Search results for: middle wave infrared
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4124

Search results for: middle wave infrared

704 Development, Evaluation and Scale-Up of a Mental Health Care Plan (MHCP) in Nepal

Authors: Nagendra P. Luitel, Mark J. D. Jordans

Abstract:

Globally, there is a significant gap between the number of individuals in need of mental health care and those who actually receive treatment. The evidence is accumulating that mental health services can be delivered effectively by primary health care workers through community-based programs and task-sharing approaches. Changing the role of specialist mental health workers from service delivery to building clinical capacity of the primary health care (PHC) workers could help in reducing treatment gap in low and middle-income countries (LMICs). We developed a comprehensive mental health care plan in 2012 and evaluated its feasibility and effectiveness over the past three years. Initially, a mixed method formative study was conducted for the development of mental health care plan (MHCP). Routine monitoring and evaluation data, including client flow and reports of satisfaction, were obtained from beneficiaries (n=135) during the pilot-testing phase. Repeated community survey (N=2040); facility detection survey (N=4704) and the cohort study (N=576) were conducted for evaluation of the MHCP. The resulting MHCP consists of twelve packages divided over the community, health facility, and healthcare organization platforms. Detection of mental health problems increased significantly after introducing MHCP. Service implementation data support the real-life applicability of the MHCP, with reasonable treatment uptake. Currently, MHCP has been implemented in the entire Chitwan district where over 1400 people (438 people with depression, 406 people with psychosis, 181 people with epilepsy, 360 people with alcohol use disorder and 51 others) have received mental health services from trained health workers. Key barriers were identified and addressed, namely dissatisfaction with privacy, perceived burden among health workers, high drop-out rates and continue the supply of medicines. The results indicated that involvement of PHC workers in detection and management of mental health problems is an effective strategy to minimize treatment gap on mental health care in Nepal.

Keywords: mental health, Nepal, primary care, treatment gap

Procedia PDF Downloads 293
703 Colonialism, Health and Women’s Print Culture in South Asia: A Study of Urdu Journals in Colonial India 1900-1930

Authors: Khanday Pervaiz Ahmad

Abstract:

It was in 19th century when the Indian educated class started to reform their socio-religious set up as an imperative to respond to the challenges put forward by the colonial empire. The colonial discourse on India from the very beginning was gendered, as the colonized society was feminized and its ‘effeminate’ character, as opposed to ‘colonial masculinity’ was held to be a justification for its loss of independence. The ‘women health figure’ is prominently in these gender discourses. The women’s health received a much place in the colonial discourse. Lack of health consciousness, illiteracy, and belief in myths, rituals and superstitions were deemed the main factors taken as an indicator of miserable condition of Indian women’s health. As the low position of women caused shame to the natives, reforming the condition of women, its health occupied a major place in their intellectual as well as activist engagements. Magazines (journals) for women began to appear in various Indian languages in the mid to late 19th century with Bengal leading the front. These sources (Magazines) like Harm, Tehzib un Niswan, Saheli, Khatoon etc. are essential for the study of the emergence of an ideology of respectable domesticity in Indian Muslim upper middle class. Similarly for the study of development of Women’s health consciousness, women’s magazines are very essential. These earliest women Urdu magazines were first started by men, and then followed by the women’s own magazines. Various health issues, like pregnancy, child-rearing, menstruation, midwives training, Pardah, and health etc. were discussed at a time when it was impossible to discuss them in public sphere. These women magazines were brave pioneers, expanding the frontiers of women’s roles, and consciousness at a time when those frontiers were severely limited. This paper will try to focus on how women responded to the question of colonial discourse about their bodies. How health consciousness developed among Indian Muslim women and in what way it contributed in the development of feminist consciousness in South Asian Muslim Women community.

Keywords: Ashraf class, khatoon, haram women, feminism

Procedia PDF Downloads 274
702 Spontaneous Pneumothorax in Mixed Poisoning Presented as Daisley Barton Syndrome

Authors: A. A. Md. Ryhan Uddin, Swarup Das, Rajesh Barua, Joheb Hasan, Rashedul Islam

Abstract:

Background: The herbicide has toxicological importance because some of them are associated with high mortality rates due to respiratory failure. Organophosphate poisoning (OPC) & Paraquat self-poisoning is a major clinical and public health problems in low and middle-income countries across much of South Asia. Paraquat was not used as a common suicidal agent previously in Bangladesh. We report a case of 15 years old female admitted to the ER with a history of nausea & vomiting after ingestion of an unknown substance in a suicidal attempt, later identified as mixed poisoning- OPC & Paraquat. She was initially asymptomatic but later developed renal shutdown & lung injuries as well as pneumothorax, referred to as Daisley Barton Syndrome. Objective: This case report aims to alert spontaneous pneumothorax in mixed poisoning on uncommon forms of presentation. Pneumothorax in a patient with paraquat poisoning is a less unusual but underdiagnosed finding. It has a high index of early mortality. Case history: The patient's attendant complained about nausea followed by vomiting, which was nonprojectile & contains undigested food materials first, then gastric juice later. After a few hours, she also complains of urinary retention. Her family members treated her with some home remedies for her initial symptoms, but all attempts failed. After admission, the patient was initially asymptomatic. Through repeated history taking, her attendant showed a bottle of OPC in liquid form, which they suspected that she may have ingested some of the liquid from that bottle accidentally or attempted Suicide. So, management started for OPC poisoning. She responded well initially, but on 4th day of admission, the patient's condition became deteriorating. After the workout with the family member, 2nd bottle of Pesticide was discovered, which was Paraquat. Conclusion: Physicians should be aware of the symptoms of mixed poisoning and the timely use of urine dithionate testing for early detection and treatment. Pneumothorax is an early predictor of mortality in patients with paraquat poisoning.

Keywords: pneumothorax, suicide, dithionate, OPC, herbicide

Procedia PDF Downloads 98
701 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 98
700 Modification of Aliphatic-Aromatic Copolyesters with Polyether Block for Segmented Copolymers with Elastothemoplastic Properties

Authors: I. Irska, S. Paszkiewicz, D. Pawlikowska, E. Piesowicz, A. Linares, T. A. Ezquerra

Abstract:

Due to the number of advantages such as high tensile strength, sensitivity to hydrolytic degradation, and biocompatibility poly(lactic acid) (PLA) is one of the most common polyesters for biomedical and pharmaceutical applications. However, PLA is a rigid, brittle polymer with low heat distortion temperature and slow crystallization rate. In order to broaden the range of PLA applications, it is necessary to improve these properties. In recent years a number of new strategies have been evolved to obtain PLA-based materials with improved characteristics, including manipulation of crystallinity, plasticization, blending, and incorporation into block copolymers. Among the other methods, synthesis of aliphatic-aromatic copolyesters has been attracting considerable attention as they may combine the mechanical performance of aromatic polyesters with biodegradability known from aliphatic ones. Given the need for highly flexible biodegradable polymers, in this contribution, a series of aromatic-aliphatic based on poly(butylene terephthalate) and poly(lactic acid) (PBT-b-PLA) copolyesters exhibiting superior mechanical properties were copolymerized with an additional poly(tetramethylene oxide) (PTMO) soft block. The structure and properties of both series were characterized by means of attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (¹H NMR), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and dynamic mechanical, thermal analysis (DMTA). Moreover, the related changes in tensile properties have been evaluated and discussed. Lastly, the viscoelastic properties of synthesized poly(ester-ether) copolymers were investigated in detail by step cycle tensile tests. The block lengths decreased with the advance of treatment, and the block-random diblock terpolymers of (PBT-ran-PLA)-b-PTMO were obtained. DSC and DMTA analysis confirmed unambiguously that synthesized poly(ester-ether) copolymers are microphase-separated systems. The introduction of polyether co-units resulted in a decrease in crystallinity degree and melting temperature. X-ray diffraction patterns revealed that only PBT blocks are able to crystallize. The mechanical properties of (PBT-ran-PLA)-b-PTMO copolymers are a result of a unique arrangement of immiscible hard and soft blocks, providing both strength and elasticity.

Keywords: aliphatic-aromatic copolymers, multiblock copolymers, phase behavior, thermoplastic elastomers

Procedia PDF Downloads 137
699 Cryptolepis sanguinolenta - A Medicinal Plant Used in the Treatment of Malaria, Cultivate It or Lose It

Authors: J. Naalamle Amissah, Dorcas Osei‐Safo, C. M. Asare, Benjamin Missah‐Assihene, Eric. Y. Danquah, Ivan Addae‐Mensah

Abstract:

Medicinal plants serve as a reservoir of active ingredients for the treatment of common ailments such as cancer, malaria and diabetes. With the recent wave of health consciousness and reliance on plant based medicines, the demand for medicinal plants has increased considerably. This surge in medicinal plant use has raised great concern amongst key players (herbalist, collectors, conservationist and researchers) along the value chain about the sustainability of the raw material. The over reliance on wild crafting as a means to obtain the raw material spells doom for several of Africa’s native medicinal plant species. In this study domestication protocols for the cultivation of Cryptolepis sanguinolenta (CS), a medicinal plant used in the treatment of malaria were developed. Initial surveys were conducted, using questionnaires comprising of open and close ended questions, to gather information that would inform the domestication and cultivation of the species. A field study was then conducted to determine the plant’s cropping cycle and the effect of staking and plant age on the active ingredient (cryptolepine) concentration in its roots. Results of the survey confirmed the demand for the raw material and threw more light on the harvesting methods and intensity of CS collection from the wild. Cryptolepine concentration was found to be highest (~1.84 mg/100 mg of root material) at 289 days after planting (DAP) which coincided with the peak of root dry weight (52.8 g), signifying the best time for root harvest. Staking was found to be important for seed production. The first 105 DAP were characterized by low yields of root dry weight (13.5 g), followed by a period of rapid growth in which the root dry weight increased almost linearly until 289 DAP. Although dry matter partitioned to the vines increased towards the end of the experimental period (60%), dry matter partitioned to the roots remained fairly constant (30%) throughout the experimental period. Cryptolepine was found to increase as the plant aged and the practice of staking CS promoted pod formation. A suitable cropping cycle for the cultivation of CS was also developed.

Keywords: domestication, staking, conservation, wild harvesting

Procedia PDF Downloads 383
698 A Case Study of Latinx Parents’ Perceptions of Gifted Education

Authors: Yelba Maria Carrillo

Abstract:

The focus of this research study was to explore barriers, if any, faced by parents or legal guardians who are of Latinx background and speak Spanish as a primary language or are bilingual speakers of Spanish and English; barriers that limit their understanding of and involvement in their gifted child’s academic life. This study was guided by a qualitative case study design. The primary investigator hosted focus group interviews at a Magnet Middle School in Southern California. The groups consisted of 25 parents, or legal guardians of bilingual (English/Spanish) or former English learner students enrolled in a school serving 6th-8th grades. The primary investigator interviewed Latinx Spanish-speaking parents or legal guardians of gifted students regarding their perception of their child’s giftedness, parental involvement in schools, and fostering their child’s exceptional abilities. Parents and legal guardians described children as creative, intellectual, and highly intelligent. Key themes such as student performance, language proficiency, socio-emotional, and general intellectual ability were strong indicators of giftedness. Barriers such as language and education inhibited parent and legal guardian ability to understand their child’s giftedness, which resulted in their inability to adequately contribute to the development of their children’s talents and advocate for the appropriate services for their children. However, they recognized the importance of being involved in their child’s academic life and the importance of nurturing their ‘dón’ or ‘gift.’ La Familia is the foundation and core of Latinx culture; and, without a strong foundation, children lack guidance, confidence, and awareness to tap into their gifted abilities. Providing Latinx parents with the proper tools and resources to appropriately identify gifted characteristics and traits could lead to early identification and intervention for students in schools and at home.

Keywords: gifted education, gifted Latino students, Latino parent involvement, high ability students

Procedia PDF Downloads 155
697 The Social Impact of Green Buildings

Authors: Elise Machline

Abstract:

Policy instruments have been developed worldwide to reduce the energy demand of buildings. Two types of such instruments have been green building rating systems and energy efficiency standards for buildings -such as Green Star (Australia), LEED (United States, Leadership in Energy and Environmental Design), Energy Star (United States), and BREEAM (United Kingdom, Building Research Establishment Environmental Assessment Method). The popularity of the idea of sustainable development has allowed the actors to consider the potential value generated by the environmental performance of buildings, labeled “green value” in the literature. Sustainable performances of buildings are expected to improve their attractiveness, increasing their value. A growing number of empirical studies demonstrate that green buildings yield rental/sale premia, as well as higher occupancy rates and thus higher asset values. The results suggest that green buildings are not affordable to all and that their construction tends to have a gentrifying effect. An increasing number of countries are institutionalizing green strategies for affordable housing. In that sense, making green buildings affordable to all will depend on government policies. That research aims to investigate whether green building fosters inequality in Israel, under the banner of sustainability. The method is comparison (of the market value). This method involves comparing the green buildings sale prices with non-certified buildings of the same type that have undergone recent transactions. The “market value” is deduced from those sources by analogy. The results show that, in Israel, green building projects are usually addressed to the middle to upper classes. The green apartment’s sale premium is about 19% (comparing to non-certified dwelling). There is a link between energy and/or environmental performance and the financial value of the dwellings. Moreover, price differential is much higher than the value of energy savings. This perpetuates socio-spatial and socio-economic inequality as well as ecological vulnerability for the poor and other socially marginal groups. Moreover, there are no green affordable housings and the authorities do not subsidy green building or retrofitting.

Keywords: green building, gentrification, social housing, green value, green building certification

Procedia PDF Downloads 417
696 Inverse Saturable Absorption in Non-linear Amplifying Loop Mirror Mode-Locked Fiber Laser

Authors: Haobin Zheng, Xiang Zhang, Yong Shen, Hongxin Zou

Abstract:

The research focuses on mode-locked fiber lasers with a non-linear amplifying loop mirror (NALM). Although these lasers have shown potential, they still have limitations in terms of low repetition rate. The self-starting of mode-locking in NALM is influenced by the cross-phase modulation (XPM) effect, which has not been thoroughly studied. The aim of this study is two-fold. First, to overcome the difficulties associated with increasing the repetition rate in mode-locked fiber lasers with NALM. Second, to analyze the influence of XPM on self-starting of mode-locking. The power distributions of two counterpropagating beams in the NALM and the differential non-linear phase shift (NPS) accumulations are calculated. The analysis is conducted from the perspective of NPS accumulation. The differential NPSs for continuous wave (CW) light and pulses in the fiber loop are compared to understand the inverse saturable absorption (ISA) mechanism during pulse formation in NALM. The study reveals a difference in differential NPSs between CW light and pulses in the fiber loop in NALM. This difference leads to an ISA mechanism, which has not been extensively studied in artificial saturable absorbers. The ISA in NALM provides an explanation for experimentally observed phenomena, such as active mode-locking initiation through tapping the fiber or fine-tuning light polarization. These findings have important implications for optimizing the design of NALM and reducing the self-starting threshold of high-repetition-rate mode-locked fiber lasers. This study contributes to the theoretical understanding of NALM mode-locked fiber lasers by exploring the ISA mechanism and its impact on self-starting of mode-locking. The research fills a gap in the existing knowledge regarding the XPM effect in NALM and its role in pulse formation. This study provides insights into the ISA mechanism in NALM mode-locked fiber lasers and its role in selfstarting of mode-locking. The findings contribute to the optimization of NALM design and the reduction of self-starting threshold, which are essential for achieving high-repetition-rate operation in fiber lasers. Further research in this area can lead to advancements in the field of mode-locked fiber lasers with NALM.

Keywords: inverse saturable absorption, NALM, mode-locking, non-linear phase shift

Procedia PDF Downloads 100
695 A Study on Pattern of Acute Poisoning in Patients Admitted to Emergency Wards in a Tertiary Care Hospital

Authors: Sathvika Reddy, Devi Revathi

Abstract:

Background: In India, deliberate self-harm (DSH) with poisoning agents carries a significant impact on morbidity and mortality. Changes in the patterns of poisoning vary across various geographical locations. It is important to know the patterns in a given region in order to facilitate rapid clinical diagnosis, appropriate treatment to reduce associated morbidity and mortality. Aim and Objective: To study the patterns, treatment outcomes of acute poisoning in patients admitted to emergency wards in a tertiary care hospital and to provide poison information services. Materials and Methods: This study was conducted at M.S Ramaiah Memorial and Teaching Hospital from November 2016 to March 2017. The patient’s data was obtained from patient case sheet, interaction with health care professionals, interviewing patients and their caretakers (if possible), and were documented in a suitably designed form. Results: The study involved 131 patients with a mean age of 27.76 ± 15.5 years. Majority of the patients were in the age group 21-30 years, literates (n=53) dwelling in urban (n=113) areas belonging to upper middle class (n=50). Analgesics and antipyretics were commonly utilized in intentional drug overdosage (n=49). Envenomation constituted n=21(16.03%). Furthermore, a significant relationship was observed between marital status and self-poisoning (n=64) (P < 0.001) which commonly occurred through oral ingestion. The outcomes were correlated with the GCS and PSS system and n=85 recovered, n=17 were discharged against medical advice, and n=4 died, and n=4 were lost to follow up respectively. The poison information queries include drug overdose (n=29) and management related queries (n=22) provided majorly by residents (n=45) to update knowledge (n=11) and for better patient care (n=40). Conclusion: The trend in poisoning is dynamic. Medications were identified as the main cause of poisoning in urban areas of India. Educational programs with more emphasis on preventive measures are necessary to create awareness among the general public.

Keywords: poisoning, suicides, clinical pharmacist, envenomation, poison information services

Procedia PDF Downloads 163
694 Wireless Gyroscopes for Highly Dynamic Objects

Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev

Abstract:

Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.

Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing

Procedia PDF Downloads 365
693 Design Development of Floating Performance Structure for Coastal Areas in the Maltese Islands

Authors: Rebecca E. Dalli Gonzi, Joseph Falzon

Abstract:

Background: Islands in the Mediterranean region offer opportunities for various industries to take advantage of the facilitation and use of versatile floating structures in coastal areas. In the context of dense land use, marine structures can contribute to ensure both terrestrial and marine resource sustainability. Objective: The aim of this paper is to present and critically discuss an array of issues that characterize the design process of a floating structure for coastal areas and to present the challenges and opportunities of providing such multifunctional and versatile structures around the Maltese coastline. Research Design: A three-tier research design commenced with a systematic literature review. Semi-structured interviews with stakeholders including a naval architect, a marine engineer and civil designers were conducted. A second stage preceded a focus group with stakeholders in design and construction of marine lightweight structures. The three tier research design ensured triangulation of issues. All phases of the study were governed by research ethics. Findings: Findings were grouped into three main themes: excellence, impact and implementation. These included design considerations, applications and potential impacts on local industry. Literature for the design and construction of marine structures in the Maltese Islands presented multiple gaps in the application of marine structures for local industries. Weather conditions, depth of sea bed and wave actions presented limitations on the design capabilities of the structure. Conclusion: Water structures offer great potential and conclusions demonstrate the applicability of such designs for Maltese waters. There is still no such provision within Maltese coastal areas for multi-purpose use. The introduction of such facilities presents a range of benefits for visiting tourists and locals thereby offering wide range of services to tourism and marine industry. Costs for construction and adverse weather conditions were amongst the main limitations that shaped design capacities of the water structures.

Keywords: coastal areas, lightweight, marine structure, multi purpose, versatile, floating device

Procedia PDF Downloads 161
692 Streamwise Vorticity in the Wake of a Sliding Bubble

Authors: R. O’Reilly Meehan, D. B. Murray

Abstract:

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Keywords: bubbly flow, particle image velocimetry, two-phase flow, wake structures

Procedia PDF Downloads 374
691 Development and Structural Characterization of a Snack Food with Added Type 4 Extruded Resistant Starch

Authors: Alberto A. Escobar Puentes, G. Adriana García, Luis F. Cuevas G., Alejandro P. Zepeda, Fernando B. Martínez, Susana A. Rincón

Abstract:

Snack foods are usually classified as ‘junk food’ because have little nutritional value. However, due to the increase on the demand and third generation (3G) snacks market, low price and easy to prepare, can be considered as carriers of compounds with certain nutritional value. Resistant starch (RS) is classified as a prebiotic fiber it helps to control metabolic problems and has anti-cancer colon properties. The active compound can be developed by chemical cross-linking of starch with phosphate salts to obtain a type 4 resistant starch (RS4). The chemical reaction can be achieved by extrusion, a process widely used to produce snack foods, since it's versatile and a low-cost procedure. Starch is the major ingredient for snacks 3G manufacture, and the seeds of sorghum contain high levels of starch (70%), the most drought-tolerant gluten-free cereal. Due to this, the aim of this research was to develop a snack (3G), with RS4 in optimal conditions extrusion (previously determined) from sorghum starch, and carry on a sensory, chemically and structural characterization. A sample (200 g) of sorghum starch was conditioned with 4% sodium trimetaphosphate/ sodium tripolyphosphate (99:1) and set to 28.5% of moisture content. Then, the sample was processed in a single screw extruder equipped with rectangular die. The inlet, transport and output temperatures were 60°C, 134°C and 70°C, respectively. The resulting pellets were expanded in a microwave oven. The expansion index (EI), penetration force (PF) and sensory analysis were evaluated in the expanded pellets. The pellets were milled to obtain flour and RS content, degree of substitution (DS), and percentage of phosphorus (% P) were measured. Spectroscopy [Fourier Transform Infrared (FTIR)], X-ray diffraction, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analysis were performed in order to determine structural changes after the process. The results in 3G were as follows: RS, 17.14 ± 0.29%; EI, 5.66 ± 0.35 and PF, 5.73 ± 0.15 (N). Groups of phosphate were identified in the starch molecule by FTIR: DS, 0.024 ± 0.003 and %P, 0.35±0.15 [values permitted as food additives (<4 %P)]. In this work an increase of the gelatinization temperature after the crosslinking of starch was detected; the loss of granular and vapor bubbles after expansion were observed by SEM; By using X-ray diffraction, loss of crystallinity was observed after extrusion process. Finally, a snack (3G) was obtained with RS4 developed by extrusion technology. The sorghum starch was efficient for snack 3G production.

Keywords: extrusion, resistant starch, snack (3G), Sorghum

Procedia PDF Downloads 309
690 Yellow Necklacepod and Shih-Balady: Possible Promising Sources Against Human Coronaviruses

Authors: Howaida I. Abd-Alla, Omnia Kutkat, Yassmin Moatasim, Magda T. Ibrahim, Marwa A. Mostafa, Mohamed GabAllah, Mounir M. El-Safty

Abstract:

Artemisia judaica (known shih-balady), Azadirachta indica and Sophora tomentosa (known yellow necklace pod) are members of available medicinal plants well-known for their traditional medical use in Egypt which suggests that they probably harbor broad-spectrum antiviral, immunostimulatory and anti-inflammatory functions. Their ethyl acetate-dichloromethane (1:1, v/v) extracts were evaluated for the potential anti-Middle East respiratory syndrome-related coronavirus (anti-MERS-CoV) activity. Their cytotoxic activity was tested in Vero-E6 cells using 3-(4,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method with minor modification. The plot of percentage cytotoxicity for each extract concentration has calculated the concentration which exhibited 50% cytotoxic concentration (TC50). A plaque reduction assay was employed using safe dose of extract to evaluate its effect on virus propagation. The highest inhibition percentage was recorded for the yellow necklace pod, followed by Shih-balady. The possible mode of action of virus inhibition was studied at three different levels viral replication, viral adsorption and virucidal activity. The necklace pod leaves have induced virucidal effects and direct effects on the replication of virus. Phytochemical investigation of the promising necklace pod led to the isolation and structure determination of nine compounds. The structure of each compound was determined by a variety of spectroscopic methods. Compounds 4-O-methyl sorbitol 1, 8-methoxy daidzin 6 and 6-methoxy apigenin-7-O-β-D-glucopyranoside 8 were isolated for the first time from the Sophora genus and the other six compounds were the first time that they were isolated from this species according to available works of literature. Generally, the highest anti-CoV 2 activity of S. tomentosa was associated with the crude ethanolic extract, indicating the possibility of synergy among the antiviral phytochemical constituents (1-9).

Keywords: coronavirus, MERS-CoV, mode of action, necklace pod, shih-balady

Procedia PDF Downloads 208
689 Effectiveness of the Community Health Assist Scheme in Reducing Market Failure in Singapore’s Healthcare Sector

Authors: Matthew Scott Lau

Abstract:

This study addresses the research question: How effective has the Community Health Assist Scheme (CHAS) been in reducing market failure in Singapore’s healthcare sector? The CHAS policy, introduced in 2012 in Singapore, aims to improve accessibility and affordability of healthcare by offering subsidies to low and middle-income groups and elderly individuals for general practice consultations and healthcare. The investigation was undertaken by acquiring and analysing primary and secondary research data from 3 main sources, including handwritten survey responses of 334 individuals who were valid CHAS subsidy recipients (CHAS cardholders) from 5 different locations in Singapore, interview responses from two established general practitioner doctors with working knowledge of the scheme, and information from literature available online. Survey responses were analysed to determine how CHAS has affected the affordability and consumption of healthcare, and other benefits or drawbacks for CHAS users. The interview responses were used to explain the benefits of healthcare consumption and provide different perspectives on the impacts of CHAS on the various parties involved. Online sources provided useful information on changes in healthcare consumerism and Singapore’s government policies. The study revealed that CHAS has been largely effective in reducing market failure as the subsidies granted to consumers have improved the consumption of healthcare. This has allowed for the external benefits of healthcare consumption to be realized, thus reducing market failure. However, the study also revealed that CHAS cannot be fully effective in reducing market failure as the scope of CHAS prevents healthcare consumption from fully reaching the socially optimal level. Hence, the study concluded that CHAS has been effective to a large extent in reducing market failure in Singapore’s healthcare sector, albeit with some benefits to third parties yet to be realised. There are certain elements of the investigation, which may limit the validity of the conclusion, such as the means used to determine the socially optimal level of healthcare consumption, and the survey sample size.

Keywords: healthcare consumption, health economics, market failure, subsidies

Procedia PDF Downloads 158
688 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 49
687 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 171
686 Property and Inheritance Rights for Women Whose Husbands Disappeared during the Last War in Kosovo: Case Studies: Krusha e Vogël and Krusha e Madhe, Region of Prizren, Kosovo

Authors: Venera Goxha

Abstract:

Property and inheritance rights for women whose husbands were killed or disappeared during the last war in Kosovo is the purpose of this study, respectively, the access of these women to family real estate. The case study is about women whose husbands were killed or disappeared during the last war in Kosovo and who, on this occasion, earned the title of 'widow'.The research is conducted in the villages of Krusha e Vogël - Municipality of Prizren, and Krusha e Madhe - Municipality of Rahovec, one of the most suffered villages from the recent war in Kosovo. Krusha e Vogël, as a result of the recent war, has 113 male victims, or 70% of all men from the age of 13 to the age of 77, leaving widows and orphans. In the village of Krusha e Madhe, 243 Albanians were massacred by Serbs living in the same village, leaving widows and orphaned children alive. According to these data, most of the Krushian families, as heads of households, have surviving wives and widows. Therefore, being the head of the family and facing a mountain of challenges, such as economic, social, and cultural, the issue of how these women have approached the property and family heritage is considered. The equal right to property and inheritance is a right that is guaranteed to women with all legislation in force, starting from the Constitution of the Republic of Kosovo onwards. Article 7 of the Constitution of Kosovo and the subsequent legal framework recognizes the equality of women and the equal division of property between heirs, daughters, and sons. However, some of the legislation does not successfully reflect the current reality in Kosovo. All these ambiguities follow from the ‘patriarchal law’ of the Albanians in the time of the early Middle Ages, later known as the ‘Kanun of Lekë Dukagjini’. At the time it was written and applied, it weighted the law in force, but later over time, it passed into tradition, culture, and mentality. The Kanun of Lekë Dukagjini, in no context, has treated women equally to men. The female, according to the Kanun, was a working tool, a creature to be born, to work, to carry, to raise children, and to remain faithful to the husband even when the husband is not faithful.

Keywords: property rights, heritage, widows, code

Procedia PDF Downloads 60
685 The Experience of Middle Grade Teachers in a Culture of Collaboration

Authors: Tamara Tallman

Abstract:

Collaboration is a powerful tool for professional development and central for creating opportunities for teachers to reflect on their practice. However, school districts continue to have difficulty both implementing and sustaining collaboration. The purpose of this research was to investigate the experience of the teacher in a creative, instructional collaboration. The teachers in this study found that teacher-initiated collaboration offered them trust and they were more open with their partners. An interpretative phenomenological analysis was used for this study as it told the story of the teacher’s experience. Interpretative Phenomenological Analysis was chosen for this study to capture the complex and contextual nature of the teacher experience from a creative, instructional collaborative experience. This study sought to answer the question of how teachers in a private, faith-based school experience collaboration. In particular, the researcher engaged the study’s participants in interviews where they shared their unique perspectives on their experiences in relation to this phenomenon. Through the use of interpretative phenomenological analysis, the researcher interpreted the experiences of each participant in an attempt to gain deeper insight into how teachers made sense of their understanding of collaboration. In addition to the researcher’s interpreting the meaning of this construct for each research participant, this study gave a voice to the individual experiences and positionality of each participant at the research site. Moreover, the key findings presented in this study shed light on how teachers within this particular context participated in and made sense of their experience of creating an instructional collaborative. The research presented the findings that speak to the meaning that each research participant experienced in their relation to participating in building a collaborative culture and its effect on professional and personal growth. The researcher provided recommendations for future practice and research possibilities. The research findings demonstrated the unique experiences of each participant as well as a connection to the literature within the field of teacher professional development. The results also supported the claim that teacher collaboration can facilitate school reform. Participating teachers felt less isolation and developed more teacher knowledge.

Keywords: collaboration, personal grwoth, professional development, teachers

Procedia PDF Downloads 118
684 Assessing the Survival Time of Hospitalized Patients in Eastern Ethiopia During 2019–2020 Using the Bayesian Approach: A Retrospective Cohort Study

Authors: Chalachew Gashu, Yoseph Kassa, Habtamu Geremew, Mengestie Mulugeta

Abstract:

Background and Aims: Severe acute malnutrition remains a significant health challenge, particularly in low‐ and middle‐income countries. The aim of this study was to determine the survival time of under‐five children with severe acute malnutrition. Methods: A retrospective cohort study was conducted at a hospital, focusing on under‐five children with severe acute malnutrition. The study included 322 inpatients admitted to the Chiro hospital in Chiro, Ethiopia, between September 2019 and August 2020, whose data was obtained from medical records. Survival functions were analyzed using Kaplan‒Meier plots and log‐rank tests. The survival time of severe acute malnutrition was further analyzed using the Cox proportional hazards model and Bayesian parametric survival models, employing integrated nested Laplace approximation methods. Results: Among the 322 patients, 118 (36.6%) died as a result of severe acute malnutrition. The estimated median survival time for inpatients was found to be 2 weeks. Model selection criteria favored the Bayesian Weibull accelerated failure time model, which demonstrated that age, body temperature, pulse rate, nasogastric (NG) tube usage, hypoglycemia, anemia, diarrhea, dehydration, malaria, and pneumonia significantly influenced the survival time of severe acute malnutrition. Conclusions: This study revealed that children below 24 months, those with altered body temperature and pulse rate, NG tube usage, hypoglycemia, and comorbidities such as anemia, diarrhea, dehydration, malaria, and pneumonia had a shorter survival time when affected by severe acute malnutrition under the age of five. To reduce the death rate of children under 5 years of age, it is necessary to design community management for acute malnutrition to ensure early detection and improve access to and coverage for children who are malnourished.

Keywords: Bayesian analysis, severe acute malnutrition, survival data analysis, survival time

Procedia PDF Downloads 44
683 Policy Recommendations for Reducing CO2 Emissions in Kenya's Electricity Generation, 2015-2030

Authors: Paul Kipchumba

Abstract:

Kenya is an East African Country lying at the Equator. It had a population of 46 million in 2015 with an annual growth rate of 2.7%, making a population of at least 65 million in 2030. Kenya’s GDP in 2015 was about 63 billion USD with per capita GDP of about 1400 USD. The rural population is 74%, whereas urban population is 26%. Kenya grapples with not only access to energy but also with energy security. There is direct correlation between economic growth, population growth, and energy consumption. Kenya’s energy composition is at least 74.5% from renewable energy with hydro power and geothermal forming the bulk of it; 68% from wood fuel; 22% from petroleum; 9% from electricity; and 1% from coal and other sources. Wood fuel is used by majority of rural and poor urban population. Electricity is mostly used for lighting. As of March 2015 Kenya had installed electricity capacity of 2295 MW, making a per capital electricity consumption of 0.0499 KW. The overall retail cost of electricity in 2015 was 0.009915 USD/ KWh (KES 19.85/ KWh), for installed capacity over 10MW. The actual demand for electricity in 2015 was 3400 MW and the projected demand in 2030 is 18000 MW. Kenya is working on vision 2030 that aims at making it a prosperous middle income economy and targets 23 GW of generated electricity. However, cost and non-cost factors affect generation and consumption of electricity in Kenya. Kenya does not care more about CO2 emissions than on economic growth. Carbon emissions are most likely to be paid by future costs of carbon emissions and penalties imposed on local generating companies by sheer disregard of international law on C02 emissions and climate change. The study methodology was a simulated application of carbon tax on all carbon emitting sources of electricity generation. It should cost only USD 30/tCO2 tax on all emitting sources of electricity generation to have solar as the only source of electricity generation in Kenya. The country has the best evenly distributed global horizontal irradiation. Solar potential after accounting for technology efficiencies such as 14-16% for solar PV and 15-22% for solar thermal is 143.94 GW. Therefore, the paper recommends adoption of solar power for generating all electricity in Kenya in order to attain zero carbon electricity generation in the country.

Keywords: co2 emissions, cost factors, electricity generation, non-cost factors

Procedia PDF Downloads 363
682 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 424
681 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 37
680 Kinetic, Equilibrium and Thermodynamic Studies of the Adsorption of Crystal Violet Dye Using Groundnut Hulls

Authors: Olumuyiwa Ayoola Kokapi, Olugbenga Solomon Bello

Abstract:

Dyes are organic compounds with complex aromatic molecular structure that resulted in fast colour on a substance. Dye effluent found in wastewater generated from the dyeing industries is one of the greatest contributors to water pollution. Groundnut hull (GH) is an agricultural material that constitutes waste in the environment. Environmental contamination by hazardous organic chemicals is an urgent problem, which is partially solved through adsorption technologies. The choice of groundnut hull was promised on the understanding that some materials of agricultural origin have shown potentials to act as Adsorbate for hazardous organic chemicals. The aim of this research is to evaluate the potential of groundnut hull to adsorb Crystal violet dye through kinetic, isotherm and thermodynamic studies. The prepared groundnut hulls was characterized using Brunauer, Emmett and Teller (BET), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Operational parameters such as contact time, initial dye concentration, pH, and effect of temperature were studied. Equilibrium time for the adsorption process was attained in 80 minutes. Adsorption isotherms used to test the adsorption data were Langmuir and Freundlich isotherms model. Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° of the adsorption processes were determined. The results showed that the uptake of dye by groundnut hulls occurred at a faster rate, corresponding to an increase in adsorption capacity at equilibrium time of 80 min from 0.78 to 4.45 mg/g and 0.77 to 4.45mg/g with an increase in the initial dye concentration from 10 to 50 mg/L for pH 3.0 and 8.0 respectively. High regression values obtained for pseudo-second-order kinetic model, sum of square error (SSE%) values along with strong agreement between experimental and calculated values of qe proved that pseudo second-order kinetic model fitted more than pseudo first-order kinetic model. The result of Langmuir and Freundlich model showed that the adsorption data fit the Langmuir model more than the Freundlich model. Thermodynamic study demonstrated the feasibility, spontaneous and endothermic nature of the adsorption process due to negative values of free energy change (∆G) at all temperatures and positive value of enthalpy change (∆H) respectively. The positive values of ∆S showed that there was increased disorderliness and randomness at the solid/solution interface of crystal violet dye and groundnut hulls. The present investigation showed that, groundnut hulls (GH) is a good low-cost alternative adsorbent for the removal of Crystal Violet (CV) dye from aqueous solution.

Keywords: adsorption, crystal violet dye, groundnut halls, kinetics

Procedia PDF Downloads 372
679 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 65
678 Surprise Fraudsters Before They Surprise You: A South African Telecommunications Case Study

Authors: Ansoné Human, Nantes Kirsten, Tanja Verster, Willem D. Schutte

Abstract:

Every year the telecommunications industry suffers huge losses due to fraud. Mobile fraud, or generally, telecommunications fraud is the utilisation of telecommunication products or services to acquire money illegally from or failing to pay a telecommunication company. A South African telecommunication operator developed two internal fraud scorecards to mitigate future risks of application fraud events. The scorecards aim to predict the likelihood of an application being fraudulent and surprise fraudsters before they surprise the telecommunication operator by identifying fraud at the time of application. The scorecards are utilised in the vetting process to evaluate the applicant in terms of the fraud risk the applicant would present to the telecommunication operator. Telecommunication providers can utilise these scorecards to profile customers, as well as isolate fraudulent and/or high-risk applicants. We provide the complete methodology utilised in the development of the scorecards. Furthermore, a Determination and Discrimination (DD) ratio is provided in the methodology to select the most influential variables from a group of related variables. Throughout the development of these scorecards, the following was revealed regarding fraudulent cases and fraudster behaviour within the telecommunications industry: Fraudsters typically target high-value handsets. Furthermore, debit order dates scheduled for the end of the month have the highest fraud probability. The fraudsters target specific stores. Applicants who acquire an expensive package and receive a medium-income, as well as applicants who obtain an expensive package and receive a high income, have higher fraud percentages. If one month prior to application, the status of an account is already in arrears (two months or more), the applicant has a high probability of fraud. The applicants with the highest average spend on calls have a higher probability of fraud. If the amount collected changes from month to month, the likelihood of fraud is higher. Lastly, young and middle-aged applicants have an increased probability of being targeted by fraudsters than other ages.

Keywords: application fraud scorecard, predictive modeling, regression, telecommunications

Procedia PDF Downloads 119
677 A Simplified Method to Assess the Damage of an Immersed Cylinder Subjected to Underwater Explosion

Authors: Kevin Brochard, Herve Le Sourne, Guillaume Barras

Abstract:

The design of a submarine’s hull is crucial for its operability and crew’s safety, but also complex. Indeed, engineers need to balance lightness, acoustic discretion and resistance to both immersion pressure and environmental attacks. Submarine explosions represent a first-rate threat for the integrity of the hull, whose behavior needs to be properly analyzed. The presented work is focused on the development of a simplified analytical method to study the structural response of a deeply immersed cylinder submitted to an underwater explosion. This method aims to provide engineers a quick estimation of the resulting damage, allowing them to simulate a large number of explosion scenarios. The present research relies on the so-called plastic string on plastic foundation model. A two-dimensional boundary value problem for a cylindrical shell is converted to an equivalent one-dimensional problem of a plastic string resting on a non-linear plastic foundation. For this purpose, equivalence parameters are defined and evaluated by making assumptions on the shape of the displacement and velocity field in the cross-sectional plane of the cylinder. Closed-form solutions for the deformation and velocity profile of the shell are obtained for explosive loading, and compare well with numerical and experimental results. However, the plastic-string model has not yet been adapted for a cylinder in immersion subjected to an explosive loading. In fact, the effects of fluid-structure interaction have to be taken into account. Moreover, when an underwater explosion occurs, several pressure waves are emitted by the gas bubble pulsations, called secondary waves. The corresponding loads, which may produce significant damages to the cylinder, must also be accounted for. The analytical developments carried out to solve the above problem of a shock wave impacting a cylinder, considering fluid-structure interaction will be presented for an unstiffened cylinder. The resulting deformations are compared to experimental and numerical results for different shock factors and different standoff distances.

Keywords: immersed cylinder, rigid plastic material, shock loading, underwater explosion

Procedia PDF Downloads 331
676 Covid-19 Pandemic: Another Lesson Learned by a Military Hospital

Authors: Mariana Floria, Elena-Diana Năfureanu, Diana-Mihaela Gălăţanu, Anca-Ecaterina Grumeza, Cristina Gorea-Bocîncă, Diana-Elena Iov, Aurelian-Corneliu Moraru, Dragoș-Marian Popescu

Abstract:

SARS-CoV-2 is the most deadly and devastating virus of the last one hundred years, being more highly contagious than EBOLA, HIV, Swine Influenza, Severe Acute Respiratory Syndrome, or Middle Eastern Respiratory Syndrome. After two years of pandemic, planning and budgeting for use of healthcare resources and services is very important. The aim of this study was to analyze the costs for hospital stay in patients with predominantly moderate forms of COVID-19 in a support military hospital located in Nord-East of Romania. Inpatient COVID-19 hospitalizations costs, regardless of ICD-10 procedure codes (DRG payment), in a Covid-19 support military hospital were analyzed. From August 2020 through June 2021, 241 patientswere hospitalized. Our national protocol for the treatment of Covid-19 infection was applied. The main COVID-19 manifestations were: 69% respiratory (18% with severe pneumonia, 2.9% with pulmonary embolism, diagnosed by angio-computed tomography), 3.3% cardiac, 28% digestive, and 33% psychiatric (most common anxiety) manifestations. According to COVID-19 severity, most of the patients had moderate (104 patients – 43%) and severe (50 patients - 21%) forms. Seven patients with severe form died because of multiple comorbidities, and 30 patients were transferred in hospitals with COVID-19 intensive care units.Only two patients have had procalcitonin>10 ng/mL (high probability of severe sepsis or septic shock), and 1 patient had moderate risk for septic shock (0.5 - 2 ng/mL). The average estimated costs were about 3000€/patient, without significantly differences depending on disease severity. Equipment costs were 2 times higher than for drugs and 4 times than for laboratory tests. In a Covid-19 support military hospital that took care for predominantly moderate forms of COVID-19, the costs for equipment were much higher than that for treatment. Therefore, new criteria for hospitalization of these forms of COVID-19 deserve to be analyzed to avoid useless costs.

Keywords: Covid-19, costs, hospital stay, military hospital

Procedia PDF Downloads 176
675 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 88