Search results for: learning physical
9354 Health Challenges of Unmarried Women over Thirty in Pakistan: A Public Health Perspective on Nutrition and Well-being
Authors: Anum Obaid, Iman Fatima, Wanisha Feroz, Haleema Imran, Hammad Tariq
Abstract:
In Pakistan, the health of unmarried women over thirty is an emerging public health concern due to its increasing prevalence. Achieving the Sustainable Development Goals (SDGs) requires addressing nutrition and public health issues. This research investigates these goals through the lens of nutrition and public health, specifically examining the challenges faced by unmarried women over thirty in Faisalabad, Pakistan. According to a recent United Nations report, there are 10 million unmarried women over the age of 35 in Pakistan. The United Nations defines health as "a state of complete physical, mental, and social well-being, and not merely the absence of disease or infirmity." Being unmarried and under constant societal pressure profoundly influences the dietary behaviors and nutritional status of these women, affecting their overall health, including physical, mental, and social well-being. A qualitative research approach was employed, involving interviews with both unmarried and married women over thirty. This research examines how marital status influences dietary practices, nutritional status, mental and social health, and their subsequent impacts. Factors such as physical health, mental and emotional status, societal pressure, social health, economic independence, and decision-making power were analyzed to understand the effect of singleness on overall wellness. Findings indicated that marital status significantly affects the dietary patterns and nutritional practices among women in Faisalabad. It was also revealed that unmarried women experienced more stress and had a less optimistic mindset compared to married women, due to loneliness or the absence of a spouse in their lives. Nutritional knowledge varied across marital status, impacting the overall health triangle, including physical, mental, and social health. Understanding these dynamics is crucial for developing targeted interventions to improve nutritional outcomes and overall health among unmarried women in Faisalabad. This study highlights the importance of fostering supportive environments and raising awareness about the health needs of unmarried women over thirty to enhance their overall well-being.Keywords: health triangle, unmarried woman over thirty, socio-cultural barriers, women’s health
Procedia PDF Downloads 389353 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand
Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff
Abstract:
Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste
Procedia PDF Downloads 1419352 The Patterns and Levels of Physical Activity and Sedentary Behavior of Primary School Learners in Eastern Cape Province, South Africa
Authors: Howard Gomwe, Eunice Seekoe, Philemon Lyoka, Chioneso Show Marange, Dennyford Mafa
Abstract:
Background: This study was designed to assess PA levels and sedentary behavior among primary school learners in the Eastern Cape province of South Africa. Methods: A cross-sectional study was adopted to assess the patterns and levels of PA and sedentary behavior using the Physical Activity Questionnaire for Older Children (PAQ-C). Results: Using complete case analysis, 870 randomly selected participants (boys = 351 and girls = 519) aged 9 to 14 years were retained. The sample comprised of primary school learners, both boys and girls; aged 9-14 years old, who were randomly selected from rural, urban and peri-urban areas in the Eastern Cape Province of South Africa. Overly, the sample had a mean PAQ-C score of 2.33 ± 0.43. The mean of PA in boys was significantly higher (p = 0.003) in comparison with the girls. The 13 to 14 age group had a significantly higher PA level (p = 0.014). Learners from urban areas (n = 136; 77.3%) engaged more in sedentary behaviour as compared to those from rural areas (n = 252; 54.9%). Conclusion: The findings demonstrated low levels of PA and high engagement of sedentary behavior, which have negative implications on the health, growth and development of children. The study, therefore, recommends relevant stakeholders to implement interventions aimed to promote the increase in PA and reduction in sedentary behaviors for primary school learners in the Eastern Cape province in South Africa.Keywords: learners, physical activity, sedentary behavior, south Africa
Procedia PDF Downloads 2269351 Creative Experience and Revisit Intention of Handmade Oriental Parasol Umbrella in Kaohsiung
Authors: Yi-Ju Lee
Abstract:
This study identified the hypothesised relationship between creative experience, and revisit intention of handmade oriental parasol umbrella in Kaohsiung, Taiwan. A face-to-face questionnaire survey was administered in Meinong town, Kaohsiung. The components of creative experience were found as “sense of achievement”, “unique learning” and “interaction with instructors” in creative tourism. The result also revealed significant positive relationships between creative experience and revisit intention in handmade activities. This paper provides additional suggestions for enhancing revisit intention and guidance regarding creative tourism.Keywords: creative tourism, sense of achievement, unique learning, interaction with instructors, folk art
Procedia PDF Downloads 2809350 Using SMS Mobile Technology to Assess the Mastery of Subject Content Knowledge of Science and Mathematics Teachers of Secondary Schools in Tanzania
Authors: Joel S. Mtebe, Aron Kondoro, Mussa M. Kissaka, Elia Kibga
Abstract:
Sub-Saharan Africa is described as the second fastest growing mobile phone penetration in the world more than in the United States or the European Union. Mobile phones have been used to provide a lot of opportunities to improve people’s lives in the region such as in banking, marketing, entertainment, and paying various bills such as water, TV, and electricity. However, the potential of using mobile phones to enhance teaching and learning has not been explored. This study presents an experience of developing and delivering SMS quizzes questions that were used to assess mastery of the subject content knowledge of science and mathematics secondary school teachers in Tanzania. The SMS quizzes were used as a follow up support mechanism to 500 teachers who participated in a project to upgrade subject content knowledge of science and mathematics subjects. Quizzes of 10-15 questions were sent to teachers each week for 8 weeks and the results were analyzed using SPSS. The results showed that chemistry and biology had better performance compared to mathematics and physics. Teachers reported some challenges that led to poor performance, invalid answers, and non-responses and they are presented. This research has several practical implications for those who are implementing or planning to use mobile phones for teaching and learning especially in rural secondary schools in sub-Saharan Africa.Keywords: mobile learning, elearning, educational technolgies, SMS, secondary education, assessment
Procedia PDF Downloads 2849349 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification
Authors: Rujia Chen, Ajit Narayanan
Abstract:
Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels
Procedia PDF Downloads 1899348 A Conceptual Approach for Evaluating the Urban Renewal Process
Authors: Muge Unal, Ahmet Cilek
Abstract:
Urban identity, having a dynamic characteristic spatial and semantic aspects, is a phenomenon in an ever-changing. Urban identity formation includes not only a process of physical nature but also development and change processes that take place in the political, economic, social and cultural values, whether national and international level. Although the concept of urban transformation is basically regarded as the spatial transformation; in fact, it reveals a holistic perspective and transformation based on dialectical relationship existing between the spatial and social relationship. For this reason, urban renewal needs to address as not only spatial but also the impact of spatial transformation on social, cultural and economic. Implementation tools used in the perception of urban transformation are varied concepts such as urban renewal, urban resettlement, urban rehabilitation, urban redevelopment, and urban revitalization. The phenomenon of urban transformation begins with the Industrial Revolution. Until the 1980s, it was interpreted as reconsidering physical fossil on urban environment factor like occurring in rapid urbanization, changing in the spatial structure of the city, concentrating of the population in urban areas. However, after the 1980s, it has resided in a conceptual structure which requires to be addressed physical, economic, social, technological and integrity of information. In conclusion, urban transformation, when it enter the literature as a practice of planning, has been up to date in terms of the conceptual structure and content and also hasn’t remained behind converting itself. Urban transformation still maintains its simplest expression, while it transforms so fast converts the contents. In this study, the relationship between urban design and components of urban transformation were discussed with strategies used as a place in the historical process of urban transformation besides a general evaluation of the concept of urban renewal.Keywords: conceptual approach, urban identity, urban regeneration, urban renewal
Procedia PDF Downloads 4329347 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques
Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri
Abstract:
Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior
Procedia PDF Downloads 3099346 Early Prediction of Cognitive Impairment in Adults Aged 20 Years and Older using Machine Learning and Biomarkers of Heavy Metal Exposure
Authors: Ali Nabavi, Farimah Safari, Mohammad Kashkooli, Sara Sadat Nabavizadeh, Hossein Molavi Vardanjani
Abstract:
Cognitive impairment presents a significant and increasing health concern as populations age. Environmental risk factors such as heavy metal exposure are suspected contributors, but their specific roles remain incompletely understood. Machine learning offers a promising approach to integrate multi-factorial data and improve the prediction of cognitive outcomes. This study aimed to develop and validate machine learning models to predict early risk of cognitive impairment by incorporating demographic, clinical, and biomarker data, including measures of heavy metal exposure. A retrospective analysis was conducted using 2011-2014 National Health and Nutrition Examination Survey (NHANES) data. The dataset included participants aged 20 years and older who underwent cognitive testing. Variables encompassed demographic information, medical history, lifestyle factors, and biomarkers such as blood and urine levels of lead, cadmium, manganese, and other metals. Machine learning algorithms were trained on 90% of the data and evaluated on the remaining 10%, with performance assessed through metrics such as accuracy, area under curve (AUC), and sensitivity. Analysis included 2,933 participants. The stacking ensemble model demonstrated the highest predictive performance, achieving an AUC of 0.778 and a sensitivity of 0.879 on the test dataset. Key predictors included age, gender, hypertension, education level, urinary cadmium, and blood manganese levels. The findings indicate that machine learning can effectively predict the risk of cognitive impairment using a comprehensive set of clinical and environmental exposure data. Incorporating biomarkers of heavy metal exposure improved prediction accuracy and highlighted the role of environmental factors in cognitive decline. Further prospective studies are recommended to validate the models and assess their utility over time.Keywords: cognitive impairment, heavy metal exposure, predictive models, aging
Procedia PDF Downloads 69345 Students' Experience Perception in Courses Taught in New Delivery Modes Compared to Traditional Modes
Authors: Alejandra Yanez, Teresa Benavides, Zita Lopez
Abstract:
Even before COVID-19, one of the most important challenges that Higher Education faces today is the need for innovative educational methodologies and flexibility. We could all agree that one of the objectives of Higher Education is to provide students with a variety of intellectual and practical skills that, at the same time, will help them develop competitive advantages such as adaptation and critical thinking. Among the strategic objectives of Universidad de Monterrey (UDEM) has been to provide flexibility and satisfaction to students in the delivery modes of the academic offer. UDEM implemented a methodology that combines face to face with synchronous and asynchronous as delivery modes. UDEM goal, in this case, was to implement new technologies and different teaching methodologies that will improve the students learning experience. In this study, the experience of students during courses implemented in new delivery mode was compared with students in courses with traditional delivery modes. Students chose openly either way freely. After everything students around the world lived in 2020 and 2021, one can think that the face to face (traditional) delivery mode would be the one chosen by students. The results obtained in this study reveal that both delivery modes satisfy students and favor their learning process. We will show how the combination of delivery modes provides flexibility, so the proposal is that universities can include them in their academic offer as a response to the current student's learning interests and needs.Keywords: flexibility, new delivery modes, student satisfaction, academic offer
Procedia PDF Downloads 1049344 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 1379343 Using Gene Expression Programming in Learning Process of Rough Neural Networks
Authors: Sanaa Rashed Abdallah, Yasser F. Hassan
Abstract:
The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.Keywords: rough sets, gene expression programming, rough neural networks, classification
Procedia PDF Downloads 3859342 The Effect of Conservative Tillage on Physical Properties of Soil and Yield of Rainfed Wheat
Authors: Abolfazl Hedayatipoor, Mohammad Younesi Alamooti
Abstract:
In order to study the effect of conservative tillage on a number of physical properties of soil and the yield of rainfed wheat, an experiment in the form of a randomized complete block design (RCBD) with three replications was conducted in a field in Aliabad County, Iran. The study treatments included: T1) Conventional method, T2) Combined moldboard plow method, T3) Chisel-packer method, and T4) Direct planting method. During early October, the study soil was prepared based on these treatments in a field which was used for rainfed wheat farming in the previous year. The apparent specific gravity of soil, weighted mean diameter (WMD) of soil aggregates, soil mechanical resistance, and soil permeability were measured. Data were analyzed in MSTAT-C. Results showed that the tillage practice had no significant effect on grain yield (p < 0.05). Soil permeability was 10.9, 16.3, 15.7 and 17.9 mm/h for T1, T2, T3 and T4, respectively.Keywords: rainfed agriculture, conservative tillage, energy consumption, wheat
Procedia PDF Downloads 2099341 Use of Microbial Fuel Cell for Metal Recovery from Wastewater
Authors: Surajbhan Sevda
Abstract:
Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach.Keywords: metal recovery, microbial fuel cell, wastewater, bioelectricity
Procedia PDF Downloads 2199340 Streamlining the Fuzzy Front-End and Improving the Usability of the Tools Involved
Authors: Michael N. O'Sullivan, Con Sheahan
Abstract:
Researchers have spent decades developing tools and techniques to aid teams in the new product development (NPD) process. Despite this, it is evident that there is a huge gap between their academic prevalence and their industry adoption. For the fuzzy front-end, in particular, there is a wide range of tools to choose from, including the Kano Model, the House of Quality, and many others. In fact, there are so many tools that it can often be difficult for teams to know which ones to use and how they interact with one another. Moreover, while the benefits of using these tools are obvious to industrialists, they are rarely used as they carry a learning curve that is too steep and they become too complex to manage over time. In essence, it is commonly believed that they are simply not worth the effort required to learn and use them. This research explores a streamlined process for the fuzzy front-end, assembling the most effective tools and making them accessible to everyone. The process was developed iteratively over the course of 3 years, following over 80 final year NPD teams from engineering, design, technology, and construction as they carried a product from concept through to production specification. Questionnaires, focus groups, and observations were used to understand the usability issues with the tools involved, and a human-centred design approach was adopted to produce a solution to these issues. The solution takes the form of physical toolkit, similar to a board game, which allows the team to play through an example of a new product development in order to understand the process and the tools, before using it for their own product development efforts. A complimentary website is used to enhance the physical toolkit, and it provides more examples of the tools being used, as well as deeper discussions on each of the topics, allowing teams to adapt the process to their skills, preferences and product type. Teams found the solution very useful and intuitive and experienced significantly less confusion and mistakes with the process than teams who did not use it. Those with a design background found it especially useful for the engineering principles like Quality Function Deployment, while those with an engineering or technology background found it especially useful for design and customer requirements acquisition principles, like Voice of the Customer. Products developed using the toolkit are added to the website as more examples of how it can be used, creating a loop which helps future teams understand how the toolkit can be adapted to their project, whether it be a small consumer product or a large B2B service. The toolkit unlocks the potential of these beneficial tools to those in industry, both for large, experienced teams and for inexperienced start-ups. It allows users to assess the market potential of their product concept faster and more effectively, arriving at the product design stage with technical requirements prioritized according to their customers’ needs and wants.Keywords: new product development, fuzzy front-end, usability, Kano model, quality function deployment, voice of customer
Procedia PDF Downloads 1089339 A Sense of Belonging: Music Learning and School Connectedness
Authors: Johanna Gamboa-Kroesen
Abstract:
School connectedness, or the sense of belonging at school, is a critical factor in adolescent health, academic achievement, and socioemotional well-being. In educational research, the construct of the psychological sense of school membership is often referred to as school engagement, school bonding, or school attachment. While current research recognizes school connectedness as integral to a child’s mental health and academic success, many schools have yet to develop adequate interventions to promote a child’s overall sense of belonging at school. However, prior researches in music education indicates that, among other benefits, music classrooms may provide an environment where students feel they belong. While studies indicates that music learning environments, specifically performing ensemble learning environments, instill a sense of school connectedness and, more broadly, contribute to a student’s socio-emotional development, there has been inadequate research on how the actions of music teachers contribute to this phenomenon. The purpose of this study was to examine the relationship between school connectedness and music learning environments with middle school music students enrolled in a school-based music ensemble. In addition, the study aimed to provide a descriptive analysis of the instructional practices that music teachers use to promote an inclusive environment in their classrooms and an overall sense of belonging in their students. Using 191 student surveys of school membership, student reflective writings, 5 teacher interviews, and 10 classroom observations, this study examined the relationship between 7th and 8th-grade student-reported levels of connectedness within their school-based music ensemble and teacher instructional practice. The study found that students reported high levels of positive school membership within their music classes. Students who participate in school-based orchestra ensembles reported a positive change in emotional state during music instruction. In addition, evidence in this study found that music teachers use instructional practices to build connectedness through de-emphasizing competition and strengthening a student’s sense of relational value within their music learning experience. The findings offer implications for future music teacher instruction to create environments of inclusion, strengthen student-teacher relationships, and promote strategies that enhance student connection to school.Keywords: music education, belonging, instructional practice, school connectedness
Procedia PDF Downloads 709338 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences
Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson
Abstract:
This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.Keywords: data-driven, improvement, online courses, faculty development, analytics, course design
Procedia PDF Downloads 629337 Physical and Physiological Characteristics of Young Soccer Players in Republic of Macedonia
Authors: Sanja Manchevska, Vaska Antevska, Lidija Todorovska, Beti Dejanova, Sunchica Petrovska, Ivanka Karagjozova, Elizabeta Sivevska, Jasmina Pluncevic Gligoroska
Abstract:
Introduction: A number of positive effects on the player’s physical status, including the body mass components are attributed to training process. As young soccer players grow up qualitative and quantitative changes appear and contribute to better performance. Player’s anthropometric and physiologic characteristics are recognized as important determinants of performance. Material: A sample of 52 soccer players with an age span from 9 to 14 years were divided in two groups differentiated by age. The younger group consisted of 25 boys under 11 years (mean age 10.2) and second group consisted of 27 boys with mean age 12.64. Method: The set of basic anthropometric parameters was analyzed: height, weight, BMI (Body Mass Index) and body mass components. Maximal oxygen uptake was tested using the treadmill protocol by Brus. Results: The group aged under 11 years showed the following anthropometric and physiological features: average height= 143.39cm, average weight= 44.27 kg; BMI= 18.77; Err = 5.04; Hb= 13.78 g/l; VO2=37.72 mlO2/kg. Average values of analyzed parameters were as follows: height was 163.7 cm; weight= 56.3 kg; BMI = 19.6; VO2= 39.52 ml/kg; Err=5.01; Hb=14.3g/l for the participants aged 12 to14 years. Conclusion: Physiological parameters (maximal oxygen uptake, erythrocytes and Hb) were insignificantly higher in the older group compared to the younger group. There were no statistically significant differences between analyzed anthropometric parameters among the two groups except for the basic measurements (height and weight).Keywords: body composition, young soccer players, BMI, physical status
Procedia PDF Downloads 4039336 Formulation and Evaluation of TDDS for Sustained Release Ondansetron HCL Patches
Authors: Baljinder Singh, Navneet Sharma
Abstract:
The skin can be used as the site for drug administration for continuous transdermal drug infusion into the systemic circulation. For the continuous diffusion/penetration of the drugs through the intact skin surface membrane-moderated systems, matrix dispersion type systems, adhesive diffusion controlled systems and micro reservoir systems have been developed. Various penetration enhancers are used for the drug diffusion through skin. In matrix dispersion type systems, the drug is dispersed in the solvent along with the polymers and solvent allowed to evaporate forming a homogeneous drug-polymer matrix. Matrix type systems were developed in the present study. In the present work, an attempt has been made to develop a matrix-type transdermal therapeutic system comprising of ondansetron-HCl with different ratios of hydrophilic and hydrophobic polymeric combinations using solvent evaporation technique. The physicochemical compatibility of the drug and the polymers was studied by infrared spectroscopy. The results obtained showed no physical-chemical incompatibility between the drug and the polymers. The patches were further subjected to various physical evaluations along with the in-vitro permeation studies using rat skin. On the basis of results obtained form the in vitro study and physical evaluation, the patches containing hydrophilic polymers i.e. polyvinyl alcohol and poly vinyl pyrrolidone with oleic acid as the penetration enhancer(5%) were considered as suitable for large scale manufacturing with a backing layer and a suitable adhesive membrane.Keywords: transdermal drug delivery, penetration enhancers, hydrophilic and hydrophobic polymers, ondansetron HCl
Procedia PDF Downloads 3239335 The Τraits Τhat Facilitate Successful Student Performance in Distance Education: The Case of the Distance Education Unit at European University Cyprus
Authors: Dimitrios Vlachopoulos, George Tsokkas
Abstract:
Although it is not intended to identify distance education students as a homogeneous group, recent research has demonstrated that there are some demographic and personality common traits among most of them that provide the basis for the description of a typical distance learning student. The purpose of this paper is to describe these common traits and to facilitate their learning journey within a distance education program. The described research is an initiative of the Distance Education Unit at the European University Cyprus (Laureate International Universities) in the context of its action for the improvement of the students’ performance.Keywords: distance education students, successful student performance, European University Cyprus, common traits
Procedia PDF Downloads 4869334 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 589333 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 469332 Cognition of Driving Context for Driving Assistance
Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif
Abstract:
In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning
Procedia PDF Downloads 3709331 Characterization of Copper Slag and Jarofix Waste Materials for Road Construction
Authors: V. K. Arora, V. G. Havanagi, A. K. Sinha
Abstract:
Copper slag and Jarofix are waste materials, generated during the manufacture of copper and zinc respectively, which have potential for utility in embankment and road construction. Accordingly, a research project was carried out to study the characteristics of copper slag and Jarofix to utilize in the construction of road. In this study, copper slag and Jarofix were collected from Tuticorin, State of Tamil Nadu and Hindustan Zinc Ltd., Chittorgarh, Rajasthan state, India respectively. These materials were investigated for their physical, chemical, and geotechnical characteristics. The materials were collected from the disposal area and laboratory investigations were carried out to study its feasibility for use in the construction of embankment and sub grade layers of road pavement. This paper presents the results of physical, chemical and geotechnical characteristics of copper slag and Jarofix. It was concluded that copper slag and Jarofix may be utilized in the construction of road.Keywords: copper slag, Jarofix waste, material, road construction
Procedia PDF Downloads 4499330 Supporting the ESL Student in a Tertiary Setting: Carrot and Stick
Authors: Ralph Barnes
Abstract:
The internationalization and globalization of education are now a huge, multi-million dollar industry. The movement of international students across the globe has provided a rich vein of revenue for universities and institutions of higher learning to exploit and harvest. A concerted effort has been made by universities worldwide to court students from overseas, with some countries relying up to one-third of student fees, coming from international students. Australian universities and English Language Centres are coming under increased government scrutiny in respect to such areas as the academic progression of international students, management and understanding of student visa requirements and the design of higher education courses and effective assessment regimes. As such, universities and other higher education institutions are restructuring themselves more as service providers rather than as strictly education providers. In this paper, the high-touch, tailored academic model currently followed by some Australian educational institutions to support international students, is examined and challenged. Academic support services offered to international students need to be coordinated, sustained and reviewed regularly, in order to assess their effectiveness. Maintaining the delivery of high-quality educational programs and learning outcomes for this high income-generating student cohort is vital, in order to continue the successful academic and social engagement by international students across the Australian university and higher education landscape.Keywords: ESL, engagement, tertiary, learning
Procedia PDF Downloads 2059329 Development and Analysis of Waste Human Hair Fiber Reinforced Composite
Authors: Tesfaye Worku
Abstract:
Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.Keywords: composite, human hair fiber, matrix, unsaturated polyester
Procedia PDF Downloads 729328 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities
Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia
Abstract:
There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy
Procedia PDF Downloads 1689327 Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management
Authors: Marcos Devaner, Marcela Alves, Cledson Braga, Fabiano Alves, Wilton Bezerra
Abstract:
This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process.Keywords: experience report, accessible systems, software testing, testing process, systems, e-learning
Procedia PDF Downloads 3999326 Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis
Authors: Eyup Ozkan, Ozkan U. Nalbantoglu, Aycan Gundogdu, Mehmet Hora, A. Emre Onuk
Abstract:
The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation.Keywords: coronary artery disease, blood microbiome, machine learning, angiography, next-generation sequencing
Procedia PDF Downloads 1599325 Playing with Gender Identity through Learning English as a Foreign Language in Algeria: A Gender-Based Analysis of Linguistic Practices
Authors: Amina Babou
Abstract:
Gender and language is a moot and miscellaneous arena in the sphere of socio-linguistics, which has been proliferated so widely and rapidly in recent years. The dawn of research on gender and foreign language education was against the feminist researchers who allowed space for the bustling concourse of voices and perspectives in the arena of gender and language differences, in the early to the mid-1970. The objective of this scrutiny is to explore to what extent teaching gender and language in the English as a Foreign Language (EFL) classroom plays a pivotal role in learning language information and skills. Moreover, the gist of this paper is to investigate how EFL students in Algeria conflate their gender identities with the linguistic practices and scholastic expertise. To grapple with the full range of issues about the EFL students’ awareness about the negotiation of meanings in the classroom, we opt for observing, interviewing, and questioning later to check using ‘how-do-you do’ procedure. The analysis of the EFL classroom discourse, from five Algerian universities, reveals that speaking strategies such as the manners students make an abrupt topic shifts, respond spontaneously to the teacher, ask more questions, interrupt others to seize control of conversations and monopolize the speaking floor through denying what others have said, do not sit very lightly on 80.4% of female students’ shoulders. The data indicate that female students display the assertive style as a strategy of learning to subvert the norms of femininity, especially in the speaking module.Keywords: EFL students, gender identity, linguistic styles, foreign language
Procedia PDF Downloads 463