Search results for: regular network d-dimensional
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5848

Search results for: regular network d-dimensional

2428 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 532
2427 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 302
2426 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 19
2425 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: acoustic features, autonomous robots, feature extraction, terrain classification

Procedia PDF Downloads 369
2424 Prevalence of Pre Hypertension and Its Association to Risk Factors for Cardiovascular Diseases Among Male Undergraduate Students in Chennai

Authors: R. S. Dinesh Madhavan, M. Logaraj

Abstract:

Background: Recent studies have documented an increase in the risk of cardiovascular diseases (CVD) and a high rate of progression to hypertension in persons with pre hypertension. The risk factors for the growing burden of cardiovascular diseases especially hypertension, diabetes, overweight or obesity and waist hip ratio are increasing. Much study has not been done on cardiovascular risk factors associated with blood pressure (BP) among college students in Indian population. Objectives: The objective of our study was to estimate the prevalence of prehypertension among male students and to assess the association between prehypertension and risk factors for cardiovascular diseases. Material and Methods: A cross-sectional study was conducted among students of a university situated in the suburban area of Chennai. A total of 403 students was studied which included 200 medical and 203 engineering students. The information on selected socio-demographic variables were collected with the help of pre tested structured questionnaire. Measurements of height, weight, blood pressure and postprandial blood glucose were carried out as per standard procedure. Results: The mean age of the participants was 19.56 ± 1.67years. The mean systolic and diastolic blood pressure were 125.80±10.03 mm of Hg and 78.96 ±11.75mm of Hg. The average intake of fruits and vegetable per week were 4.34 ±3.47days and 6.55±4.39 days respectively. Use of smoke and smokeless tobacco were 27.3% and 3% respectively. About 30.3% of the students consume alcohol. Nearly 45.9 % of them did not practice regular exercise. About 29 % were overweight and 5.7% were obese, 24.8% were with waist circumference above 90 centimeters. The prevalence of pre hypertension and hypertension was 49.6% and 19.1% among male students. The prevalence of pre hypertension was higher in medical students (51.5%) compared to engineering students (47.8%). Higher risk of being pre hypertensive were noted above the age of 20 years (OR=4.32), fruit intake less than 3 days a week (OR= 1.03), smokers (OR= 1.13), alcohol intake (OR=1.56), lack of physical exercise (OR=1.90), BMI of more than 25 kg/m2 (OR=1.99). But statistically significant difference was noted between pre hypertensive and normotensive for age (p<0.0001), lack of physical exercise (p=0.004) and BMI (p=0.015). Conclusion: In conclusion nearly half of the students were pre hypertensive. Higher prevalence of smoking, alcohol intake, lack of physical exercise, overweight and increased waist circumference and postprandial blood sugar more than 140 mg/dl was noted among pre-hypertensive compared to normotensive.

Keywords: cardiovascular diseases, prehypertension, risk factors, undergraduate Students

Procedia PDF Downloads 439
2423 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure

Authors: Tareq Oshan

Abstract:

Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.

Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk

Procedia PDF Downloads 243
2422 The Impacts of the Sit-Stand Workplace Intervention on Cardiometabolic Risk

Authors: Rebecca M. Dagger, Katy Hadgraft, Matthew Teggart, Peter Angell

Abstract:

Background: There is a growing body of evidence that demonstrates the association between sedentary behaviour, cardiometabolic risk and all-cause mortality. Since full time working adults spend approximately 8 hours per day in the workplace, interventions to reduce sedentary behaviour at work may alleviate some of the negative health outcomes associated with sedentary behaviour. The aims of this pilot study were to assess the impacts of using a Sit-Stand workstation on markers of cardiometabolic health in a cohort of desk workers. Methods: Twenty eight participants were recruited and randomly assigned to a control (n=5 males, 9 females, mean age 37 years ± 9.4 years) or intervention group (n= 5 males, 9 females, mean age 42 years ± 12.7 years). All participants attended the labs on 2 occasion’s pre and post intervention, following baseline measurements the intervention participants had the Sit Stand Workstations (Ergotron, USA) installed for a 10 week intervention period. The Sit Stand workstations allow participants to stand or sit at their usual workstation and participants were encouraged to the use the desk in a standing position at regular intervals throughout the working day. Cardiometabolic risk markers assessed were body mass, body composition (using bio impedance analysis; Tanita, Tokyo), fasting blood Total Cholesterol (TC), lipid profiles (HDL-C, LDL-C, TC: HDL-C ratio), triglycerides and fasting glucose (Cholestech LDX), resting systolic and diastolic blood pressure and resting heart rate. ANCOVA controlling for baseline values was used to assess the group difference in changes in risk markers between pre and post intervention. Results: The 10 week intervention was associated with significant reductions in some cardiometabolic risk factors. There were significant group effects on change in body mass (F (1,25)=5.915, p<0.05), total body fat percentage (F(1,25)=12.615, p<0.01), total fat mass (F (1,25)=6.954, p<0.05), and systolic blood pressure (F (1,25)=5.012, p<0.05). There were no other significant group effects on changes in other cardiometabolic risk markers. Conclusion: This pilot study highlights the importance of reducing sedentary behaviour in the workplace for reduction in cardiometabolic risk markers. Further research is required to support these findings.

Keywords: sedentary behaviour, caridometabolic risk, evidence, risk makers

Procedia PDF Downloads 454
2421 Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm

Authors: Ramnath Narhete, Saket Pandey, Puran Gour

Abstract:

This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network.

Keywords: genetic algorithm, dual-band E, dual-band L, WLAN, compact radiator

Procedia PDF Downloads 579
2420 Interferometric Demodulation Scheme Using a Mode-Locker Fiber Laser

Authors: Liang Zhang, Yuanfu Lu, Yuming Dong, Guohua Jiao, Wei Chen, Jiancheng Lv

Abstract:

We demonstrated an interferometric demodulation scheme using a mode-locked fiber laser. The mode-locked fiber laser is launched into a two-beam interferometer. When the ratio between the fiber path imbalance of interferometer and the laser cavity length is close to an integer, an interferometric fringe emerges as a result of vernier effect, and then the phase shift of the interferometer can be demodulated. The mode-locked fiber laser provides a large bandwidth and reduces the cost for wavelength division multiplexion (WDM). The proposed interferometric demodulation scheme can be further applied in multi-point sensing system such as fiber optics hydrophone array, seismic wave detection network with high sensitivity and low cost.

Keywords: fiber sensing, interferometric demodulation, mode-locked fiber laser, vernier effect

Procedia PDF Downloads 330
2419 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 111
2418 A Retrospective Study of Vaginal Stenosis Following Treatment of Cervical Cancers and the Effectiveness of Rehabilitation Interventions

Authors: Manjusha R. Vagal, Shyam K. Shrivastava, Umesh Mahantshetty, Sudeep Gupta, Supriya Chopra, Reena Engineer, Amita Maheshwari, Atul Buduk

Abstract:

Vaginal stenosis is a common side effect associated with pelvic radiotherapy in cervical cancer patients which contributes negatively to woman’s health and prevents adequate vaginal/cervical examination. Vaginal dilation with a dilator is routine practice and is internationally advocated as a prophylactic measure to preserve vaginal patency. This retrospective study was carried out with the aim to know the usefulness of vaginal dilation following pelvic radiation therapy in cervical cancer patients in India. Data from medical records of 183 cervical cancer patients, which met the study criteria, were collected related to the stage of the disease, treatment received, commencement period of dilation post radiation therapy, sexual status and side effects associated to dilation practice. Data related to vaginal dimensions as per the length of insertion of a small, medium and large dilator were collected on regular follow-ups until 36 months and/or more. Vaginal dimensions as measured with the length of medium dilator insertion were used for analysis of dilation therapy results using paired t-test. Patients who underwent vaginal dilation with dilator maintained vaginal patency, also the mean vaginal length significantly increased, from 8.02 cm ± 2.69 to 9.96 ± 2.89 cm with a p value <0.001. There was no significant difference found on vaginal patency with different intervals of initiation of dilation therapy. At the third year and more following dilation therapy, significant increase in vaginal length observed with a p value of 0.0001 in both sexually active and inactive patients. Compilation of vaginal dosage during brachytherapy was inadequate, and hence, the secondary objective of the study to determine the effect of radiotherapy on the outcome of rehabilitation intervention was not studied in detail. This retrospective study has found that dilation therapy with vaginal dilators post pelvic radiotherapy is effective in preventing vaginal stenosis and improving vaginal patency and cannot be substituted with vaginal intercourse. Sexual quality of life assessment in the Indian population needs much attention.

Keywords: dilator, sexually active, vaginal dilation, vaginal stenosis

Procedia PDF Downloads 201
2417 The Effect of 'Teachers Teaching Teachers' Professional Development Course on Teachers’ Achievement and Classroom Practices

Authors: Nuri Balta, Ali Eryilmaz

Abstract:

High-quality teachers are the key to improve student learning. Without a professional development of the teachers, the improvement of student success is difficult and incomplete. This study offers an in-service training course model for professional development of teachers (PD) entitled "teachers teaching teachers" (TTT). The basic premise of the PD program, designed for this study, was primarily aimed to increase the subject matter knowledge of high school physics teachers. The TTT course (the three hour long workshops), organized for this study, lasted for seven weeks with seventeen teachers took part in the TTT program at different amounts. In this study, the effect of the TTT program on teachers’ knowledge improvement was searched through the modern physics unit (MPU). The participating teachers taught the unit to one of their grade ten classes earlier, and they taught another equivalent class two months later. They were observed in their classes both before and after TTT program. The teachers were divided into placebo and the treatment groups. The aim of Solomon four-group design is an attempt to eliminate the possible effect of pre-test. However, in this study the similar design was used to eliminate the effect of pre teaching. The placebo group teachers taught their both classes as regular and the treatment group teachers had TTT program between the two teachings. The class observation results showed that the TTT program increased teachers’ knowledge and skills in teaching MPU. Further, participating in the TTT program caused teachers to teach the MPU in accordance with the requirements of the curriculum. In order to see any change in participating teachers’ success, an achievement test was applied to them. A large effect size (dCohen=.93) was calculated for the effect of TTT program on treatment group teachers’ achievement. The results suggest that staff developers should consider including topics, attractive to teachers, in-service training programs (a) to help teachers’ practice teaching the new topics (b) to increase the participation rate. During the conduction of the TTT courses, it was observed that teachers could not end some discussions and explain some concepts. It is now clear that teachers need support, especially when discussing counterintuitive concepts such as modern physics concepts. For this reason it is recommended that content focused PD programs be conducted at the helm of a scholarly coach.

Keywords: high school physics, in-service training course, modern physics unit, teacher professional development

Procedia PDF Downloads 197
2416 Examining the Effects of Exercise and Healthy Diet on Certain Blood Parameter Levels, Oxidative Stress and Anthropometric Measurements in Slightly Overweight Women

Authors: Nezihe Şengün, Ragip Pala

Abstract:

To prevent overweight and obesity, individuals need to consume food and beverages according to their nutritional needs, engage in regular exercises, and regularly monitor their body weight. This study aimed to examine the effects of exercise, diet, or combined intervention on changes in blood lipid parameters (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides) and the level of malondialdehyde (MDA), a marker of oxidative stress, in parallel with the increase in body weight due to poor nutrition and sedentary lifestyle conditions. The study included a total of 48 female students aged 18-28 years with a BMI between 25.0 and 29.9 kg/m². They were divided into four groups: control (C), exercise (Ex), diet (D), and exercise+diet (Ex+D). Those in the exercise groups received aerobic exercises at 60-70% intensity (10 minutes warm-up, 30 minutes running, 10 minutes cool-down), while those in the diet groups were provided with a diet program based on the calculation of energy needs considering basal metabolic rate, physical activity level, age, and BMI. The students’ body weight, body fat mass, Body Mass Index (BMI), and waist-hip ratios were measured at the beginning (day 1) and end (day 60) of the 8-week intervention period. Their total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and MDA levels were evaluated and analyzed, considering a statistical significance level of p<0.05. As a result, female students in the Ex+D group had the largest difference in body weight, body fat mass, BMI, and waist-hip ratios, and this difference was statistically significant. Except for those in the C group, those in the other groups experienced a decrease in their total cholesterol, LDL cholesterol, and triglyceride levels and an increase in their HDL cholesterol levels. The decrease in total cholesterol, LDL cholesterol, and triglyceride levels was statistically significant for those in the D group, and the increase in HDL cholesterol level was statistically significant for those in the Ex+D group (p<0.05). A decrease in MDA level was found in all groups except those in the C group, and this decrease was significantly higher in the Ex group. In conclusion, our study revealed that the most effective way to achieve weight loss is through a combination of exercise and diet. The application of Ex+D is considered to balance blood lipid levels and suppress oxidative stress.

Keywords: obesity, exercise, diet, body mass index, blood lipids

Procedia PDF Downloads 79
2415 Synthesis and Electromagnetic Property of Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄ Grafted with Polyaniline Fibers

Authors: Jintang Zhou, Zhengjun Yao, Tiantian Yao

Abstract:

Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄(LZFO) grafted with polyaniline (PANI) fibers was synthesized by in situ polymerization. FTIR, XRD, SEM, and vector network analyzer were used to investigate chemical composition, micro-morphology, electromagnetic properties and microwave absorbing properties of the composite. The results show that PANI fibers were grafted on the surfaces of LZFO particles. The reflection loss exceeds 10 dB in the frequency range from 2.5 to 5 GHz and from 15 to 17GHz, and the maximum reflection loss reaches -33 dB at 15.9GHz. The enhanced microwave absorption properties of LZFO/PANI-fiber composites are mainly ascribed to the combined effect of both dielectric loss and magnetic loss and the improved impedance matching.

Keywords: Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄, polyaniline, electromagnetic properties, microwave absorbing properties

Procedia PDF Downloads 431
2414 Electric Propulsion System Development for High Floor Trolley Bus

Authors: Asep Andi Suryandi, Katri Yulianto, Dewi Rianti Mandasari

Abstract:

The development of environmentally friendly vehicles increasingly attracted the attention of almost all countries in the world, including Indonesia. There are various types of environmentally friendly vehicles, such as: electric vehicles, hybrid, and fuel gas. The Electric vehicle has been developed in Indonesia, a private or public vehicle. But many electric vehicles had been developed using the battery as a power source, while the battery technology for electric vehicles still constraints in capacity, dimensions of the battery itself and charging system. Trolley bus is one of the electric buses with the main power source of the network catenary / overhead line with trolley pole as the point of contact. This paper will discuss the design and manufacture electrical system in Trolleybus.

Keywords: trolley bus, electric propulsion system, design, manufacture, electric vehicle

Procedia PDF Downloads 357
2413 On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme

Authors: Shahram Jamali, Samira Hamed

Abstract:

One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count.

Keywords: active queue management, RED, Markov model, random early detection algorithm

Procedia PDF Downloads 539
2412 Survival Analysis after a First Ischaemic Stroke Event: A Case-Control Study in the Adult Population of England.

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Stroke is associated with a significant risk of morbidity and mortality. There is scarcity of research on the long-term survival after first-ever ischaemic stroke (IS) events in England with regards to effects of different medical therapies and comorbidities. The objective of this study was to model the all-cause mortality after an IS diagnosis in the adult population of England. Using a retrospective case-control design, we extracted the electronic medical records of patients born prior to or in year 1960 in England with a first-ever ischaemic stroke diagnosis from January 1986 to January 2017 within the Health and Improvement Network (THIN) database. Participants with a history of ischaemic stroke were matched to 3 controls by sex and age at diagnosis and general practice. The primary outcome was the all-cause mortality. The hazards of the all-cause mortality were estimated using a Weibull-Cox survival model which included both scale and shape effects and a shared random effect of general practice. The model included sex, birth cohort, socio-economic status, comorbidities and medical therapies. 20,250 patients with a history of IS (cases) and 55,519 controls were followed up to 30 years. From 2008 to 2015, the one-year all-cause mortality for the IS patients declined with an absolute change of -0.5%. Preventive treatments to cases increased considerably over time. These included prescriptions of statins and antihypertensives. However, prescriptions for antiplatelet drugs decreased in the routine general practice since 2010. The survival model revealed a survival benefit of antiplatelet treatment to stroke survivors with hazard ratio (HR) of 0.92 (0.90 – 0.94). IS diagnosis had significant interactions with gender and age at entry and hypertension diagnosis. IS diagnosis was associated with high risk of all-cause mortality with HR= 3.39 (3.05-3.72) for cases compared to controls. Hypertension was associated with poor survival with HR = 4.79 (4.49 - 5.09) for hypertensive cases relative to non-hypertensive controls, though the detrimental effect of hypertension has not reached significance for hypertensive controls, HR = 1.19(0.82-1.56). This study of English primary care data showed that between 2008 and 2015, the rates of prescriptions of stroke preventive treatments increased, and a short-term all-cause mortality after IS stroke declined. However, stroke resulted in poor long-term survival. Hypertension, a modifiable risk factor, was found to be associated with poor survival outcomes in IS patients. Antiplatelet drugs were found to be protective to survival. Better efforts are required to reduce the burden of stroke through health service development and primary prevention.

Keywords: general practice, hazard ratio, health improvement network (THIN), ischaemic stroke, multiple imputation, Weibull-Cox model.

Procedia PDF Downloads 187
2411 Collocation Errors in English as Second Language (ESL) Essay Writing

Authors: Fatima Muhammad Shitu

Abstract:

In language learning, Second language learners like their native speaker counter parts, commit errors in their attempt to achieve competence in the target language. The realm of Collocation has to do with meaning relation between lexical items. In all human language, there is a kind of ‘natural order’ in which words are arranged or relate to one another in sentences so much so that when a word occurs in a given context, the related or naturally co -occurring word will automatically come to the mind. It becomes an error, therefore, if students inappropriately pair or arrange such ‘naturally’ co – occurring lexical items in a text. It has been observed that most of the second language learners in this research group commit collocational errors. A study of this kind is very significant as it gives insight into the kinds of errors committed by learners. This will help the language teacher to be able to identify the sources and causes of such errors as well as correct them thereby guiding, helping and leading the learners towards achieving some level of competence in the language. The aim of the study is to understand the nature of these errors as stumbling blocks to effective essay writing. The objective of the study is to identify the errors, analyse their structural compositions so as to determine whether there are similarities between students in this regard and to find out whether there are patterns to these kinds of errors which will enable the researcher to understand their sources and causes. As a descriptive research, the researcher samples some nine hundred essays collected from three hundred undergraduate learners of English as a second language in the Federal College of Education, Kano, North- West Nigeria, i.e. three essays per each student. The essays which were given on three different lecture times were of similar thematic preoccupations (i.e. same topics) and length (i.e. same number of words). The essays were written during the lecture hour at three different lecture occasions. The errors were identified in a systematic manner whereby errors so identified were recorded only once even if they occur severally in students’ essays. The data was collated using percentages in which the identified number of occurrences were converted accordingly in percentages. The findings from the study indicates that there are similarities as well as regular and repeated errors which provided a pattern. Based on the pattern identified, the conclusion is that students’ collocational errors are attributable to poor teaching and learning which resulted in wrong generalisation of rules.

Keywords: collocations, errors, second language learning, ESL students

Procedia PDF Downloads 330
2410 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 258
2409 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume

Authors: Jisong Zhang, Yinghua Zhao

Abstract:

The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.

Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete

Procedia PDF Downloads 415
2408 Firm's Growth Leading Dimensions of Blockchain Empowered Information Management System: An Empirical Study

Authors: Umang Varshney, Amit Karamchandani, Rohit Kapoor

Abstract:

Practitioners and researchers have realized that Blockchain is not limited to currency. Blockchain as a distributed ledger can ensure a transparent and traceable supply chain. Due to Blockchain-enabled IoTs, a firm’s information management system can now take inputs from other supply chain partners in real-time. This study aims to provide empirical evidence of dimensions responsible for blockchain implemented firm’s growth and highlight how sector (manufacturing or service), state's regulatory environment, and choice of blockchain network affect the blockchain's usefulness. This post-adoption study seeks to validate the findings of pre-adoption studies done on the blockchain. Data will be collected through a survey of managers working in blockchain implemented firms and analyzed through PLS-SEM.

Keywords: blockchain, information management system, PLS-SEM, firm's growth

Procedia PDF Downloads 126
2407 Research on the Updating Strategy of Public Space in Small Towns in Zhejiang Province under the Background of New-Style Urbanization

Authors: Chen Yao, Wang Ke

Abstract:

Small towns are the most basic administrative institutions in our country, which are connected with cities and rural areas. Small towns play an important role in promoting local urban and rural economic development, providing the main public services and maintaining social stability in social governance. With the vigorous development of small towns and the transformation of industrial structure, the changes of social structure, spatial structure, and lifestyle are lagging behind, causing that the spatial form and landscape style do not belong to both cities and rural areas, and seriously affecting the quality of people’s life space and environment. The rural economy in Zhejiang Province has started, the society and the population are also developing in relative stability. In September 2016, Zhejiang Province set out the 'Technical Guidelines for Comprehensive Environmental Remediation of Small Towns in Zhejiang Province,' so as to comprehensively implement the small town comprehensive environmental remediation with the main content of strengthening the plan and design leading, regulating environmental sanitation, urban order and town appearance. In November 2016, Huzhou City started the comprehensive environmental improvement of small towns, strived to use three years to significantly improve the 115 small towns, as well as to create a number of high quality, distinctive and beautiful towns with features of 'clean and livable, rational layout, industrial development, poetry and painting style'. This paper takes Meixi Town, Zhangwu Town and Sanchuan Village in Huzhou City as the empirical cases, analyzes the small town public space by applying the relative theory of actor-network and space syntax. This paper also analyzes the spatial composition in actor and social structure elements, as well as explores the relationship of actor’s spatial practice and public open space by combining with actor-network theory. This paper introduces the relevant theories and methods of spatial syntax, carries out research analysis and design planning analysis of small town spaces from the perspective of quantitative analysis. And then, this paper proposes the effective updating strategy for the existing problems in public space. Through the planning and design in the building level, the dissonant factors produced by various spatial combination of factors and between landscape design and urban texture during small town development will be solved, inhabitant quality of life will be promoted, and town development vitality will be increased.

Keywords: small towns, urbanization, public space, updating

Procedia PDF Downloads 228
2406 Application of Geotube® Method for Sludge Handling in Adaro Coal Mine

Authors: Ezman Fitriansyah, Lestari Diah Restu, Wawan

Abstract:

Adaro coal mine in South Kalimantan-Indonesia maintains catchment area of approximately 15,000 Ha for its mine operation. As an open pit surface coal mine with high erosion rate, the mine water in Adaro coal mine contains high TSS that needs to be treated before being released to rivers. For the treatment process, Adaro operates 21 Settling Ponds equipped with combination of physical and chemical system to separate solids and water to ensure the discharged water complied with regional environmental quality standards. However, the sludge created from the sedimentation process reduces the settling ponds capacity gradually. Therefore regular maintenance activities are required to recover and maintain the ponds' capacity. Trucking system and direct dredging had been the most common method to handle sludge in Adaro. But the main problem in applying these two methods is excessive area required for drying pond construction. To solve this problem, Adaro implements an alternative method called Geotube®. The principle of Geotube® method is the sludge contained in the Settling Ponds is pumped into Geotube® containers which have been designed to release water and retain mud flocks. During the pumping process, an amount of flocculants chemicals are injected into the sludge to form bigger mud flocks. Due to the difference in particle size, the mud flocks are settled in the container whilst the water continues to flow out through the container’s pores. Compared to the trucking system and direct dredging method, this method provides three advantages: space required to operate, increasing of overburden waste dump volume, and increasing of water treatment process speed and quality. Based on the evaluation result, Geotube® method only needs 1:8 of space required by the other methods. From the geotechnical assessment result conducted by Adaro, the potential loss of waste dump volume capacity prior to implementation of the Geotube® method was 26.7%. The water treatment process of TSS in well maintained ponds is 16% more optimum.

Keywords: geotube, mine water, settling pond, sludge handling, wastewater treatment

Procedia PDF Downloads 200
2405 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems

Authors: Yong-Kyu Jung

Abstract:

The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).

Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity

Procedia PDF Downloads 79
2404 The Management Information System for Convenience Stores: Case Study in 7 Eleven Shop in Bangkok

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research is to develop and design a management information system for 7 eleven shop in Bangkok. The system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management. The implementation of the MIS for the mini-mart shop, can lessen the amount of paperwork and reduce repeating tasks so it may decrease the capital of the business and support an extension of branches in the future as well.

Keywords: convenience store, the management information system, inventory management, 7 eleven shop

Procedia PDF Downloads 484
2403 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
2402 Antecedents of Teaching Skill for Students’ Psychological Enhancement in University Lecturers

Authors: Duangduen L. Bhanthumnavin, Duchduen E. Bhanthumnavin

Abstract:

Widening gap between new academic knowledge in all areas and habit of exploring and exploiting this precious information by students causes an alarm and need for urgent prevention. At present, all advanced nations are committed to WHO’s Sustainable Development Goals (SDGs), which require some objective achievements by the year 2030 and further. The responsibility has been enforced on university lecturers, in addition to the higher education learning outcomes (HELO). The two groups of goals (SDGs and HELO) can be realized if most university instructors are capable of inculcating some important psychological characteristics and behavioral change in the new generations. Thus, this study aimed at pinpointing the significant factors for additional teaching skills of instructors regardless of the area of study. University lecturers from various parts of Thailand, with the total of 540 persons, participated in this cross-sectional study. Based on interactionism model of behavior antecedents, it covers psychological situational factors, as well as their interaction. Most measuring instruments were summated rating with 10 or more items, each accompanied by a six-point rating scale. All these measures were constructed with acceptable standards. Most of the respondents were volunteers who gave their written responses in a meeting room or conference hall. By applying Multiple Regression Analysis in the total sample as well as in the subsamples of these university instructors, about 70 to 73 predictive percentages with 4 to 6 significant predictors were found. The major dependent variable was instructor’s teaching behavior for inculcating the psycho-moral strength for academic exploration and knowledge application. By performing ANOVA, the less-active instructors were identified as the ones with lower education (Master’s level or lower), the minimal research producers, and the ones with less in-service trainings. The preventive factors for these three groups of instructors were intention to increase the students’ psychological development as well as moral development in their regular teaching classes. In addition, social support from their supervisors and coworkers was also necessary. Recommendations for further research and training are offered and welcomed.

Keywords: psychological inculcation, at-risk instructors, preventive measures, undergraduate teaching

Procedia PDF Downloads 60
2401 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 140
2400 Climate Related Financial Risk on Automobile Industry and the Impact to the Financial Institutions

Authors: Mahalakshmi Vivekanandan S.

Abstract:

As per the recent changes happening in the global policies, climate-related changes and the impact it causes across every sector are viewed as green swan events – in essence, climate-related changes can often happen and lead to risk and a lot of uncertainty, but needs to be mitigated instead of considering them as black swan events. This brings about a question on how this risk can be computed so that the financial institutions can plan to mitigate it. Climate-related changes impact all risk types – credit risk, market risk, operational risk, liquidity risk, reputational risk and other risk types. And the models required to compute this has to consider the different industrial needs of the counterparty, as well as the factors that are contributing to this – be it in the form of different risk drivers, or the different transmission channels or the different approaches and the granular form of data availability. This brings out the suggestion that the climate-related changes, though it affects Pillar I risks, will be a Pillar II risk. This has to be modeled specifically based on the financial institution’s actual exposure to different industries instead of generalizing the risk charge. And this will have to be considered as the additional capital to be met by the financial institution in addition to their Pillar I risks, as well as the existing Pillar II risks. In this paper, the author presents a risk assessment framework to model and assess climate change risks - for both credit and market risks. This framework helps in assessing the different scenarios and how the different transition risks affect the risk associated with the different parties. This research paper delves into the topic of the increase in the concentration of greenhouse gases that in turn cause global warming. It then considers the various scenarios of having the different risk drivers impacting the Credit and market risk of an institution by understanding the transmission channels and also considering the transition risk. The paper then focuses on the industry that’s fast seeing a disruption: the automobile industry. The paper uses the framework to show how the climate changes and the change to the relevant policies have impacted the entire financial institution. Appropriate statistical models for forecasting, anomaly detection and scenario modeling are built to demonstrate how the framework can be used by the relevant agencies to understand their financial risks. The paper also focuses on the climate risk calculation for the Pillar II Capital calculations and how it will make sense for the bank to maintain this in addition to their regular Pillar I and Pillar II capital.

Keywords: capital calculation, climate risk, credit risk, pillar ii risk, scenario modeling

Procedia PDF Downloads 140
2399 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process

Authors: Dariush Jafari, Seyed Ali Jafari

Abstract:

The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.

Keywords: ANN, biosorption, cadmium, packed-bed, potable water

Procedia PDF Downloads 431