrogen atom, weak force, the nuclear shell model, the asymptotic freedom, electron-positron model, the violation of parity conservation, the binding energy
Procedia PDF Downloads 19018709 Modified Plastic-Damage Model for FRP-Confined Repaired Concrete Columns
Authors: I. A Tijani, Y. F Wu, C.W. Lim
Abstract:
Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.Keywords: Concrete, FRP, Damage, Repairing, Plasticity, and Finite element method
Procedia PDF Downloads 14018708 Pure and Mixed Nash Equilibria Domain of a Discrete Game Model with Dichotomous Strategy Space
Authors: A. S. Mousa, F. Shoman
Abstract:
We present a discrete game theoretical model with homogeneous individuals who make simultaneous decisions. In this model the strategy space of all individuals is a discrete and dichotomous set which consists of two strategies. We fully characterize the coherent, split and mixed strategies that form Nash equilibria and we determine the corresponding Nash domains for all individuals. We find all strategic thresholds in which individuals can change their mind if small perturbations in the parameters of the model occurs.Keywords: coherent strategy, split strategy, pure strategy, mixed strategy, Nash equilibrium, game theory
Procedia PDF Downloads 15118707 Studying Projection Distance and Flow Properties by Shape Variations of Foam Monitor
Authors: Hyun-Kyu Cho, Jun-Su Kim, Choon-Geun Huh, Geon Lee Young-Chul Park
Abstract:
In this study, the relationship between flow properties and fluid projection distance look into connection for shape variations of foam monitor. A numerical analysis technique for fluid analysis of a foam monitor was developed for the prediction. Shape of foam monitor the flow path of fluid flow according to the shape, The fluid losses were calculated from flow analysis result.. The modified model used the length increase model of the flow path, and straight line of the model. Inlet pressure was 7 [bar] and external was atmosphere codition. am. The results showed that the length increase model of the flow path and straight line of the model was improved in the nozzle projection distance.Keywords: injection performance, finite element method, foam monitor, Projection distance
Procedia PDF Downloads 34918706 Development of an in vitro Fermentation Chicken Ileum Microbiota Model
Authors: Bello Gonzalez, Setten Van M., Brouwer M.
Abstract:
The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.Keywords: broilers, in vitro model, ileum microbiota, fermentation
Procedia PDF Downloads 6618705 Extending Image Captioning to Video Captioning Using Encoder-Decoder
Authors: Sikiru Ademola Adewale, Joe Thomas, Bolanle Hafiz Matti, Tosin Ige
Abstract:
This project demonstrates the implementation and use of an encoder-decoder model to perform a many-to-many mapping of video data to text captions. The many-to-many mapping occurs via an input temporal sequence of video frames to an output sequence of words to form a caption sentence. Data preprocessing, model construction, and model training are discussed. Caption correctness is evaluated using 2-gram BLEU scores across the different splits of the dataset. Specific examples of output captions were shown to demonstrate model generality over the video temporal dimension. Predicted captions were shown to generalize over video action, even in instances where the video scene changed dramatically. Model architecture changes are discussed to improve sentence grammar and correctness.Keywords: decoder, encoder, many-to-many mapping, video captioning, 2-gram BLEU
Procedia PDF Downloads 11118704 Ta(l)king Pictures: Development of an Educational Program (SELVEs) for Adolescents Combining Social-Emotional Learning and Photography Taking
Authors: Adi Gielgun-Katz, Alina S. Rusu
Abstract:
In the last two decades, education systems worldwide have integrated new pedagogical methods and strategies in lesson plans, such as innovative technologies, social-emotional learning (SEL), gamification, mixed learning, multiple literacies, and many others. Visual language, such as photographs, is known to transcend cultures and languages, and it is commonly used by youth to express positions and affective states in social networks. Therefore, visual language needs more educational attention as a linguistic and communicative component that can create connectedness among the students and their teachers. Nowadays, when SEL is gaining more and more space and meaning in the area of academic improvement in relation to social well-being, and taking and sharing pictures is part of the everyday life of the majority of people, it becomes natural to add the visual language to SEL approach as a reinforcement strategy for connecting education to the contemporary culture and language of the youth. This article presents a program conducted in a high school class in Israel, which combines the five SEL with photography techniques, i.e., Social-Emotional Learning Visual Empowerments (SELVEs) program (experimental group). Another class of students from the same institution represents the control group, which is participating in the SEL program without the photography component. The SEL component of the programs addresses skills such as: troubleshooting, uncertainty, personal strengths and collaboration, accepting others, control of impulses, communication, self-perception, and conflict resolution. The aim of the study is to examine the effects of programs on the level of the five SEL aspects in the two groups of high school students: Self-Awareness, Social Awareness, Self-Management, Responsible Decision Making, and Relationship Skills. The study presents a quantitative assessment of the SEL programs’ impact on the students. The main hypothesis is that the students’ questionnaires' analysis will reveal a better understanding and improvement of the five aspects of the SEL in the group of students involved in the photography-enhanced SEL program.Keywords: social-emotional learning, photography, education program, adolescents
Procedia PDF Downloads 9018703 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.Keywords: clustering, load profiling, load modeling, machine learning, energy efficiency and quality
Procedia PDF Downloads 16718702 Gray’s Anatomy for Students: First South Asia Edition Highlights
Authors: Raveendranath Veeramani, Sunil Jonathan Holla, Parkash Chand, Sunil Chumber
Abstract:
Gray’s Anatomy for Students has been a well-appreciated book among undergraduate students of anatomy in Asia. However, the current curricular requirements of anatomy require a more focused and organized approach. The editors of the first South Asia edition of Gray’s Anatomy for Students hereby highlight the modifications and importance of this edition. There is an emphasis on active learning by making the clinical relevance of anatomy explicit. Learning anatomy in context has been fostered by the association between anatomists and clinicians in keeping with the emerging integrated curriculum of the 21st century. The language has been simplified to aid students who have studied in the vernacular. The original illustrations have been retained, and few illustrations have been added. There are more figure numbers mentioned in the text to encourage students to refer to the illustrations while learning. The text has been made more student-friendly by adding generalizations, classifications and summaries. There are useful review materials at the beginning of the chapters which include digital resources for self-study. There are updates on imaging techniques to encourage students to appreciate the importance of essential knowledge of the relevant anatomy to interpret images, due emphasis has been laid on dissection. Additional importance has been given to the cranial nerves, by describing their relevant details with several additional illustrations and flowcharts. This new edition includes innovative features such as set inductions, outlines for subchapters and flowcharts to facilitate learning. Set inductions are mostly clinical scenarios to create interest in the need to study anatomy for healthcare professions. The outlines are a modern multimodal facilitating approach towards various topics to empower students to explore content and direct their learning and include learning objectives and material for review. The components of the outline encourage the student to be aware of the need to create solutions to clinical problems. The outlines help students direct their learning to recall facts, demonstrate and analyze relationships, use reason to explain concepts, appreciate the significance of structures and their relationships and apply anatomical knowledge. The 'structures to be identified in a dissection' are given as Level I, II and III which represent the 'must know, desirable to know and nice to know' content respectively. The flowcharts have been added to get an overview of the course of a structure, recapitulate important details about structures, and as an aid to recall. There has been a great effort to balance the need to have content that would enable students to understand concepts as well as get the basic material for the current condensed curriculum.Keywords: Grays anatomy, South Asia, human anatomy, students anatomy
Procedia PDF Downloads 20318701 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications
Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches
Abstract:
Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.Keywords: groundwater monitoring, observation networks, machine learning, madrid
Procedia PDF Downloads 8018700 Assessment of Physical Learning Environments in ECE: Interdisciplinary and Multivocal Innovation for Chilean Kindergartens
Authors: Cynthia Adlerstein
Abstract:
Physical learning environment (PLE) has been considered, after family and educators, as the third teacher. There have been conflicting and converging viewpoints on the role of the physical dimensions of places to learn, in facilitating educational innovation and quality. Despite the different approaches, PLE has been widely recognized as a key factor in the quality of the learning experience , and in the levels of learning achievement in ECE . The conceptual frameworks of the field assume that PLE consists of a complex web of factors that shape the overall conditions for learning, and that much more interdisciplinary and complementary methodologies of research and development are required. Although the relevance of PLE attracts a broad international consensus, in Chile it remains under-researched and weakly regulated by public policy. Gaining deeper contextual understanding and more thoughtfully-designed recommendations require the use of innovative assessment tools that cross cultural and disciplinary boundaries to produce new hybrid approaches and improvements. When considering a PLE-based change process for ECE improvement, a central question is what dimensions, variables and indicators could allow a comprehensive assessment of PLE in Chilean kindergartens? Based on a grounded theory social justice inquiry, we adopted a mixed method design, that enabled a multivocal and interdisciplinary construction of data. By using in-depth interviews, discussion groups, questionnaires, and documental analysis, we elicited the PLE discourses of politicians, early childhood practitioners, experts in architectural design and ergonomics, ECE stakeholders, and 3 to 5 year olds. A constant comparison method enabled the construction of the dimensions, variables and indicators through which PLE assessment is possible. Subsequently, the instrument was applied in a sample of 125 early childhood classrooms, to test reliability (internal consistency) and validity (content and construct). As a result, an interdisciplinary and multivocal tool for assessing physical learning environments was constructed and validated, for Chilean kindergartens. The tool is structured upon 7 dimensions (wellbeing, flexible, empowerment, inclusiveness, symbolically meaningful, pedagogically intentioned, institutional management) 19 variables and 105 indicators that are assessed through observation and registration on a mobile app. The overall reliability of the instrument is .938 while the consistency of each dimension varies between .773 (inclusive) and .946 (symbolically meaningful). The validation process through expert opinion and factorial analysis (chi-square test) has shown that the dimensions of the assessment tool reflect the factors of physical learning environments. The constructed assessment tool for kindergartens highlights the significance of the physical environment in early childhood educational settings. The relevance of the instrument relies in its interdisciplinary approach to PLE and in its capability to guide innovative learning environments, based on educational habitability. Though further analysis are required for concurrent validation and standardization, the tool has been considered by practitioners and ECE stakeholders as an intuitive, accessible and remarkable instrument to arise awareness on PLE and on equitable distribution of learning opportunities.Keywords: Chilean kindergartens, early childhood education, physical learning environment, third teacher
Procedia PDF Downloads 36018699 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM
Abstract:
Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM
Procedia PDF Downloads 9818698 Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition
Authors: A. Bayaga
Abstract:
This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.Keywords: AIDS mortality rates, epidemiological model, time-homogeneous markov jump process, transition probability, statistics South Africa
Procedia PDF Downloads 49918697 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 11018696 The Influence of Argumentation Strategy on Student’s Web-Based Argumentation in Different Scientific Concepts
Authors: Xinyue Jiao, Yu-Ren Lin
Abstract:
Argumentation is an essential aspect of scientific thinking which has been widely concerned in recent reform of science education. The purpose of the present studies was to explore the influences of two variables termed ‘the argumentation strategy’ and ‘the kind of science concept’ on student’s web-based argumentation. The first variable was divided into either monological (which refers to individual’s internal discourse and inner chain reasoning) or dialectical (which refers to dialogue interaction between/among people). The other one was also divided into either descriptive (i.e., macro-level concept, such as phenomenon can be observed and tested directly) or theoretical (i.e., micro-level concept which is abstract, and cannot be tested directly in nature). The present study applied the quasi-experimental design in which 138 7th grade students were invited and then assigned to either monological group (N=70) or dialectical group (N=68) randomly. An argumentation learning program called ‘the PWAL’ was developed to improve their scientific argumentation abilities, such as arguing from multiple perspectives and based on scientific evidence. There were two versions of PWAL created. For the individual version, students can propose argument only through knowledge recall and self-reflecting process. On the other hand, the students were allowed to construct arguments through peers’ communication in the collaborative version. The PWAL involved three descriptive science concept-based topics (unit 1, 3 and 5) and three theoretical concept-based topics (unit 2, 4 and 6). Three kinds of scaffoldings were embedded into the PWAL: a) argument template, which was used for constructing evidence-based argument; b) the model of the Toulmin’s TAP, which shows the structure and elements of a sound argument; c) the discussion block, which enabled the students to review what had been proposed during the argumentation. Both quantitative and qualitative data were collected and analyzed. An analytical framework for coding students’ arguments proposed in the PWAL was constructed. The results showed that the argumentation approach has a significant effect on argumentation only in theoretical topics (f(1, 136)=48.2, p < .001, η2=2.62). The post-hoc analysis showed the students in the collaborative group perform significantly better than the students in the individual group (mean difference=2.27). However, there is no significant difference between the two groups regarding their argumentation in descriptive topics. Secondly, the students made significant progress in the PWAL from the earlier descriptive or theoretical topic to the later one. The results enabled us to conclude that the PWAL was effective for students’ argumentation. And the students’ peers’ interaction was essential for students to argue scientifically especially for the theoretical topic. The follow-up qualitative analysis showed student tended to generate arguments through critical dialogue interactions in the theoretical topic which promoted them to use more critiques and to evaluate and co-construct each other’s arguments. More explanations regarding the students’ web-based argumentation and the suggestions for the development of web-based science learning were proposed in our discussions.Keywords: argumentation, collaborative learning, scientific concepts, web-based learning
Procedia PDF Downloads 10518695 Computing Customer Lifetime Value in E-Commerce Websites with Regard to Returned Orders and Payment Method
Authors: Morteza Giti
Abstract:
As online shopping is becoming increasingly popular, computing customer lifetime value for better knowing the customers is also gaining more importance. Two distinct factors that can affect the value of a customer in the context of online shopping is the number of returned orders and payment method. Returned orders are those which have been shipped but not collected by the customer and are returned to the store. Payment method refers to the way that customers choose to pay for the price of the order which are usually two: Pre-pay and Cash-on-delivery. In this paper, a novel model called RFMSP is presented to calculated the customer lifetime value, taking these two parameters into account. The RFMSP model is based on the common RFM model while adding two extra parameter. The S represents the order status and the P indicates the payment method. As a case study for this model, the purchase history of customers in an online shop is used to compute the customer lifetime value over a period of twenty months.Keywords: RFMSP model, AHP, customer lifetime value, k-means clustering, e-commerce
Procedia PDF Downloads 32418694 Quality of Education in Dilla Zone
Authors: Gezahegn Bekele Welldgiyorgise
Abstract:
It is obvious that the economics, politics and social conditions of a country are determined by the quality and standard of its education. Indeed, education plays a vital role in changing the consciousness and awareness of society and transforming it on a large scale. Moreover, education contributes a lot to the advancement of science and technology, information and communication, and above all, it speeds up its progress in no time if it focuses mainly on the qualitative approach to education. Education brings about universal change and transformation and lightens mankind in all dimensions. It creates an educated, enlightened and brightened generation in society. The generation will be sharped, sharpened and well-oriented if it gets modern, sophisticated and standardized education in its field of study. The main goal of education is to produce well-qualified, well-trained and disciplined young offers in a given community. If the youth is well trained and well-mannered, he will certainly be enlightened, problem solvers and solution seekers, researchers, and innovators. In this respect, we have to provide the youth with modern education, a teaching-learning process led by active learning and a participatory approach with a new curriculum preparation for the age of children supported by modern facilities (ICT).In addition to that, the curriculum should have to give attention to mathematics and science lessons that include international experience in a comfortable school and classrooms. Therefore, the generation that will be created through such kinds of the guided education system will make the students active participants, self-confident, researchers and problem solvers, besides that result in changed life standards and a developed country. Similarly, our country, Ethiopia, has aimed to get such change in youth (generation) through modern education, designing a new educational policy and curriculum which was implemented for many years, although the goal of education has not reached the required level. To get the main idea of the article, I should have answered the question of why our country's educational goal had not reached the desired level because it is necessary to lay the foundation for research in finding out problems seen through students learning performance, the first task is selecting primary-school as a sample. Therefore, we selected “Dilla primary school (5-8)” which is a workplace for a teacher and gives me a chance to recognize students’ learning performance to recognize their learning grades (internal and external) and measure performance (achievement) of students easily’.Keywords: curriculum, performance, innovation, learning
Procedia PDF Downloads 8018693 Translation as a Foreign Language Teaching Tool: Results of an Experiment with University Level Students in Spain
Authors: Nune Ayvazyan
Abstract:
Since the proclamation of monolingual foreign-language learning methods (the Berlitz Method in the early 20ᵗʰ century and the like), the dilemma has been to allow or not to allow learners’ mother tongue in the foreign-language learning process. The reason for not allowing learners’ mother tongue is reported to create a situation of immersion where students will only use the target language. It could be argued that this artificial monolingual situation is defective, mainly because there are very few real monolingual situations in the society. This is mainly due to the fact that societies are nowadays increasingly multilingual as plurilingual speakers are the norm rather than an exception. More recently, the use of learners’ mother tongue and translation has been put under the spotlight as valid foreign-language teaching tools. The logic dictates that if learners were permitted to use their mother tongue in the foreign-language learning process, that would not only be natural, but also would give them additional means of participation in class, which could eventually lead to learning. For example, when learners’ metalinguistic skills are poor in the target language, a question they might have could be asked in their mother tongue. Otherwise, that question might be left unasked. Attempts at empirically testing the role of translation as a didactic tool in foreign-language teaching are still very scant. In order to fill this void, this study looks into the interaction patterns between students in two kinds of English-learning classes: one with translation and the other in English only (immersion). The experiment was carried out with 61 students enrolled in a second-year university subject in English grammar in Spain. All the students underwent the two treatments, classes with translation and in English only, in order to see how they interacted under the different conditions. The analysis centered on four categories of interaction: teacher talk, teacher-initiated student interaction, student-initiated student-to-teacher interaction, and student-to-student interaction. Also, pre-experiment and post-experiment questionnaires and individual interviews gathered information about the students’ attitudes to translation. The findings show that translation elicited more student-initiated interaction than did the English-only classes, while the difference in teacher-initiated interactional turns was not statistically significant. Also, student-initiated participation was higher in comprehension-based activities (into L1) as opposed to production-based activities (into L2). As evidenced by the questionnaires, the students’ attitudes to translation were initially positive and mainly did not vary as a result of the experiment.Keywords: foreign language, learning, mother tongue, translation
Procedia PDF Downloads 16318692 Meditation Based Brain Painting Promotes Foreign Language Memory through Establishing a Brain-Computer Interface
Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny
Abstract:
In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide new insights into meditation, creative language education, brain-computer interface, and human-computer interactions.Keywords: brain-computer interface, creative thinking, meditation, mental health
Procedia PDF Downloads 13018691 Automated End-to-End Pipeline Processing Solution for Autonomous Driving
Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi
Abstract:
Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing
Procedia PDF Downloads 12718690 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes
Abstract:
Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf=bending radius/ diameter of the tube), wall thickness (Wf=diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.Keywords: rotary draw bending, material properties, neutral axis shifting, wall thickness distribution
Procedia PDF Downloads 39918689 Detecting Manipulated Media Using Deep Capsule Network
Authors: Joseph Uzuazomaro Oju
Abstract:
The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media
Procedia PDF Downloads 13618688 Subpixel Corner Detection for Monocular Camera Linear Model Research
Authors: Guorong Sui, Xingwei Jia, Fei Tong, Xiumin Gao
Abstract:
Camera calibration is a fundamental issue of high precision noncontact measurement. And it is necessary to analyze and study the reliability and application range of its linear model which is often used in the camera calibration. According to the imaging features of monocular cameras, a camera model which is based on the image pixel coordinates and three dimensional space coordinates is built. Using our own customized template, the image pixel coordinate is obtained by the subpixel corner detection method. Without considering the aberration of the optical system, the feature extraction and linearity analysis of the line segment in the template are performed. Moreover, the experiment is repeated 11 times by constantly varying the measuring distance. At last, the linearity of the camera is achieved by fitting 11 groups of data. The camera model measurement results show that the relative error does not exceed 1%, and the repeated measurement error is not more than 0.1 mm magnitude. Meanwhile, it is found that the model has some measurement differences in the different region and object distance. The experiment results show this linear model is simple and practical, and have good linearity within a certain object distance. These experiment results provide a powerful basis for establishment of the linear model of camera. These works will have potential value to the actual engineering measurement.Keywords: camera linear model, geometric imaging relationship, image pixel coordinates, three dimensional space coordinates, sub-pixel corner detection
Procedia PDF Downloads 28018687 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 8718686 Statistical Data Analysis of Migration Impact on the Spread of HIV Epidemic Model Using Markov Monte Carlo Method
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
Over the last several years, concern has developed over how to minimize the spread of HIV/AIDS epidemic in many countries. AIDS epidemic has tremendously stimulated the development of mathematical models of infectious diseases. The transmission dynamics of HIV infection that eventually developed AIDS has taken a pivotal role of much on building mathematical models. From the initial HIV and AIDS models introduced in the 80s, various improvements have been taken into account as how to model HIV/AIDS frameworks. In this paper, we present the impact of migration on the spread of HIV/AIDS. Epidemic model is considered by a system of nonlinear differential equations to supplement the statistical method approach. The model is calibrated using HIV incidence data from Malaysia between 1986 and 2011. Bayesian inference based on Markov Chain Monte Carlo is used to validate the model by fitting it to the data and to estimate the unknown parameters for the model. The results suggest that the migrants stay for a long time contributes to the spread of HIV. The model also indicates that susceptible individual becomes infected and moved to HIV compartment at a rate that is more significant than the removal rate from HIV compartment to AIDS compartment. The disease-free steady state is unstable since the basic reproduction number is 1.627309. This is a big concern and not a good indicator from the public heath point of view since the aim is to stabilize the epidemic at the disease equilibrium.Keywords: epidemic model, HIV, MCMC, parameter estimation
Procedia PDF Downloads 60318685 An Overbooking Model for Car Rental Service with Different Types of Cars
Authors: Naragain Phumchusri, Kittitach Pongpairoj
Abstract:
Overbooking is a very useful revenue management technique that could help reduce costs caused by either undersales or oversales. In this paper, we propose an overbooking model for two types of cars that can minimize the total cost for car rental service. With two types of cars, there is an upgrade possibility for lower type to upper type. This makes the model more complex than one type of cars scenario. We have found that convexity can be proved in this case. Sensitivity analysis of the parameters is conducted to observe the effects of relevant parameters on the optimal solution. Model simplification is proposed using multiple linear regression analysis, which can help estimate the optimal overbooking level using appropriate independent variables. The results show that the overbooking level from multiple linear regression model is relatively close to the optimal solution (with the adjusted R-squared value of at least 72.8%). To evaluate the performance of the proposed model, the total cost was compared with the case where the decision maker uses a naïve method for the overbooking level. It was found that the total cost from optimal solution is only 0.5 to 1 percent (on average) lower than the cost from regression model, while it is approximately 67% lower than the cost obtained by the naïve method. It indicates that our proposed simplification method using regression analysis can effectively perform in estimating the overbooking level.Keywords: overbooking, car rental industry, revenue management, stochastic model
Procedia PDF Downloads 17418684 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication
Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi
Abstract:
Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.Keywords: hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress
Procedia PDF Downloads 30518683 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 163