Search results for: computer modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4080

Search results for: computer modelling

600 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 320
599 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 278
598 The Effect of Using Mobile Listening Applications on Listening Skills of Iranian Intermediate EFL Learners

Authors: Mahmoud Nabilu

Abstract:

The present study explored the effect of using Mobile listening applications on developing listening skills by Iranian intermediate EFL learners. Fifty male intermediate English learners whose age range was between 15 and 20, participated in the study. The participants were placed in two groups on the basis of their scores on a placement test. Therefore, the participants of the study were homogenized in terms of general proficiency, and groups were assigned as one experimental group and one control group. The experimental group was instructed by the treatment which was using mobile applications to develop their listening skills while the control group received traditional methods. The research data were obtained from the 40-item multiple-choice tests as a pre-test and a post-test. The results of the t-test clearly revealed that the learners in the experimental group performed better in the post-test than the pre-test. This implies that using a mobile application for developing listening skills as a treatment was effective in helping the language learners perform better on post-test. However, a statistically significant difference was found between the post-tests scores of the two groups. The mean of the experimental group was greater compared to the control group. The participants were Iranian and from an Iranian Language Institute, so care should be taken while generalizing the results to the learners of other nationalities. However, in the researcher's view, the findings of this study have valuable implications for teachers and learners, methodologists and syllabus designers, linguists and MALL/CALL (mobile/computer-assisted language learning) experts. Using the result of the present paper is an aim of raising the consciousness of a better technique of developing listening skills in order to make language learning more efficient for the learners.

Keywords: Mobile listening applications, intermediate EFL learners, MALL, CALL

Procedia PDF Downloads 194
597 Efficient Chess Board Representation: A Space-Efficient Protocol

Authors: Raghava Dhanya, Shashank S.

Abstract:

This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.

Keywords: chess, optimisation, encoding, bit manipulation

Procedia PDF Downloads 50
596 Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia

Authors: Claude Takenga, Rolf-Dietrich Berndt, Erling Si, Markus Diem, Guohui Qiao, Melanie Gau, Michael Brandstoetter, Martin Kampel, Michael Dworzak

Abstract:

In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.

Keywords: data security, flow cytometry, leukaemia, telematics platform, telemedicine

Procedia PDF Downloads 984
595 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality

Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya

Abstract:

Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.

Keywords: augmented reality, data analytics, catch room, marketing and sales

Procedia PDF Downloads 237
594 The Dangers of Attentional Inertia in the Driving Task

Authors: Catherine Thompson, Maryam Jalali, Peter Hills

Abstract:

The allocation of visual attention is critical when driving and anything that limits attention will have a detrimental impact on safety. Engaging in a secondary task reduces the amount of attention directed to the road because drivers allocate resources towards this task, leaving fewer resources to process driving-relevant information. Yet the dangers associated with a secondary task do not end when the driver returns their attention to the road. Instead, the attentional settings adopted to complete a secondary task may persist to the road, affecting attention, and therefore affecting driver performance. This 'attentional inertia' effect was investigated in the current work. Forty drivers searched for hazards in driving video clips while their eye-movements were recorded. At varying intervals they were instructed to attend to a secondary task displayed on a tablet situated to their left-hand side. The secondary task consisted of three separate computer games that induced horizontal, vertical, and random eye movements. Visual search and hazard detection in the driving clips were compared across the three conditions of the secondary task. Results showed that the layout of information in the secondary task, and therefore the allocation of attention in this task, had an impact on subsequent search in the driving clips. Vertically presented information reduced the wide horizontal spread of search usually associated with accurate driving and had a negative influence on the detection of hazards. The findings show the additional dangers of engaging in a secondary task while driving. The attentional inertia effect has significant implications for semi-autonomous and autonomous vehicles in which drivers have greater opportunity to direct their attention away from the driving task.

Keywords: attention, eye-movements, hazard perception, visual search

Procedia PDF Downloads 164
593 Exploring Utility and Intrinsic Value among UAE Arabic Teachers in Integrating M-Learning

Authors: Dina Tareq Ismail, Alexandria A. Proff

Abstract:

The United Arab Emirates (UAE) is a nation seeking to advance in all fields, particularly education. One area of focus for UAE 2021 agenda is to restructure UAE schools and universities by equipping them with highly developed technology. The agenda also advises educational institutions to prepare students with applicable and transferrable Information and Communication Technology (ICT) skills. Despite the emphasis on ICT and computer literacy skills, there exists limited empirical data on the use of M-Learning in the literature. This qualitative study explores the motivation of higher primary Arabic teachers in private schools toward implementing and integrating M-Learning apps in their classrooms. This research employs a phenomenological approach through the use of semistructured interviews with nine purposefully selected Arabic teachers. The data were analyzed using a content analysis via multiple stages of coding: open, axial, and thematic. Findings reveal three primary themes: (1) Arabic teachers with high levels of procedural knowledge in ICT are more motivated to implement M-Learning; (2) Arabic teachers' perceptions of self-efficacy influence their motivation toward implementation of M-Learning; (3) Arabic teachers implement M-Learning when they possess high utility and/or intrinsic value in these applications. These findings indicate a strong need for further training, equipping, and creating buy-in among Arabic teachers to enhance their ICT skills in implementing M-Learning. Further, given the limited availability of M-Learning apps designed for use in the Arabic language on the market, it is imperative that developers consider designing M-Learning tools that Arabic teachers, and Arabic-speaking students, can use and access more readily. This study contributes to closing the knowledge gap on teacher-motivation for implementing M-Learning in their classrooms in the UAE.

Keywords: ICT skills, m-learning, self-efficacy, teacher-motivation

Procedia PDF Downloads 106
592 Vibration Analysis of Stepped Nanoarches with Defects

Authors: Jaan Lellep, Shahid Mubasshar

Abstract:

A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.

Keywords: crack, nanoarches, natural frequency, step

Procedia PDF Downloads 128
591 Zarit Burden Interview among Informal Caregiver of Person with Dementia: A Systematic Review and Meta-Analysis

Authors: Nuraisyah H. Zulkifley, Suriani Ismail, Rosliza Abdul Manaf, Poh Y. Lim

Abstract:

Taking care of a person with dementia (PWD) is one of the most problematic and challenging caregiving situations. Without proper support, caregiver would need to deal with the impact of caregiving that would lead to caregiver burden. One of the most common tools used to measure caregiver burden among caregivers of PWD is Zarit Burden Interview (ZBI). A systematic review has been conducted through searching Medline, Science Direct, Cochrane Library, Embase, PsycINFO, ProQuest, and Scopus databases to identify relevant articles that elaborate on intervention and outcomes on ZBI among informal caregiver of PWD. The articles were searched in October 2019 with no restriction on language or publication status. Inclusion criteria are randomized control trial (RCT) studies, participants were informal caregivers of PWD, ZBI measured as outcomes, and intervention group was compared with no intervention control or usual care control. Two authors reviewed and extracted the data from the full-text articles. From a total of 344 records, nine studies were selected and included in this narrative review, and eight studies were included in the meta-analysis. The types of interventions that were implemented to ease caregiver burden are psychoeducation, physical activity, psychosocial, and computer-based intervention. The meta-analysis showed that there is a significant difference in the mean score of ZBI (p = 0.006) in the intervention group compared to the control group after implementation of intervention. In conclusion, interventions such as psychoeducation, psychosocial, and physical activity can help to reduce the burden experiencing by the caregivers of PWD.

Keywords: dementia, informal caregiver, randomized control trial, Zarit burden interview

Procedia PDF Downloads 180
590 An Investigation into the Impacts of High-Frequency Electromagnetic Fields Utilized in the 5G Technology on Insects

Authors: Veriko Jeladze, Besarion Partsvania, Levan Shoshiashvili

Abstract:

This paper addresses a very topical issue today. The frequency range 2.5-100 GHz contains frequencies that have already been used or will be used in modern 5G technologies. The wavelengths used in 5G systems will be close to the body dimensions of small size biological objects, particularly insects. Because the body and body parts dimensions of insects at these frequencies are comparable with the wavelength, the high absorption of EMF energy in the body tissues can occur(body resonance) and therefore can cause harmful effects, possibly the extinction of some of them. An investigation into the impact of radio-frequency nonionizing electromagnetic field (EMF) utilized in the future 5G on insects is of great importance as a very high number of 5G network components will increase the total EMF exposure in the environment. All ecosystems of the earth are interconnected. If one component of an ecosystem is disrupted, the whole system will be affected (which could cause cascading effects). The study of these problems is an important challenge for scientists today because the existing studies are incomplete and insufficient. Consequently, the purpose of this proposed research is to investigate the possible hazardous impact of RF-EMFs (including 5G EMFs) on insects. The project will study the effects of these EMFs on various insects that have different body sizes through computer modeling at frequencies from 2.5 to 100 GHz. The selected insects are honey bee, wasp, and ladybug. For this purpose, the detailed 3D discrete models of insects are created for EM and thermal modeling through FDTD and will be evaluated whole-body Specific Absorption Rates (SAR) at selected frequencies. All these studies represent a novelty. The proposed study will promote new investigations about the bio-effects of 5G-EMFs and will contribute to the harmonization of safe exposure levels and frequencies of 5G-EMFs'.

Keywords: electromagnetic field, insect, FDTD, specific absorption rate (SAR)

Procedia PDF Downloads 91
589 Experimental and Numerical Performance Analysis for Steam Jet Ejectors

Authors: Abdellah Hanafi, G. M. Mostafa, Mohamed Mortada, Ahmed Hamed

Abstract:

The steam ejectors are the heart of most of the desalination systems that employ vacuum. The systems that employ low grade thermal energy sources like solar energy and geothermal energy use the ejector to drive the system instead of high grade electric energy. The jet-ejector is used to create vacuum employing the flow of steam or air and using the severe pressure drop at the outlet of the main nozzle. The present work involves developing a one dimensional mathematical model for designing jet-ejectors and transform it into computer code using Engineering Equation solver (EES) software. The model receives the required operating conditions at the inlets and outlet of the ejector as inputs and produces the corresponding dimensions required to reach these conditions. The one-dimensional model has been validated using an existed model working on Abu-Qir power station. A prototype has been designed according to the one-dimensional model and attached to a special test bench to be tested before using it in the solar desalination pilot plant. The tested ejector will be responsible for the startup evacuation of the system and adjusting the vacuum of the evaporating effects. The tested prototype has shown a good agreement with the results of the code. In addition a numerical analysis has been applied on one of the designed geometry to give an image of the pressure and velocity distribution inside the ejector from a side, and from other side, to show the difference in results between the two-dimensional ideal gas model and real prototype. The commercial edition of ANSYS Fluent v.14 software is used to solve the two-dimensional axisymmetric case.

Keywords: solar energy, jet ejector, vacuum, evaporating effects

Procedia PDF Downloads 621
588 Voting Representation in Social Networks Using Rough Set Techniques

Authors: Yasser F. Hassan

Abstract:

Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.

Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices

Procedia PDF Downloads 394
587 A Preparatory Method for Building Construction Implemented in a Case Study in Brazil

Authors: Aline Valverde Arroteia, Tatiana Gondim do Amaral, Silvio Burrattino Melhado

Abstract:

During the last twenty years, the construction field in Brazil has evolved significantly in response to its market growing and competitiveness. However, this evolving path has faced many obstacles such as cultural barriers and the lack of efforts to achieve quality at the construction site. At the same time, the greatest amount of information generated on the designing or construction phases is lost due to the lack of an effective coordination of these activities. Face this problem, the aim of this research was to implement a French method named PEO which means preparation for building construction (in Portuguese) seeking to understand the design management process and its interface with the building construction phase. The research method applied was qualitative, and it was carried out through two case studies in the city of Goiania, in Goias, Brazil. The research was divided into two stages called pilot study at Company A and implementation of PEO at Company B. After the implementation; the results demonstrated the PEO method's effectiveness and feasibility while a booster on the quality improvement of design management. The analysis showed that the method has a purpose to improve the design and allow the reduction of failures, errors and rework commonly found in the production of buildings. Therefore, it can be concluded that the PEO is feasible to be applied to real estate and building companies. But, companies need to believe in the contribution they can make to the discovery of design failures in conjunction with other stakeholders forming a construction team. The result of PEO can be maximized when adopting the principles of simultaneous engineering and insertion of new computer technologies, which use a three-dimensional model of the building with BIM process.

Keywords: communication, design and construction interface management, preparation for building construction (PEO), proactive coordination (CPA)

Procedia PDF Downloads 162
586 Technical Aspects of Closing the Loop in Depth-of-Anesthesia Control

Authors: Gorazd Karer

Abstract:

When performing a diagnostic procedure or surgery in general anesthesia (GA), a proper introduction and dosing of anesthetic agents are one of the main tasks of the anesthesiologist. However, depth of anesthesia (DoA) also seems to be a suitable process for closed-loop control implementation. To implement such a system, one must be able to acquire the relevant signals online and in real-time, as well as stream the calculated control signal to the infusion pump. However, during a procedure, patient monitors and infusion pumps are purposely unable to connect to an external (possibly medically unapproved) device for safety reasons, thus preventing closed-loop control. The paper proposes a conceptual solution to the aforementioned problem. First, it presents some important aspects of contemporary clinical practice. Next, it introduces the closed-loop-control-system structure and the relevant information flow. Focusing on transferring the data from the patient to the computer, it presents a non-invasive image-based system for signal acquisition from a patient monitor for online depth-of-anesthesia assessment. Furthermore, it introduces a UDP-based communication method that can be used for transmitting the calculated anesthetic inflow to the infusion pump. The proposed system is independent of a medical device manufacturer and is implemented in Matlab-Simulink, which can be conveniently used for DoA control implementation. The proposed scheme has been tested in a simulated GA setting and is ready to be evaluated in an operating theatre. However, the proposed system is only a step towards a proper closed-loop control system for DoA, which could routinely be used in clinical practice.

Keywords: closed-loop control, depth of anesthesia (DoA), modeling, optical signal acquisition, patient state index (PSi), UDP communication protocol

Procedia PDF Downloads 217
585 The Challenges of Cloud Computing Adoption in Nigeria

Authors: Chapman Eze Nnadozie

Abstract:

Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.

Keywords: cloud computing, data centre, infrastructure, it resources, virtualization

Procedia PDF Downloads 351
584 Acceleration-Based Motion Model for Visual Simultaneous Localization and Mapping

Authors: Daohong Yang, Xiang Zhang, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) is a technology that obtains information in the environment for self-positioning and mapping. It is widely used in computer vision, robotics and other fields. Many visual SLAM systems, such as OBSLAM3, employ a constant-speed motion model that provides the initial pose of the current frame to improve the speed and accuracy of feature matching. However, in actual situations, the constant velocity motion model is often difficult to be satisfied, which may lead to a large deviation between the obtained initial pose and the real value, and may lead to errors in nonlinear optimization results. Therefore, this paper proposed a motion model based on acceleration, which can be applied on most SLAM systems. In order to better describe the acceleration of the camera pose, we decoupled the pose transformation matrix, and calculated the rotation matrix and the translation vector respectively, where the rotation matrix is represented by rotation vector. We assume that, in a short period of time, the changes of rotating angular velocity and translation vector remain the same. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of constant velocity model was analyzed theoretically. Finally, we applied our proposed approach to the ORBSLAM3 system and evaluated two sets of sequences on the TUM dataset. The results showed that our proposed method had a more accurate initial pose estimation and the accuracy of ORBSLAM3 system is improved by 6.61% and 6.46% respectively on the two test sequences.

Keywords: error estimation, constant acceleration motion model, pose estimation, visual SLAM

Procedia PDF Downloads 94
583 A Two Server Poisson Queue Operating under FCFS Discipline with an ‘m’ Policy

Authors: R. Sivasamy, G. Paulraj, S. Kalaimani, N.Thillaigovindan

Abstract:

For profitable businesses, queues are double-edged swords and hence the pain of long wait times in a queue often frustrates customers. This paper suggests a technical way of reducing the pain of lines through a Poisson M/M1, M2/2 queueing system operated by two heterogeneous servers with an objective of minimising the mean sojourn time of customers served under the queue discipline ‘First Come First Served with an ‘m’ policy, i.e. FCFS-m policy’. Arrivals to the system form a Poisson process of rate λ and are served by two exponential servers. The service times of successive customers at server ‘j’ are independent and identically distributed (i.i.d.) random variables and each of it is exponentially distributed with rate parameter μj (j=1, 2). The primary condition for implementing the queue discipline ‘FCFS-m policy’ on these service rates μj (j=1, 2) is that either (m+1) µ2 > µ1> m µ2 or (m+1) µ1 > µ2> m µ1 must be satisfied. Further waiting customers prefer the server-1 whenever it becomes available for service, and the server-2 should be installed if and only if the queue length exceeds the value ‘m’ as a threshold. Steady-state results on queue length and waiting time distributions have been obtained. A simple way of tracing the optimal service rate μ*2 of the server-2 is illustrated in a specific numerical exercise to equalize the average queue length cost with that of the service cost. Assuming that the server-1 has to dynamically adjust the service rates as μ1 during the system size is strictly less than T=(m+2) while μ2=0, and as μ1 +μ2 where μ2>0 if the system size is more than or equal to T, corresponding steady state results of M/M1+M2/1 queues have been deduced from those of M/M1,M2/2 queues. To conclude this investigation has a viable application, results of M/M1+M2/1 queues have been used in processing of those waiting messages into a single computer node and to measure the power consumption by the node.

Keywords: two heterogeneous servers, M/M1, M2/2 queue, service cost and queue length cost, M/M1+M2/1 queue

Procedia PDF Downloads 362
582 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System

Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu

Abstract:

Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.

Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance

Procedia PDF Downloads 477
581 Estimation of Particle Size Distribution Using Magnetization Data

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs.

Keywords: anisotropy, magnetization, nanoparticles, superparamagnetism

Procedia PDF Downloads 143
580 Analysis study According Some of Physical and Mechanical Variables for Joint Wrist Injury

Authors: Nabeel Abdulkadhim Athab

Abstract:

The purpose of this research is to conduct a comparative study according analysis of programmed to some of physical and mechanical variables for joint wrist injury. As it can be through this research to distinguish between the amount of variation in the work of the joint after sample underwent rehabilitation program to improve the effectiveness of the joint and naturally restore its effectiveness. Supposed researcher that there is statistically significant differences between the results of the tests pre and post the members research sample, as a result of submission the sample to the program of rehabilitation, which led to the development of muscle activity that are working on wrist joint and this is what led to note the differences between the results of the tests pre and post. The researcher used the descriptive method. The research sample included (6) of injured players in the wrist joint, as the average age (21.68) and standard deviation (1.13) either length average (178cm) and standard deviation (2.08). And the sample as evidenced homogeneous among themselves. And where the data were collected, introduced in program for statistical processing to get to the most important conclusions and recommendations and that the most important: 1-The commitment of the sample program the qualifying process variables studied in the search for the heterogeneity of study activity and effectiveness of wrist joint for injured players. 2-The analysis programmed a high accuracy in the measurement of the research variables, and which led to the possibility of discrimination into account differences in motor ability camel and injured in the wrist joint. To search recommendations including: 1-The use of computer systems in the scientific research for the possibility of obtaining accurate research results. 2-Programming exercises rehabilitation according to an expert system for possible use by patients without reference to the person processor.

Keywords: analysis of joint wrist injury, physical and mechanical variables, wrist joint, wrist injury

Procedia PDF Downloads 431
579 Pattern the Location and Area of Earth-Dumping Stations from Vehicle GPS Data in Taiwan

Authors: Chun-Yuan Chen, Ming-Chang Li, Xiu-Hui Wen, Yi-Ching Tu

Abstract:

The objective of this study explores GPS (Global Positioning System) applied to trace construction vehicles such as trucks or cranes, help to pattern the earth-dumping stations of traffic construction in Taiwan. Traffic construction in this research is defined as the engineering of high-speed railways, expressways, and which that distance more than kilometers. Audit the location and check the compliance with regulations of earth-dumping stations is one of important tasks in Taiwan EPA. Basically, the earth-dumping station was known as one source of particulate matter from air pollution during construction process. Due to GPS data can be analyzed quickly and be used conveniently, this study tried to find out dumping stations by modeling vehicles tracks from GPS data during work cycle of construction. The GPS data updated from 13 vehicles related to an expressway construction in central Taiwan. The GPS footprints were retrieved to Keyhole Markup Language (KML) files so that can pattern the tracks of trucks by computer applications, the data was collected about eight months- from Feb. to Oct. in 2017. The results of GPS footprints identified dumping station and outlined the areas of earthwork had been passed to the Taiwan EPA for on-site inspection. Taiwan EPA had issued advice comments to the agency which was in charge of the construction to prevent the air pollution. According to the result of this study compared to the commonly methods in inspecting environment by manual collection, the GPS with KML patterning and modeling method can consumes less time. On the other hand, through monitoring the GPS data from construction vehicles could be useful for administration to development and implementation of strategies in environmental management.

Keywords: automatic management, earth-dumping station, environmental management, Global Positioning System (GPS), particulate matter, traffic construction

Procedia PDF Downloads 164
578 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic

Procedia PDF Downloads 163
577 Design and Construction Validation of Pile Performance through High Strain Pile Dynamic Tests for both Contiguous Flight Auger and Drilled Displacement Piles

Authors: S. Pirrello

Abstract:

Sydney’s booming real estate market has pushed property developers to invest in historically “no-go” areas, which were previously too expensive to develop. These areas are usually near rivers where the sites are underlain by deep alluvial and estuarine sediments. In these ground conditions, conventional bored pile techniques are often not competitive. Contiguous Flight Auger (CFA) and Drilled Displacement (DD) Piles techniques are on the other hand suitable for these ground conditions. This paper deals with the design and construction challenges encountered with these piling techniques for a series of high-rise towers in Sydney’s West. The advantages of DD over CFA piles such as reduced overall spoil with substantial cost savings and achievable rock sockets in medium strength bedrock are discussed. Design performances were assessed with PIGLET. Pile performances are validated in two stages, during constructions with the interpretation of real-time data from the piling rigs’ on-board computer data, and after construction with analyses of results from high strain pile dynamic testing (PDA). Results are then presented and discussed. High Strain testing data are presented as Case Pile Wave Analysis Program (CAPWAP) analyses.

Keywords: contiguous flight auger (CFA) , DEFPIG, case pile wave analysis program (CAPWAP), drilled displacement piles (DD), pile dynamic testing (PDA), PIGLET, PLAXIS, repute, pile performance

Procedia PDF Downloads 283
576 Study Employed a Computer Model and Satellite Remote Sensing to Evaluate the Temporal and Spatial Distribution of Snow in the Western Hindu Kush Region of Afghanistan

Authors: Noori Shafiqullah

Abstract:

Millions of people reside downstream of river basins that heavily rely on snowmelt originating from the Hindu Kush (HK) region. Snowmelt plays a critical role as a primary water source in these areas. This study aimed to evaluate snowfall and snowmelt characteristics in the HK region across altitudes ranging from 2019m to 4533m. To achieve this, the study employed a combination of remote sensing techniques and the Snow Model (SM) to analyze the spatial and temporal distribution of Snow Water Equivalent (SWE). By integrating the simulated Snow-cover Area (SCA) with data from the Moderate Resolution Imaging Spectroradiometer (MODIS), the study optimized the Precipitation Gradient (PG), snowfall assessment, and the degree-day factor (DDF) for snowmelt distribution. Ground observed data from various elevations were used to calculate a temperature lapse rate of -7.0 (°C km-1). Consequently, the DDF value was determined as 3 (mm °C-1 d-1) for altitudes below 3000m and 3 to 4 (mm °C-1 d-1) for higher altitudes above 3000m. Moreover, the distribution of precipitation varies with elevation, with the PG being 0.001 (m-1) at lower elevations below 4000m and 0 (m-1) at higher elevations above 4000m. This study successfully utilized the SM to assess SCA and SWE by incorporating the two optimized parameters. The analysis of simulated SCA and MODIS data yielded coefficient determinations of R2, resulting in values of 0.95 and 0.97 for the years 2014-2015, 2015-2016, and 2016-2017, respectively. These results demonstrate that the SM is a valuable tool for managing water resources in mountainous watersheds such as the HK, where data scarcity poses a challenge."

Keywords: improved MODIS, experiment, snow water equivalent, snowmelt

Procedia PDF Downloads 69
575 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 157
574 Socio-Economic Influences on Soilless Agriculture

Authors: George Vernon Byrd, Bhim Bahadur Ghaley, Eri Hayashi

Abstract:

In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agriculture land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.

Keywords: aquaponics, hydroponics, soilless agriculture, urban agriculture

Procedia PDF Downloads 97
573 From the Sharing Economy to Social Manufacturing: Analyzing Collaborative Service Networks in the Manufacturing Domain

Authors: Babak Mohajeri

Abstract:

In recent years, the conventional business model of ownership has been changed towards accessibility in a variety of markets. Two trends can be observed in the evolution of this rental-like business model. Firstly, the technological development that enables the emergence of new business models. These new business models increasingly become agile and flexible. For example Spotify, an online music stream company provides consumers access to over millions of music tracks, conveniently through the smartphone, tablet or computer. Similarly, Car2Go, the car sharing company accesses its members with flexible and nearby sharing cars. The second trend is the increasing communication and connections via social networks. This trend enables a shift to peer-to-peer accessibility based business models. Conventionally, companies provide access for their customers to own companies products or services. In peer-to-peer model, nonetheless, companies facilitate access and connection across their customers to use other customers owned property or skills, competencies or services .The is so-called the sharing economy business model. The aim of this study is to investigate into a new and emerging type of the sharing economy model in which role of customers and service providers may dramatically change. This new model is called Collaborative Service Networks. We propose a mechanism for Collaborative Service Networks business model. Uber and Airbnb, two successful growing companies, have been selected for our case studies and their business models are analyzed. Finally, we study the emergence of the collaborative service networks in the manufacturing domain. Our finding results to a new manufacturing paradigm called social manufacturing.

Keywords: sharing economy, collaborative service networks, social manufacturing, manufacturing development

Procedia PDF Downloads 317
572 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images

Authors: Jingjue Bao, Ye Li, Yujie Qi

Abstract:

The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.

Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image

Procedia PDF Downloads 81
571 A Basic Modeling Approach for the 3D Protein Structure of Insulin

Authors: Daniel Zarzo Montes, Manuel Zarzo Castelló

Abstract:

Proteins play a fundamental role in biology, but their structure is complex, and it is a challenge for teachers to conceptually explain the differences between their primary, secondary, tertiary, and quaternary structures. On the other hand, there are currently many computer programs to visualize the 3D structure of proteins, but they require advanced training and knowledge. Moreover, it becomes difficult to visualize the sequence of amino acids in these models, and how the protein conformation is reached. Given this drawback, a simple and instructive procedure is proposed in order to teach the protein structure to undergraduate and graduate students. For this purpose, insulin has been chosen because it is a protein that consists of 51 amino acids, a relatively small number. The methodology has consisted of the use of plastic atom models, which are frequently used in organic chemistry and biochemistry to explain the chirality of biomolecules. For didactic purposes, when the aim is to teach the biochemical foundations of proteins, a manipulative system seems convenient, starting from the chemical structure of amino acids. It has the advantage that the bonds between amino acids can be conveniently rotated, following the pattern marked by the 3D models. First, the 51 amino acids were modeled, and then they were linked according to the sequence of this protein. Next, the three disulfide bonds that characterize the stability of insulin have been established, and then the alpha-helix structure has been formed. In order to reach the tertiary 3D conformation of this protein, different interactive models available on the Internet have been visualized. In conclusion, the proposed methodology seems very suitable for biology and biochemistry students because they can learn the fundamentals of protein modeling by means of a manipulative procedure as a basis for understanding the functionality of proteins. This methodology would be conveniently useful for a biology or biochemistry laboratory practice, either at the pre-graduate or university level.

Keywords: protein structure, 3D model, insulin, biomolecule

Procedia PDF Downloads 55