Search results for: artificial market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5464

Search results for: artificial market

2044 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 83
2043 Tokenization of Blue Bonds to Scale Blue Carbon Projects

Authors: Rodrigo Buaiz Boabaid

Abstract:

Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change.

Keywords: blue bonds, blue carbon, tokenization, green finance

Procedia PDF Downloads 95
2042 A Review of Current Trends in Grid Balancing Technologies

Authors: Kulkarni Rohini D.

Abstract:

While emerging as plausible sources of energy generation, new technologies, including photovoltaic (PV) solar panels, home battery energy storage systems, and electric vehicles (EVs), are exacerbating the operations of power distribution networks for distribution network operators (DNOs). Renewable energy production fluctuates, stemming in over- and under-generation energy, further complicating the issue of storing excess power and using it when necessary. Though renewable sources are non-exhausting and reoccurring, power storage of generated energy is almost as paramount as to its production process. Hence, to ensure smooth and efficient power storage at different levels, Grid balancing technologies are consequently the next theme to address in the sustainable space and growth sector. But, since hydrogen batteries were used in the earlier days to achieve this balance in power grids, new, recent advancements are more efficient and capable per unit of storage space while also being distinctive in terms of their underlying operating principles. The underlying technologies of "Flow batteries," "Gravity Solutions," and "Graphene Batteries" already have entered the market and are leading the race for efficient storage device solutions that will improve and stabilize Grid networks, followed by Grid balancing technologies.

Keywords: flow batteries, grid balancing, hydrogen batteries, power storage, solar

Procedia PDF Downloads 76
2041 Interconnected Market Hypothesis: A Conceptual Model of Individualistic, Information-Based Interconnectedness

Authors: James Kinsella

Abstract:

There is currently very little understanding of how the interaction between in- vestors, consumers, the firms (agents) affect a) the transmission of information, and b) the creation and transfer of value and wealth between these two groups. Employing scholarly ideas from multiple research areas (behavioural finance, emotional finance, econo-biology, and game theory) we develop a conceptual the- oretic model (the ‘bow-tie’ model) as a framework for considering this interaction. Our bow-tie model views information transfer, value and wealth creation, and transfer through the lens of “investor-consumer connection facilitated through the communicative medium of the ‘firm’ (agents)”. We confront our bow-tie model with theoretical and practical examples. Next, we utilise consumer and business confidence data alongside index data, to conduct quantitative analy- sis, to support our bow-tie concept, and to introduce the concept of “investor- consumer connection”. We highlight the importance of information persuasiveness, knowledge, and emotional categorization of characteristics in facilitating a communicative relationship between investors, consumers, and the firm (agents), forming academic and practical applications of the conceptual bow-tie model, alongside applications to wider instances, such as those seen within the Covid-19 pandemic.

Keywords: behavioral finance, emotional finance, economy-biology, social mood

Procedia PDF Downloads 130
2040 Firm Performance and Evolving Corporate Governance: An Empirical Study from Pakistan

Authors: Mohammed Nishat, Ahmad Ghazali

Abstract:

This study empirically examines the corporate governance and firm performance, and tries to evaluate the governance, ownership and control related variables which are hypothesized to affect on firms performance. This study tries to evaluate the effectiveness of corporate governance mechanism to achieve high level performance among companies listed on the Karachi Stock Exchange (KSE) over the period from 2005 to 2008. To measure the firm performance level this research uses three measures of performance; Return on assets (ROA), Return on Equity (ROE) and Tobin’s Q. To link the performance of firms with the corporate governance three categories of corporate governance variables are tested which includes governance, ownership and control related variables. Fixed effect regression model is used to test the link between corporate governance and firm performance for 267 KSE listed Pakistani firms. The result shows that corporate governance variables such as percentage block holding by individuals have positive impact on firm performance. When CEO is also the chairperson of board then it is found that firm performance is adversely affected. Also negative relationship is found between share held by insiders and performance of firm. Leverage has negative impact on the performance of the firm and firm size is positively related with the firms performance.

Keywords: corporate governance, performance, agency cost, Karachi stock market

Procedia PDF Downloads 360
2039 Wet Extraction of Lutein and Lipids from Microalga by Quantitative Determination of Polarity

Authors: Mengyue Gong, Xinyi Li, Amarjeet Bassi

Abstract:

Harvesting by-products while recovering biodiesel is considered a potentially valuable approach to increase the market feasibility of microalgae industry. Lutein is a possible by-product from microalgae that promotes eye health. The extraction efficiency and the expensive drying process of wet algae represent the major challenges for the utilization of microalgae biomass as a feedstock for lipids, proteins, and carotenoids. A wet extraction method was developed to extract lipids and lutein from microalga Chlorella vulgaris. To evaluate different solvent (mixtures) for the extraction, a quantitative analysis was established based on the polarity of solvents using Nile Red as the polarity (ETN) indicator. By the choice of binary solvent system then adding proper amount of water to achieve phase separation, lipids and lutein can be extracted simultaneously. Some other parameters for lipids and lutein production were also studied including saponification time, temperature, choice of alkali, and pre-treatment methods. The extraction efficiency with wet algae was compared with dried algae and shown better pigment recovery. The results indicated that the product pattern in each extracted phase was polarity dependent. Lutein and β-carotene were the main carotenoids extracted with ethanol while lipids come out with hexane.

Keywords: biodiesel, Chlorella vulgaris, extraction, lutein

Procedia PDF Downloads 345
2038 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 12
2037 Erotic Subversions: Male Masochism, Power, and the Politics of Desire in Hong Kong’s BDSM Landscape

Authors: Maari Sugawara

Abstract:

This research critically engages with the erotic and political entanglements of male clientele of Dominatrices who identify as submissives (hereafter referred to as submissives) within Hong Kong's BDSM scene. Employing masochism as an analytical framework, it interrogates the intersections of capitalism, heteropatriarchy, postcolonialism, and commodified desire. BDSM (Bondage and Discipline, Dominance and Submission, Sadism and Masochism) encompasses practices that explore power, control, and subordination through both physical and psychological role-play, predicated on consent, negotiation, and boundary delineation. This makes BDSM a fertile site for examining how dominance and submission are mobilized, challenged, and reiterated. This study focuses on the dynamics between thirty male submissives and three professional Dominatrices active in Hong Kong since 2019. The predominance of male interviewees reflects the demographic reality that most clients engaging with professional Dominatrices are male. These submissives—men who willfully relinquish control—offer a critical lens for exploring how BDSM, as both practice and market, mirrors and destabilizes dominant power structures. BDSM relationships occasionally replicate the hierarchical logics of heterosexual marriage, particularly in the expectation that submissives engage exclusively with a single Dominatrix, reflecting a dynamic of devotion and fidelity akin to traditional marital structures. However, these relationships also function as counter-normative spaces where care and control are reconfigured, enabling the negotiation of alternative power configurations. By centering BDSM work rather than broader kink practices, this study foregrounds the commodification of intimacy as a key site where suppressed desires, economic forces, and political tensions converge. The submissives in this study are predominantly affluent, cisgender men, underscoring the socio-economic asymmetries in the BDSM market. Furthermore, the research examines how Hong Kong’s political turbulence—particularly the 2019 Yellow Umbrella Movement and the COVID-19 pandemic—has reverberated through the BDSM scene, reshaping the contours of desire, trust, and power in these intimate transactions. The increasing tensions with mainland China, alongside the erosion of public trust in state institutions, form a critical backdrop to this evolving landscape. Grounded in gender and sexuality theories, this research interrogates how the desires of male submissives are constructed within and resist heteronormative frameworks. BDSM practices, far from existing outside capitalist and colonial logics, often act as both a mirror and critique of these systems, revealing complex ways in which power is commodified, enacted, and contested. In their pursuit of emotional care and alternative forms of control, male submissives navigate a paradoxical terrain where their masochistic desires both subvert and perpetuate the socio-political status quo. By examining the intersections of desire, commodification, and the shifting socio-political landscape, this research provides a nuanced understanding of how BDSM functions as a site of negotiation for those navigating the turbulent crosscurrents of capitalist and colonial legacies. Ultimately, it uncovers the complex interplay between erotic practices and the structures of power and identity in a city undergoing profound transformation.

Keywords: masochism, Hong Kong, identity, BDSM, dominatrix, masculinity, gender studies

Procedia PDF Downloads 26
2036 Contribution of Research to Innovation Management in the Traditional Fruit Production

Authors: Camille Aouinaït, Danilo Christen, Christoph Carlen

Abstract:

Introduction: Small and Medium-sized Enterprises (SMEs) are facing different challenges such as pressures on environmental resources, the rise of downstream power, and trade liberalization. Remaining competitive by implementing innovations and engaging in collaborations could be a strategic solution. In Switzerland, the Federal Institute for Research in Agriculture (Agroscope), the Federal schools of technology (EPFL and ETHZ), Cantonal universities and Universities of Applied Sciences (UAS) can provide substantial inputs. UAS were developed with specific missions to match the labor markets and society needs. Research projects produce patents, publications and improved networks of scientific expertise. The study’s goal is to measure the contribution of UAS and research organization to innovation and the impact of collaborations with partners in the non-academic environment in Swiss traditional fruit production. Materials and methods: The European projects Traditional Food Network to improve the transfer of knowledge for innovation (TRAFOON) and Social Impact Assessment of Productive Interactions between science and society (SIAMPI) frame the present study. The former aims to fill the gap between the needs of traditional food producing SMEs and innovations implemented following European projects. The latter developed a method to assess the impacts of scientific research. On one side, interviews with market players have been performed to make an inventory of needs of Swiss SMEs producing apricots and berries. The participative method allowed matching the current needs and the existing innovations coming from past European projects. Swiss stakeholders (e.g. producers, retailers, an inter-branch organization of fruits and vegetables) directly rated the needs on a five-Likert scale. To transfer the knowledge to SMEs, training workshops have been organized for apricot and berries actors separately, on specific topics. On the other hand, a mapping of a social network is drawn to characterize the links between actors, with a focus on the Swiss canton of Valais and UAS Valais Wallis. Type and frequency of interactions among actors have identified thanks to interviews. Preliminary results: A list of 369 SMEs needs grouped in 22 categories was produced with 37 fulfilled questionnaires. Swiss stakeholders rated 31 needs very important. Training workshops on apricot are focusing on varietal innovations, storage, disease (bacterial blight), pest (Drosophila suzukii), sorting and rootstocks. Entrepreneurship was targeted through trademark discussions in berry production. The UAS Valais Wallis collaborated on a few projects with Agroscope along with industries, at European and national levels. Political and public bodies interfere with the central area of agricultural vulgarization that induces close relationships between the research and the practical side. Conclusions: The needs identified by Swiss stakeholders are becoming part of training workshops to incentivize innovations. The UAS Valais Wallis takes part in collaboration projects with the research environment and market players that bring innovations helping SMEs in their contextual environment. Then, a Strategic Research and Innovation Agenda will be created in order to pursue research and answer the issues facing by SMEs.

Keywords: agriculture, innovation, knowledge transfer, university and research collaboration

Procedia PDF Downloads 398
2035 A Quantitative Study about Assessing the Effectiveness of Electronic Customer Relationship Management: A Case of Two Hotels in Mauritius

Authors: Shaheena Erkiah, Adjnu Damar Ladkoo

Abstract:

Worldwide, improving tourism competitiveness has been on the agendas of many stakeholders of the hotel sector, and they seem to have agreed that one of the best ways to compete is via the implementation of electronic customer relationship management (e-CRM). In so doing, the organizations enjoy strategic positioning on the competitive market by managing better not only the customers but, other business components including knowledge and employee management. Over the recent years, the tourism industry in Mauritius has witnessed a drastic economic boom at international and national levels; providing a new outlook to boost business performance through existing and potential customers. E-CRM has been one of the management tools used to achieving this position. Thus, this insightful context- Mauritius- was opted for the study. The aim was to assess the effectiveness of e-CRM as a strategic tool in the hotel sector in Mauritius through the implementation of business strategy to create competitive advantage and impact on the business performance. To achieve the objectives of the study, a quantitative research methodology was adopted and the research revealed that e-CRM is indeed an effective strategic tool in the hotel industry in Mauritius that can provide a competitive advantage and impact positively on the organization’s performance.

Keywords: customer, electronic, management, relationship, strategic

Procedia PDF Downloads 148
2034 Is Privatization Related with Macroeconomic Management? Evidence from Some Selected African Countries

Authors: E. O. George, P. Ojeaga, D. Odejimi, O. Mattehws

Abstract:

Has macroeconomic management succeeded in making privatization promote growth in Africa? What are the probable strategies that should accompany the privatization reform process to promote growth in Africa? To what extent has the privatization process succeeded in attracting foreign direct investment to Africa? The study investigates the relationship between macroeconomic management and privatization. Many African countries have embarked on one form of privatization reform or the other since 1980 as one of the stringent conditions for accessing capital from the IMF and the World Bank. Secondly globalization and the gradually integration of the African economy into the global economy also means that Africa has to strategically develop its domestic market to cushion itself from fluctuations and probable contagion associated with global economic crisis that are always inevitable Stiglitz. The methods of estimation used are the OLS, linear mixed effects (LME), 2SLS and the GMM method of estimation. It was found that macroeconomic management has the capacity to affect the success of the privatization reform process. It was also found that privatization was not promoting growth in Africa; privatization could promote growth if long run growth strategies are implemented together with the privatization reform process. Privatization was also found not to have the capacity to attract foreign investment to many African countries.

Keywords: Africa, political economy, game theory, macroeconomic management and privatization

Procedia PDF Downloads 335
2033 Extension Services' Needs of Small Farmers in Biliran Province, Philippines

Authors: Mario C. Nierras

Abstract:

This study aimed to determine the extension services’ needs of small farmers in Biliran province, Philippines. It also sought to find out other issues/concerns of the small farmers. Extension services’ needs of small farmers were gathered through personal interviewing and observational analysis of randomly-selected small farmers in Biliran, Philippines. Biliran small farmers extension services’ needs include: raising fruits, raising legumes, raising vegetables, raising swine, raising cattle, and raising chicken (as priority broad skills). For the specific skills, diagnosing symptoms on fertilizer deficiencies, controlling plant pests and diseases, diagnosing signs on specific pest and disease damage, controlling animal pests and diseases, and doing artificial insemination were the priority skills. They considered an on-farm trial of new technology as most needed to be coupled with industry and quality-orientedness, as positive behaviors needed in farming success. The farmers still adhere to the so-called wait-and-see attitude, thus they are more convinced to follow a particular technology if they see a concrete result of the introduced changes. Technical needs prioritization of Biliran small farmers showed that they have a real need for crop and animal production skills to include the other issues/concerns. Extension service program planning for small farmers should be patterned after their technical needs giving due attention to some issues/concerns so that extension work could deliver the right skills for the right needs of the farmers.

Keywords: extension, extension service, extension service needs, extension service program, farmers, small farmers, marginal farmers

Procedia PDF Downloads 441
2032 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation

Authors: Lo Kar Yin, Law Ka Mei

Abstract:

Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its discipline. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC Engineering and Construction Contract (ECC) Options A and C.

Keywords: building information modeling, cost estimation, quantity take-off, modeling techniques

Procedia PDF Downloads 193
2031 Comparison of Urban Regeneration Strategies in Asia and the Development of Neighbourhood Regeneration in Malaysia

Authors: Wan Jiun Tin

Abstract:

Neighborhood regeneration has gained its popularity despite market-led urban redevelopment is still the main strategy in most of the countries in Asia. Area-based approach of neighborhood regeneration with the focus on people, place and system which covers the main sustainable aspects shall be studied as part of the solution. Project implementation in small scale without fully depending on the financial support from the government and main stakeholders is the advantage of neighborhood regeneration. This enables the improving and upgrading of living conditions to be ongoing even during the economy downturn. In addition to that, there will be no specific selection on the development areas as the entire nation share the similar opportunity to upgrade and to improve their neighborhood. This is important to narrow the income disparities in urban. The objective of this paper is to review and to summarize the urban regeneration in developed countries with the focus on Korea, Singapore and Hong Kong. The aim is to determine the direction of sustainable urban regeneration in Malaysia for post-Vision 2020 through the introduction of neighborhood regeneration. This paper is conducted via literature review and observations in those selected countries. In conclusion, neighborhood regeneration shall be one of the approach of sustainable urban regeneration in Malaysia. A few criteria have been identified and to be recommended for the adaptation in Malaysia.

Keywords: area-based regeneration, public participation, sustainable urban regeneration, urban redevelopment

Procedia PDF Downloads 280
2030 The Relationship between Conceptual Organizational Culture and the Level of Tolerance in Employees

Authors: M. Sadoughi, R. Ehsani

Abstract:

The aim of the present study is examining the relationship between conceptual organizational culture and the level of tolerance in employees of Islamic Azad University of Shahre Ghods. This research is a correlational and analytic-descriptive one. The samples included 144 individuals. A 24-item standard questionnaire of organizational culture by Cameron and Queen was used in this study. This questionnaire has six criteria and each criterion includes four items that each item indicates one cultural dimension. Reliability coefficient of this questionnaire was normed using Cronbach's alpha of 0.91. Also, the 25-item questionnaire of tolerance by Conor and Davidson was used. This questionnaire is in a five-degree Likert scale form. It has seven criteria and is designed to measure the power of coping with pressure and threat. It has the needed content reliability and its reliability coefficient is normed using Cronbach's alpha of 0.87. Data were analyzed using Pearson correlation coefficient and multivariable regression. The results showed among various dimensions of organizational culture, there is a positive significant relationship between three dimensions (family, adhocracy, bureaucracy) and tolerance, there is a negative significant relationship between dimension of market and tolerance and components of organizational culture have the power of prediction and explaining the tolerance. In this explanation, the component of family is the most effective and the best predictor of tolerance.

Keywords: adhocracy, bureaucracy, organizational culture, tolerance

Procedia PDF Downloads 454
2029 Financial Centers and BRICS Stock Markets: The Effect of the Recent Crises

Authors: Marco Barassi, Nicola Spagnolo

Abstract:

This paper uses a DCC-GARCH model framework to examine mean and volatility spillovers (i.e. causality in mean and variance) dynamics between financial centers and the stock market indexes of the BRICS countries. In addition, tests for changes in the transmission mechanism are carried out by first testing for structural breaks and then setting a dummy variable to control for the 2008 financial crises. We use weekly data for nine countries, four financial centers (Germany, Japan, UK and USA) and the five BRICS countries (Brazil, Russia, India, China and South Africa). Furthermore, we control for monetary policy using domestic interest rates (90-day Treasury Bill interest rate) over the period 03/1/1990 - 04/2/2014, for a total of 1204 observations. Results show that the 2008 financial crises changed the causality dynamics for most of the countries considered. The same pattern can also be observed in conditional correlation showing a shift upward following the turbulence associated to the 2008 crises. The magnitude of these effects suggests a leading role played by the financial centers in effecting Brazil and South Africa, whereas Russia, India and China show a higher degree of resilience.

Keywords: financial crises, DCC-GARCH model, volatility spillovers, economics

Procedia PDF Downloads 360
2028 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring

Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau

Abstract:

The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.

Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems

Procedia PDF Downloads 204
2027 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011

Authors: S. Abera, T. Gidey, W. Terefe

Abstract:

Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.

Keywords: data mining, HIV, testing, ethiopia

Procedia PDF Downloads 503
2026 Sales-Based Dynamic Investment and Leverage Decisions: A Longitudinal Study

Authors: Rihab Belguith, Fathi Abid

Abstract:

The paper develops a system-based approach to investigate the dynamic adjustment of debt structure and investment policies of the Dow-Jones index. This approach enables the assessment of relations among sales, debt, and investment opportunities by considering the simultaneous effect of the market environmental change and future growth opportunities. We integrate the firm-specific sales variance to capture the industries' conditions in the model. Empirical results were obtained through a panel data set of firms with different sectors. The analysis support that environmental change does not affect equally the different industry since operating leverage differs among industries and so the sensitivity to sales variance. Including adjusted-specific variance, we find that there is no monotonic relation between leverage, sales, and investment. The firm may choose a low debt level in response to high sales variance but high leverage to attenuate the negative relation between sales variance and the current level of investment. We further find that while the overall effect of debt maturity on leverage is unaffected by the level of growth opportunities, the shorter the maturity of debt is, the smaller the direct effect of sales variance on investment.

Keywords: dynamic panel, investment, leverage decision, sales uncertainty

Procedia PDF Downloads 246
2025 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling

Authors: Sushma Ghogale

Abstract:

With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.

Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis

Procedia PDF Downloads 104
2024 Experiences of Discrimination and Coping Strategies of Second Generation Academics during the Career-Entry Phase in Austria

Authors: R. Verwiebe, L. Seewann, M. Wolf

Abstract:

This presentation addresses marginalization and discrimination as experienced by young academics with a migrant background in the Austrian labor market. Focusing on second generation academics of Central Eastern European and Turkish descent we explore two major issues. First, we ask whether their career-entry and everyday professional life entails origin-specific barriers. As educational residents, they show competences which, when lacking, tend to be drawn upon to explain discrimination: excellent linguistic skills, accredited high-level training, and networks. Second, we concentrate on how this group reacts to discrimination and overcomes experiences of marginalization. To answer these questions, we utilize recent sociological and social psychological theories that focus on the diversity of individual experiences. This distinguishes us from a long tradition of research that has dealt with the motives that inform discrimination, but has less often considered the effects on those concerned. Similarly, applied coping strategies have less often been investigated, though they may provide unique insights into current problematic issues. Building upon present literature, we follow recent discrimination research incorporating the concepts of ‘multiple discrimination’, ‘subtle discrimination’, and ‘visual social markers’. 21 problem-centered interviews are the empirical foundation underlying this study. The interviewees completed their entire educational career in Austria, graduated in different universities and disciplines and are working in their first post-graduate jobs (career entry phase). In our analysis, we combined thematic charting with a coding method. The results emanating from our empirical material indicated a variety of discrimination experiences ranging from barely perceptible disadvantages to directly articulated and overt marginalization. The spectrum of experiences covered stereotypical suppositions at job interviews, the disavowal of competencies, symbolic or social exclusion by new colleges, restricted professional participation (e.g. customer contact) and non-recruitment due to religious or ethnical markers (e.g. headscarves). In these experiences the role of the academics education level, networks, or competences seemed to be minimal, as negative prejudice on the basis of visible ‘social markers’ operated ‘ex-ante’. The coping strategies identified in overcoming such barriers are: an increased emphasis on effort, avoidance of potentially marginalizing situations, direct resistance (mostly in the form of verbal opposition) and dismissal of negative experiences by ignoring or ironizing the situation. In some cases, the academics drew into their specific competences, such as an intellectual approach of studying specialist literature, focus on their intercultural competences or planning to migrate back to their parent’s country of origin. Our analysis further suggests a distinction between reactive (i.e. to act on and respond to experienced discrimination) and preventative strategies (applied to obviate discrimination) of coping. In light of our results, we would like to stress that the tension between educational and professional success experienced by academics with a migrant background – and the barriers and marginalization they continue to face – are essential issues to be introduced to socio-political discourse. It seems imperative to publicly accentuate the growing social, political and economic significance of this group, their educational aspirations, as well as their experiences of achievement and difficulties.

Keywords: coping strategies, discrimination, labor market, second generation university graduates

Procedia PDF Downloads 224
2023 Short Review on Models to Estimate the Risk in the Financial Area

Authors: Tiberiu Socaciu, Tudor Colomeischi, Eugenia Iancu

Abstract:

Business failure affects in various proportions shareholders, managers, lenders (banks), suppliers, customers, the financial community, government and society as a whole. In the era in which we have telecommunications networks, exists an interdependence of markets, the effect of a failure of a company is relatively instant. To effectively manage risk exposure is thus require sophisticated support systems, supported by analytical tools to measure, monitor, manage and control operational risks that may arise. As we know, bankruptcy is a phenomenon that managers do not want no matter what stage of life is the company they direct / lead. In the analysis made by us, by the nature of economic models that are reviewed (Altman, Conan-Holder etc.), estimating the risk of bankruptcy of a company corresponds to some extent with its own business cycle tracing of the company. Various models for predicting bankruptcy take into account direct / indirect aspects such as market position, company growth trend, competition structure, characteristics and customer retention, organization and distribution, location etc. From the perspective of our research we will now review the economic models known in theory and practice for estimating the risk of bankruptcy; such models are based on indicators drawn from major accounting firms.

Keywords: Anglo-Saxon models, continental models, national models, statistical models

Procedia PDF Downloads 411
2022 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency

Authors: Niya Chen, Jennifer Chan

Abstract:

In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.

Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk

Procedia PDF Downloads 115
2021 A Quantitative Case Study Analysis of Store Format Contributors to U.S. County Obesity Prevalence in Virginia

Authors: Bailey Houghtaling, Sarah Misyak

Abstract:

Food access; the availability, affordability, convenience, and desirability of food and beverage products within communities, is influential on consumers’ purchasing and consumption decisions. These variables may contribute to lower dietary quality scores and a higher obesity prevalence documented among rural and disadvantaged populations in the United States (U.S.). Current research assessing linkages between food access and obesity outcomes has primarily focused on distance to a traditional grocery/supermarket store as a measure of optimality. However, low-income consumers especially, including U.S. Department of Agriculture’s Supplemental Nutrition Assistance Program (SNAP) participants, seem to utilize non-traditional food store formats with greater frequency for household dietary needs. Non-traditional formats have been associated with less nutritious food and beverage options and consumer purchases that are high in saturated fats, added sugars, and sodium. Authors’ formative research indicated differences by U.S. region and rurality in the distribution of traditional and non-traditional SNAP-authorized food store formats. Therefore, using Virginia as a case study, the purpose of this research was to determine if a relationship between store format, rurality, and obesity exists. This research applied SNAP-authorized food store data (food access points for SNAP as well as non-SNAP consumers) and obesity prevalence data by Virginia county using publicly available databases: (1) SNAP Retailer Locator, and; (2) U.S. County Health Rankings. The alpha level was set a priori at 0.05. All Virginia SNAP-authorized stores (n=6,461) were coded by format – grocery, drug, mass merchandiser, club, convenience, dollar, supercenter, specialty, farmers market, independent grocer, and non-food store. Simple linear regression was applied primarily to assess the relationship between store format and obesity. Thereafter, multiple variables were added to the regression to account for potential moderating relationships (e.g., county income, rurality). Convenience, dollar, non-food or restaurant, mass merchandiser, farmers market, and independent grocer formats were significantly, positively related to obesity prevalence. Upon controlling for urban-rural status and income, results indicated the following formats to be significantly related to county obesity prevalence with a small, positive effect: convenience (p=0.010), accounting for 0.3% of the variance in obesity prevalence; dollar (p=0.005; 0.5% of the variance), and; non-food (p=0.030; 1.3% of the variance) formats. These results align with current literature on consumer behavior at non-traditional formats. For example, consumers’ food and beverage purchases at convenience and dollar stores are documented to be high in saturated fats, added sugars, and sodium. Further, non-food stores (i.e., quick-serve restaurants) often contribute to a large portion of U.S. consumers’ dietary intake and thus poor dietary quality scores. Current food access research investigates grocery/supermarket access and obesity outcomes. These results suggest more research is needed that focuses on non-traditional food store formats. Nutrition interventions within convenience, dollar, and non-food stores, for example, that aim to enhance not only healthy food access but the affordability, convenience, and desirability of nutritious food and beverage options may impact obesity rates in Virginia. More research is warranted utilizing the presented investigative framework in other U.S. and global regions to explore the role and the potential of non-traditional food store formats to prevent and reduce obesity.

Keywords: food access, food store format, non-traditional food stores, obesity prevalence

Procedia PDF Downloads 144
2020 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 96
2019 Service Information Integration Platform as Decision Making Tools for the Service Industry Supply Chain-Indonesia Service Integration Project

Authors: Haikal Achmad Thaha, Pujo Laksono, Dhamma Nibbana Putra

Abstract:

Customer service is one of the core interest in a service sector of a company, whether as the core business or as service part of the operation. Most of the time, the people and the previous research in service industry is focused on finding the best business model solution for the service sector, usually to decide between total in house customer service, outsourcing, or something in between. Conventionally, to take this decision is some important part of the management job, and this is a process that usually takes some time and staff effort, meanwhile market condition and overall company needs may change and cause loss of income and temporary disturbance in the companies operation . However, in this paper we have offer a new concept model to assist decision making process in service industry. This model will featured information platform as central tool to integrate service industry operation. The result is service information model which would ideally increase response time and effectivity of the decision making. it will also help service industry in switching the service solution system quickly through machine learning when the companies growth and the service solution needed are changing.

Keywords: service industry, customer service, machine learning, decision making, information platform

Procedia PDF Downloads 625
2018 Wind Speed Forecasting Based on Historical Data Using Modern Prediction Methods in Selected Sites of Geba Catchment, Ethiopia

Authors: Halefom Kidane

Abstract:

This study aims to assess the wind resource potential and characterize the urban area wind patterns in Hawassa City, Ethiopia. The estimation and characterization of wind resources are crucial for sustainable urban planning, renewable energy development, and climate change mitigation strategies. A secondary data collection method was used to carry out the study. The collected data at 2 meters was analyzed statistically and extrapolated to the standard heights of 10-meter and 30-meter heights using the power law equation. The standard deviation method was used to calculate the value of scale and shape factors. From the analysis presented, the maximum and minimum mean daily wind speed at 2 meters in 2016 was 1.33 m/s and 0.05 m/s in 2017, 1.67 m/s and 0.14 m/s in 2018, 1.61m and 0.07 m/s, respectively. The maximum monthly average wind speed of Hawassa City in 2016 at 2 meters was noticed in the month of December, which is around 0.78 m/s, while in 2017, the maximum wind speed was recorded in the month of January with a wind speed magnitude of 0.80 m/s and in 2018 June was maximum speed which is 0.76 m/s. On the other hand, October was the month with the minimum mean wind speed in all years, with a value of 0.47 m/s in 2016,0.47 in 2017 and 0.34 in 2018. The annual mean wind speed was 0.61 m/s in 2016,0.64, m/s in 2017 and 0.57 m/s in 2018 at a height of 2 meters. From extrapolation, the annual mean wind speeds for the years 2016,2017 and 2018 at 10 heights were 1.17 m/s,1.22 m/s, and 1.11 m/s, and at the height of 30 meters, were 3.34m/s,3.78 m/s, and 3.01 m/s respectively/Thus, the site consists mainly primarily classes-I of wind speed even at the extrapolated heights.

Keywords: artificial neural networks, forecasting, min-max normalization, wind speed

Procedia PDF Downloads 80
2017 Public-Private Partnership in Tourism Development: Kuwait Experience within 2035 Vision

Authors: Obaid Alotaibi

Abstract:

Tourism and recreation have become one of the important and influential sectors in most of the modern economies. This sector has been accepted as one of the alternative sources of national income, employment, and foreign exchange. Kuwait has many potentialities in tourism and recreation, and exploitation of this leads to more diversification of the economy besides augmenting its contribution to the GDP. It is an import-oriented economy; it requires hard currencies (foreign exchange) to meet the import costs as well as to maintain stability in the international market. To compensate for the revenue fall stemmed from fluctuations in oil prices -where the agriculture, fisheries, and industrial sectors are too immune and inelastic- the only alternative solution is the regeneration of the tourism and recreation to surface. This study envisages the characteristics of tourism and recreation, the economic and social importance for the society, the physical and human endowments, as well as the tourist pattern and plans for promoting and sustaining tourism in the country. The study summarizes many recommendations, including the necessity of establishing authority or a council for tourism, linking the planning of tourism development with the comprehensive planning for economic and social development in Kuwait in the shadow of 2035 vision, and to encourage the investors to develop new tourist and recreation projects.

Keywords: Kuwait, public-private, partnership, tourism, 2035 vision

Procedia PDF Downloads 131
2016 Consumer Perception of 3D Body Scanning While Online Shopping for Clothing

Authors: A. Grilec, S. Petrak, M. Mahnic Naglic

Abstract:

Technological development and the globalization in production and sales of clothing in the last decade have significantly influenced the changes in consumer relationship with the industrial-fashioned apparel and in the way of clothing purchasing. The Internet sale of clothing is in a constant and significant increase in the global market, but the possibilities offered by modern computing technologies in the customization segment are not yet fully involved, especially according to the individual customer requirements and body sizes. Considering the growing trend of online shopping, the main goal of this paper is to investigate the differences in customer perceptions towards online apparel shopping and particularly to discover the main differences in perceptions between customers regarding three different body sizes. In order to complete the research goal, the quantitative study on the sample of 85 Croatian consumers was conducted in 2017 in Zagreb, Croatia. Respondents were asked to indicate their level of agreement according to a five-point Likert scale ranging from strongly disagree (1) to strongly agree (5). To analyze attitudes of respondents, simple and descriptive statistics were used. The main findings highlight the differences in respondent perception of 3D body scanning, using 3D body scanning in Internet shopping, online apparel shopping habits regarding their body sizes.

Keywords: consumer behavior, Internet, 3D body scanning, body types

Procedia PDF Downloads 167
2015 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 95