Search results for: geospatial data management
27706 Development of an Integrated Route Information Management Software
Authors: Oluibukun G. Ajayi, Joseph O. Odumosu, Oladimeji T. Babafemi, Azeez Z. Opeyemi, Asaleye O. Samuel
Abstract:
The need for the complete automation of every procedure of surveying and most especially, its engineering applications cannot be overemphasized due to the many demerits of the conventional manual or analogue approach. This paper presents the summarized details of the development of a Route Information Management (RIM) software. The software, codenamed ‘AutoROUTE’, was encoded using Microsoft visual studio-visual basic package, and it offers complete automation of the computational procedures and plan production involved in route surveying. It was experimented using a route survey data (longitudinal profile and cross sections) of a 2.7 km road which stretches from Dama to Lunko village in Minna, Niger State, acquired with the aid of a Hi-Target DGPS receiver. The developed software (AutoROUTE) is capable of computing the various simple curve parameters, horizontal curve, and vertical curve, and it can also plot road alignment, longitudinal profile, and cross-section with a capability to store this on the SQL incorporated into the Microsoft visual basic software. The plotted plans with AutoROUTE were compared with the plans produced with the conventional AutoCAD Civil 3D software, and AutoROUTE proved to be more user-friendly and accurate because it plots in three decimal places whereas AutoCAD plots in two decimal places. Also, it was discovered that AutoROUTE software is faster in plotting and the stages involved is less cumbersome compared to AutoCAD Civil 3D software.Keywords: automated systems, cross sections, curves, engineering construction, longitudinal profile, route surveying
Procedia PDF Downloads 14827705 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa
Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka
Abstract:
Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise
Procedia PDF Downloads 20527704 Financial Literacy of Students of Finance
Authors: Barbora Chmelíková
Abstract:
Financial literacy is a widely discussed topic on the national and international level by governments, organizations and academia. For this reason this study analyses financial knowledge, financial behavior and financial attitudes of students of finance. The aim of the paper is to determine whether the financial literacy of university students studying finance differs from the level of financial literacy in selected OECD countries. The research was conducted at Masaryk University in the Czech Republic. The empirical study comprises questions related to several aspects of financial literacy, as well as socio-demographic data enabling more thorough analysis. The results indicate that improvement in financial literacy of university students is still required, even though their major is finance related.Keywords: financial literacy, financial behavior, personal finance management, university students
Procedia PDF Downloads 38327703 Analytical Slope Stability Analysis Based on the Statistical Characterization of Soil Shear Strength
Authors: Bernardo C. P. Albuquerque, Darym J. F. Campos
Abstract:
Increasing our ability to solve complex engineering problems is directly related to the processing capacity of computers. By means of such equipments, one is able to fast and accurately run numerical algorithms. Besides the increasing interest in numerical simulations, probabilistic approaches are also of great importance. This way, statistical tools have shown their relevance to the modelling of practical engineering problems. In general, statistical approaches to such problems consider that the random variables involved follow a normal distribution. This assumption tends to provide incorrect results when skew data is present since normal distributions are symmetric about their means. Thus, in order to visualize and quantify this aspect, 9 statistical distributions (symmetric and skew) have been considered to model a hypothetical slope stability problem. The data modeled is the friction angle of a superficial soil in Brasilia, Brazil. Despite the apparent universality, the normal distribution did not qualify as the best fit. In the present effort, data obtained in consolidated-drained triaxial tests and saturated direct shear tests have been modeled and used to analytically derive the probability density function (PDF) of the safety factor of a hypothetical slope based on Mohr-Coulomb rupture criterion. Therefore, based on this analysis, it is possible to explicitly derive the failure probability considering the friction angle as a random variable. Furthermore, it is possible to compare the stability analysis when the friction angle is modelled as a Dagum distribution (distribution that presented the best fit to the histogram) and as a Normal distribution. This comparison leads to relevant differences when analyzed in light of the risk management.Keywords: statistical slope stability analysis, skew distributions, probability of failure, functions of random variables
Procedia PDF Downloads 33827702 Korean Smart Cities: Strategic Foci, Characteristics and Effects
Authors: Sang Ho Lee, Yountaik Leem
Abstract:
This paper reviews Korean cases of smart cities through the analysis framework of strategic foci, characteristics and effects. Firstly, national strategies including c(cyber), e(electronic), u(ubiquitous) and s(smart) Korea strategies were considered from strategic angles. Secondly, the characteristics of smart cities in Korea were looked through the smart cities examples such as Seoul, Busan, Songdo and Sejong cities etc. from the views on the by STIM (Service, Technology, Infrastructure and Management) analysis. Finally, the effects of smart cities on socio-economies were investigated from industrial perspective using the input-output model and structural path analysis. Korean smart city strategies revealed that there were different kinds of strategic foci. c-Korea strategy focused on information and communications network building and user IT literacy. e-Korea strategy encouraged e-government and e-business through utilizing high-speed information and communications network. u-Korea strategy made ubiquitous service as well as integrated information and communication operations center. s-Korea strategy is propelling 4th industrial platform. Smart cities in Korea showed their own features and trends such as eco-intelligence, high efficiency and low cost oriented IoT, citizen sensored city, big data city. Smart city progress made new production chains fostering ICTs (Information Communication Technologies) and knowledge intermediate inputs to industries.Keywords: Korean smart cities, Korean smart city strategies, STIM, smart service, infrastructure, technologies, management, effect of smart city
Procedia PDF Downloads 36627701 Integrated Model for Enhancing Data Security Processing Time in Cloud Computing
Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali
Abstract:
Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a simple user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.Keywords: cloud computing, data security, SAAS, PAAS, IAAS, Blowfish
Procedia PDF Downloads 35927700 Transformative Leadership and Learning Management Systems Implementation: Leadership Practices in Instructional Design for Online Learning
Authors: Felix Brito
Abstract:
With the growth of online learning, several higher education institutions have attempted to incorporate technology in their curriculum. Successful technology implementation projects really on technology infrastructure and on the acceptance of education professionals towards innovation. This research study is aimed at illustrating the relevance of the human component in technology implementation projects in higher education by describing the Learning Management System implementation project executed by instructional designers working for a higher education institution in the southeast region of the United States. An analysis of the Transformative Leadership Theory, the Technology Acceptance Model, and the Diffusion of Innovation Process provide the support for a solid understanding of this issue and address recommendations for future technology implementation projects in higher education institutions.Keywords: diffusion of innovation process, instructional design, leadership, learning management systems, online learning, technology acceptance model, transformative leadership theory
Procedia PDF Downloads 33027699 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia
Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza
Abstract:
In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant
Procedia PDF Downloads 46727698 Consequences of Adolescent Childbearing Among Teen Mothers In Gatsibo District, Rwanda
Authors: Joselyne Rugema, Innocent Twagirayezu, Aimable Nkurunziza, Alice Nyirazigama, Vedaste Bagweneza, Belancilla Nikuze
Abstract:
Introduction: Burn injuries among children are associated with major complications. Early health care seeking and appropriate management are crucial in saving lives and preventing complications. Objective: To assess home-based management practices and health seeking behaviors among caregivers of children admitted with burn injuries at selected hospitals in Rwanda. Methods: A cross-sectional descriptive study was conducted among caregivers of children admitted with burn injuries at three hospitals in Kigali. A semi-structured questionnaire was used to collect the data that were analyzed using SPSS version 25. Statistical software Results: Most of the children with burn injuries had median age of 36 months, and 89.9% had second-degree burns. 92.4% of burns happened at home and 63.3% were scalds. Only 18% of the caregivers seek care immediately after children’s burn injuries. About 2.5% reported not seeking any care after burn injuries and 3.8% sought care from traditional healers. 65.9% of the participants used wrong practices before seeking care such as applying honey, cooking oil and urine to the burn injuries. Transportation difficulties before consulting health facilities were the main reported faced barriers to success health care (86.1%). Conclusion: Immediate health seeking behavior was low. Wrong practices including application of harmful products to burn injuries are common in the community. There is a need for community based interventions to prevent burn injuries at home and to empower the community with appropriate actions to take after injuries.Keywords: adolescent pregnancy, qualitative design, childbearing, teenage mothers
Procedia PDF Downloads 6127697 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 34127696 Methodologies for Management of Sustainable Tourism: A Case Study in Jalapão/to/Brazil
Authors: Mary L. G. S. Senna, Veruska C. Dutra, Afonso R. Aquino
Abstract:
The study is in application and analysis of two tourism management tools that can contribute to making public managers decision: the Barometer of Tourism Sustainability (BTS) and the Ecological Footprint (EF). The results have shown that BTS allows you to have an integrated view of the tourism system, awakening to the need for planning of appropriate actions so that it can achieve the positive scale proposed (potentially sustainable). Already the methodology of ecological tourism footprint is an important tool to measure potential impacts generated by tourism to tourist reality.Keywords: barometer of tourism sustainability, ecological footprint of tourism, Jalapão/Brazil, sustainable tourism
Procedia PDF Downloads 50327695 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 9427694 The Assessment of Particulate Matter Pollution in Kaunas Districts
Authors: Audrius Dedele, Aukse Miskinyte
Abstract:
Air pollution is a major problem, especially in large cities, causing a variety of environmental issues and a risk to human health effects. In order to observe air quality, to reduce and control air pollution in the city, municipalities are responsible for the creation of air quality management plans, air quality monitoring and emission inventories. Atmospheric dispersion modelling systems, along with monitoring, are powerful tools, which can be used not only for air quality management, but for the assessment of human exposure to air pollution. These models are widely used in epidemiological studies, which try to determine the associations between exposure to air pollution and the adverse health effects. The purpose of this study was to determine the concentration of particulate matter smaller than 10 μm (PM10) in different districts of Kaunas city during winter season. ADMS-Urban dispersion model was used for the simulation of PM10 pollution. The inputs of the model were the characteristics of stationary, traffic and domestic sources, emission data, meteorology and background concentrations were entered in the model. To assess the modelled concentrations of PM10 in Kaunas districts, geographic information system (GIS) was used. More detailed analysis was made using Spatial Analyst tools. The modelling results showed that the average concentration of PM10 during winter season in Kaunas city was 24.8 µg/m3. The highest PM10 levels were determined in Zaliakalnis and Aleksotas districts with are the highest number of individual residential properties, 32.0±5.2 and 28.7±8.2 µg/m3, respectively. The lowest pollution of PM10 was modelled in Petrasiunai district (18.4 µg/m3), which is characterized as commercial and industrial neighbourhood.Keywords: air pollution, dispersion model, GIS, Particulate matter
Procedia PDF Downloads 26927693 Childhood Cataract: A Socio-Clinical Study at a Public Sector Tertiary Eye Care Centre in India
Authors: Deepak Jugran, Rajesh Gill
Abstract:
Purpose: To study the demographic, sociological, gender and clinical profile of the children presented for childhood cataract at a public sector tertiary eye care centre in India. Methodology: The design of the study is retrospective, and hospital-based data is available with the Central Registration Department of the PGIMER, Chandigarh. The majority of the childhood cataract cases are being reported in this hospital, yet not each and every case of childhood cataract approaches PGI, Chandigarh. Nevertheless, this study is going to be pioneering research in India, covering five-year data of the childhood cataract patients who visited the Advanced Eye Centre, PGIMER, Chandigarh, from 1.1.2015 to 31.12.2019. The SPSS version 23 was used for all statistical calculations. Results: A Total of 354 children were presented for childhood cataract from 1.1.2015 to 31.12.2019. Out of 354 children, 248 (70%) were male, and 106 (30%) were female. In-spite of 2 flagship programmes, namely the National Programme for Control of Blindness (NPCB) and Aayushman Bharat (PM JAY) for eradication of cataract, no children received any financial assistance from these two programmes. A whopping 99% of these children belong to the poor families. In most of these families, the mothers were house-wives and did not employ anywhere. These interim results will soon be conveyed to the Govt. of India so that a suitable mechanism can be evolved to address this pertinent issue. Further, the disproportionate ratio of male and female children in this study is an area of concern as we don’t know whether the prevalence of childhood cataract is lower in female children or they are not being presented on time in the hospital by the families. Conclusion: The World Health Organization (WHO) has categorized Childhood blindness resulting from cataract as a priority area and urged all member countries to develop institutionalized mechanisms for its early detection, diagnosis and management. The childhood cataract is an emerging and major cause of preventable and avoidable childhood blindness, especially in low and middle-income countries. In the formative years, the children require a sound physical, mental and emotional state, and in the absence of either one of them, it can severely dent their future growth. The recent estimate suggests that India could suffer an economic loss of US$12 billion (Rs. 88,000 Crores) due to blindness, and almost 35% of cases of blindness are preventable and avoidable if detected at an early age. Besides reporting these results to the policy makers, synchronized efforts are needed for early detection and management of avoidable causes of childhood blindness such as childhood cataract.Keywords: childhood blindness, cataract, Who, Npcb
Procedia PDF Downloads 10627692 Regulatory and Economic Challenges of AI Integration in Cyber Insurance
Authors: Shreyas Kumar, Mili Shangari
Abstract:
Integrating artificial intelligence (AI) in the cyber insurance sector represents a significant advancement, offering the potential to revolutionize risk assessment, fraud detection, and claims processing. However, this integration introduces a range of regulatory and economic challenges that must be addressed to ensure responsible and effective deployment of AI technologies. This paper examines the multifaceted regulatory landscape governing AI in cyber insurance and explores the economic implications of compliance, innovation, and market dynamics. AI's capabilities in processing vast amounts of data and identifying patterns make it an invaluable tool for insurers in managing cyber risks. Yet, the application of AI in this domain is subject to stringent regulatory scrutiny aimed at safeguarding data privacy, ensuring algorithmic transparency, and preventing biases. Regulatory bodies, such as the European Union with its General Data Protection Regulation (GDPR), mandate strict compliance requirements that can significantly impact the deployment of AI systems. These regulations necessitate robust data protection measures, ethical AI practices, and clear accountability frameworks, all of which entail substantial compliance costs for insurers. The economic implications of these regulatory requirements are profound. Insurers must invest heavily in upgrading their IT infrastructure, implementing robust data governance frameworks, and training personnel to handle AI systems ethically and effectively. These investments, while essential for regulatory compliance, can strain financial resources, particularly for smaller insurers, potentially leading to market consolidation. Furthermore, the cost of regulatory compliance can translate into higher premiums for policyholders, affecting the overall affordability and accessibility of cyber insurance. Despite these challenges, the potential economic benefits of AI integration in cyber insurance are significant. AI-enhanced risk assessment models can provide more accurate pricing, reduce the incidence of fraudulent claims, and expedite claims processing, leading to overall cost savings and increased efficiency. These efficiencies can improve the competitiveness of insurers and drive innovation in product offerings. However, balancing these benefits with regulatory compliance is crucial to avoid legal penalties and reputational damage. The paper also explores the potential risks associated with AI integration, such as algorithmic biases that could lead to unfair discrimination in policy underwriting and claims adjudication. Regulatory frameworks need to evolve to address these issues, promoting fairness and transparency in AI applications. Policymakers play a critical role in creating a balanced regulatory environment that fosters innovation while protecting consumer rights and ensuring market stability. In conclusion, the integration of AI in cyber insurance presents both regulatory and economic challenges that require a coordinated approach involving regulators, insurers, and other stakeholders. By navigating these challenges effectively, the industry can harness the transformative potential of AI, driving advancements in risk management and enhancing the resilience of the cyber insurance market. This paper provides insights and recommendations for policymakers and industry leaders to achieve a balanced and sustainable integration of AI technologies in cyber insurance.Keywords: artificial intelligence (AI), cyber insurance, regulatory compliance, economic impact, risk assessment, fraud detection, cyber liability insurance, risk management, ransomware
Procedia PDF Downloads 3327691 The Impact of Host Country Effects on Transferring HRM Practices from Western Headquarters to Ukrainian Subsidiaries
Authors: Olga Novitskaya
Abstract:
The emerging markets of post-USSR countries have attracted Western multinational companies; however, weak institutions and unstable host country environments have hindered the implementation of successful management practices. The Ukrainian market, in light of recent events, is particularly interesting to study for its compatibility with Western businesses. This paper focuses on factors that can facilitate or inhibit the transfer of human resource management practices from Western headquarters to Ukrainian subsidiaries. To explain the national context’s effects better, a business systems approach has been applied to a qualitative study of 16 wholly owned Western subsidiaries, dissecting the reasons for a weak integration of Western practices in Ukraine. Results show that underdeveloped institutions have forced companies to develop additional practices that compensate for national weaknesses, as well as to adjust to a constantly changing environment. Flexibility and local responsiveness were observed as vital for success in Ukraine.Keywords: human resource management, Ukraine, business system, multinational companies, HR practices
Procedia PDF Downloads 39327690 An Investigation of Challenges in Implementing Sustainable Supply Chain Management for Construction Industry in Thailand by Interpretive Structural Model Approach
Authors: Shaolan Zou, Kullapa Soratana
Abstract:
Construction industry faces tremendous challenges in sustainability issue in recent years. Building materials, generally, are non-recyclable with short service life time, leading to economic loss. Building sites also cause social issues, e.g. noise, hazardous substances, and particulate matters. Sustainable supply chain management (SSCM) has been recognized as an appropriate method to balance three pillars of sustainability: environment, economy, and society. However, most of construction companies cannot successfully adopt SSCM due to numerous challenges. In this study, a list of challenges in implementing SSCM was collected from peer-reviewed literature on sustainable implementation. A building materials company in Thailand, which has successfully adopted SSCM for almost two decades and established the sustainable development committee since 1995, was used as a case study. Management-level representatives in sustainability department of the company were interviewed, mainly, to examine which challenges on the list complies with the company’s condition when adopting SSCM. The interview result was analyzed by interpretive structural model (ISM) with sustainability experts’ opinions to identify top 5 influential challenges. The results could assist a building construction company in assigning appropriate strategies to overcome most influential barriers, as well as in using as a reference or guidance for other construction companies adopting SSCM.Keywords: sustainable supply chain management, challenges, construction industry, interpretive structural model
Procedia PDF Downloads 18127689 Emotional Artificial Intelligence and the Right to Privacy
Authors: Emine Akar
Abstract:
The majority of privacy-related regulation has traditionally focused on concepts that are perceived to be well-understood or easily describable, such as certain categories of data and personal information or images. In the past century, such regulation appeared reasonably suitable for its purposes. However, technologies such as AI, combined with ever-increasing capabilities to collect, process, and store “big data”, not only require calibration of these traditional understandings but may require re-thinking of entire categories of privacy law. In the presentation, it will be explained, against the background of various emerging technologies under the umbrella term “emotional artificial intelligence”, why modern privacy law will need to embrace human emotions as potentially private subject matter. This argument can be made on a jurisprudential level, given that human emotions can plausibly be accommodated within the various concepts that are traditionally regarded as the underlying foundation of privacy protection, such as, for example, dignity, autonomy, and liberal values. However, the practical reasons for regarding human emotions as potentially private subject matter are perhaps more important (and very likely more convincing from the perspective of regulators). In that respect, it should be regarded as alarming that, according to most projections, the usefulness of emotional data to governments and, particularly, private companies will not only lead to radically increased processing and analysing of such data but, concerningly, to an exponential growth in the collection of such data. In light of this, it is also necessity to discuss options for how regulators could address this emerging threat.Keywords: AI, privacy law, data protection, big data
Procedia PDF Downloads 8827688 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 27427687 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method
Authors: Anung Style Bukhori, Ani Dijah Rahajoe
Abstract:
Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.Keywords: poverty, classification, naïve bayes, Indonesia
Procedia PDF Downloads 5527686 Self-Efficacy Psychoeducational Programme for Patients With End-Stage Renal Disease
Authors: H.C. Chen, S. W. C. Chan, K. Cheng, A. Vathsala, H. K. Sran, H. He
Abstract:
Background: End-stage renal disease (ESRD) is the last stage of chronic kidney disease. The numbers of patients with ESRD have increased worldwide due to the growing number of aging, diabetes and hypertension populations. Patients with ESRD suffer from physical illness and psychological distress due to complex treatment regimens, which often affect the patients’ social and psychological functioning. As a result, the patients may fail to perform daily self-care and self-management, and consequently experience worsening conditions. Aims: The study aims to examine the effectiveness of a self-efficacy psychoeducational programme on primary outcome (self-efficacy) and secondary outcomes (psychological wellbeing, treatment adherence, and quality of life) in patients with ESRD and haemodialysis in Singapore. Methodology: A randomised controlled, two-group pretest and repeated posttests design will be carried out. A total of 154 participants (n=154) will be recruited. The participants in the control group will receive a routine treatment. The participants in the intervention group will receive a self-efficacy psychoeducational programme in addition to the routine treatment. The programme is a two-session of educational intervention in a week. A booklet, two consecutive sessions of face-to-face individual education, and an abdominal breathing exercise are adopted in the programme. Outcome measurements include Dialysis Specific Self-efficacy Scale, Kidney Disease Quality of Life- 36 Hospital Anxiety and Depression Scale, Renal Adherence Attitudes Questionnaire and Renal Adherence Behaviour Questionnaire. The questionnaires will be used to measure at baseline, 1- and 3- and 6-month follow-up periods. Process evaluation will be conducted with a semi-structured face to face interview. Quantitative data will be analysed using SPSS21.0 software. Qualitative data will be analysed by content analysis. Significance of the study: This study will identify a clinically useful and potentially effective approach to help patients with end-stage renal disease and haemodialysis by enhancing their self-efficacy in self-care behaviour, and therefore improving their psychological wellbeing, treatment adherence and quality of life. This study will provide information to develop clinical guidelines to improve patients’ disease self-management and to enhance health-related outcomes. Hopefully it will help reducing disease burden.Keywords: end-stage renal disease (ESRD), haemodialysis, psychoeducation, self-efficacy
Procedia PDF Downloads 30327685 Geographic Information System-Based Map for Best Suitable Place for Cultivating Permanent Trees in South-Lebanon
Authors: Allaw Kamel, Al-Chami Leila
Abstract:
It is important to reduce the human influence on natural resources by identifying an appropriate land use. Moreover, it is essential to carry out the scientific land evaluation. Such kind of analysis allows identifying the main factors of agricultural production and enables decision makers to develop crop management in order to increase the land capability. The key is to match the type and intensity of land use with its natural capability. Therefore; in order to benefit from these areas and invest them to obtain good agricultural production, they must be organized and managed in full. Lebanon suffers from the unorganized agricultural use. We take south Lebanon as a study area, it is the most fertile ground and has a variety of crops. The study aims to identify and locate the most suitable area to cultivate thirteen type of permanent trees which are: apples, avocados, stone fruits in coastal regions and stone fruits in mountain regions, bananas, citrus, loquats, figs, pistachios, mangoes, olives, pomegranates, and grapes. Several geographical factors are taken as criterion for selection of the best location to cultivate. Soil, rainfall, PH, temperature, and elevation are main inputs to create the final map. Input data of each factor is managed, visualized and analyzed using Geographic Information System (GIS). Management GIS tools are implemented to produce input maps capable of identifying suitable areas related to each index. The combination of the different indices map generates the final output map of the suitable place to get the best permanent tree productivity. The output map is reclassified into three suitability classes: low, moderate, and high suitability. Results show different locations suitable for different kinds of trees. Results also reflect the importance of GIS in helping decision makers finding a most suitable location for every tree to get more productivity and a variety in crops.Keywords: agricultural production, crop management, geographical factors, Geographic Information System, GIS, land capability, permanent trees, suitable location
Procedia PDF Downloads 14127684 Nuclear Near Misses and Their Learning for Healthcare
Authors: Nick Woodier, Iain Moppett
Abstract:
Background: It is estimated that one in ten patients admitted to hospital will suffer an adverse event in their care. While the majority of these will result in low harm, patients are being significantly harmed by the processes meant to help them. Healthcare, therefore, seeks to make improvements in patient safety by taking learning from other industries that are perceived to be more mature in their management of safety events. Of particular interest to healthcare are ‘near misses,’ those events that almost happened but for an intervention. Healthcare does not have any guidance as to how best to manage and learn from near misses to reduce the chances of harm to patients. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from the UK nuclear sector to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. The nuclear sector was chosen as an exemplar due to its status as an ultra-safe industry. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, scenario discussion, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how nuclear manages near misses with a focus on defining them and clarifying how best to support reporting and analysis to extract learning. Near misses related to radiation release or exposure were focused on. Results: Eightnuclear interviews contributed to the GT across nuclear power, decommissioning, weapons, and propulsion. The scoping review identified 83 articles across a range of safety-critical industries, with only six focused on nuclear. The GT identified that nuclear has a particular focus on precursors and low-level events, with regulation supporting their management. Exploration of definitions led to the recognition of the importance of several interventions in a sequence of events, but that do not solely rely on humans as these cannot be assumed to be robust barriers. Regarding reporting and analysis, no consistent methods were identified, but for learning, the role of operating experience learning groups was identified as an exemplar. The safety culture across nuclear, however, was heard to vary, which undermined reporting of near misses and other safety events. Some parts of the industry described that their focus on near misses is new and that despite potential risks existing, progress to mitigate hazards is slow. Conclusions: Healthcare often sees ‘nuclear,’ as well as other ultra-safe industries such as ‘aviation,’ as homogenous. However, the findings here suggest significant differences in safety culture and maturity across various parts of the nuclear sector. Healthcare can take learning from some aspects of management of near misses in nuclear, such as how they are defined and how learning is shared through operating experience networks. However, healthcare also needs to recognise that variability exists across industries, and comparably, it may be more mature in some areas of safety.Keywords: culture, definitions, near miss, nuclear safety, patient safety
Procedia PDF Downloads 10427683 Managed Aquifer Recharge (MAR) for the Management of Stormwater on the Cape Flats, Cape Town
Authors: Benjamin Mauck, Kevin Winter
Abstract:
The city of Cape Town in South Africa, has shown consistent economic and population growth in the last few decades and that growth is expected to continue to increase into the future. These projected economic and population growth rates are set to place additional pressure on the city’s already strained water supply system. Thus, given Cape Town’s water scarcity, increasing water demands and stressed water supply system, coupled with global awareness around the issues of sustainable development, environmental protection and climate change, alternative water management strategies are required to ensure water is sustainably managed. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. WSUD employs a wide range of strategies to improve the sustainable management of urban water such as the water reuse, developing alternative available supply sources, sustainable stormwater management and enhancing the aesthetic and recreational value of urban water. Managed Aquifer Recharge (MAR) is one WSUD strategy which has proven to be a successful reuse strategy in a number of places around the world. MAR is the process where an aquifer is intentionally or artificially recharged, which provides a valuable means of water storage while enhancing the aquifers supply potential. This paper investigates the feasibility of implementing MAR in the sandy, unconfined Cape Flats Aquifer (CFA) in Cape Town. The main objective of the study is to assess if MAR is a viable strategy for stormwater management on the Cape Flats, aiding the prevention or mitigation of the seasonal flooding that occurs on the Cape Flats, while also improving the supply potential of the aquifer. This involves the infiltration of stormwater into the CFA during the wet winter months and in turn, abstracting from the CFA during the dry summer months for fit-for-purpose uses in order to optimise the recharge and storage capacity of the CFA. The fully-integrated MIKE SHE model is used in this study to simulate both surface water and groundwater hydrology. This modelling approach enables the testing of various potential recharge and abstraction scenarios required for implementation of MAR on the Cape Flats. Further MIKE SHE scenario analysis under projected future climate scenarios provides insight into the performance of MAR as a stormwater management strategy under climate change conditions. The scenario analysis using an integrated model such as MIKE SHE is a valuable tool for evaluating the feasibility of the MAR as a stormwater management strategy and its potential to contribute towards improving Cape Town’s water security into the future.Keywords: managed aquifer recharge, stormwater management, cape flats aquifer, MIKE SHE
Procedia PDF Downloads 24827682 Web Search Engine Based Naming Procedure for Independent Topic
Authors: Takahiro Nishigaki, Takashi Onoda
Abstract:
In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {"scor", "game", "lead", "quarter", "rebound"}. This Topic 1 is considered to represent the topic of "SPORTS". This topic name "SPORTS" has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness.Keywords: independent topic analysis, topic extraction, topic naming, web search engine
Procedia PDF Downloads 11927681 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.Keywords: airborne laser scanning, digital terrain models, filtering, forested areas
Procedia PDF Downloads 13927680 Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis
Authors: Saleem Z. Ramadan
Abstract:
In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce.Keywords: masking, bathtub model, reliability, non-parametric analysis, useful life
Procedia PDF Downloads 56227679 Technological Innovation and Efficiency of Production of the Greek Aquaculture Industry
Authors: C. Nathanailides, S. Anastasiou, A. Dimitroglou, P. Logothetis, G. Kanlis
Abstract:
In the present work we reviewed historical data of the Greek Marine aquaculture industry including adoption of new methods and technological innovation. The results indicate that the industry exhibited a rapid rise in production efficiency, employment and adoption of new technologies which reduced outbreaks of diseases, reduced production risk and the price of the farmed fish. The improvements of total quality practices and technological input on the Greek Aquaculture industry include improved survival, growth and body shape of farmed fish, which resulted from development of new aquaculture feeds and the genetic selection of the bloodstock. Also improvements in the quality of the final product were achieved via technological input in the methods and technology applied during harvesting, packaging, and transportation-preservation of farmed fish ensuring high quality of the product from the fish farm to the plate of the consumers. These parameters (health management, nutrition, genetics, harvesting and post-harvesting methods and technology) changed significantly over the last twenty years and the results of these improvements are reflected in the production efficiency of the Aquaculture industry and the quality of the final product. It is concluded that the Greek aquaculture industry exhibited a rapid growth, adoption of technologies and supply was stabilized after the global financial crisis, nevertheless, the development of the Greek aquaculture industry is currently limited by international trade sanctions, credit crunch, and increased taxation and not by limited technology or resources.Keywords: innovation, aquaculture, total quality, management
Procedia PDF Downloads 37227678 Effects of Tillage and Crop Residues Management in Improving Rainfall-Use Efficiency in Dryland Crops under Sandy Soils
Authors: Cosmas Parwada, Ronald Mandumbu, Handseni Tibugari, Trust Chinyama
Abstract:
A 3-yr field experiment to evaluate effects of tillage and residue management on soil water storage (SWS), grain yield, harvest index (HI) and water use efficiency (WUE) of sorghum was done in sandy soils. Treatments were conventional (CT) and minimum (MT) tillage without residue retention and conventional (CT × RT) and minimum (MT × RT) tillage with residue retention. Change in SWS was higher under CT and MT than in CT × RT and MT × RT, especially in the 0-10 cm soil layer. Grain yield and HI were significantly (P < 0.05) lower in CT and MT than CT × RT and MT × RT. Grain yield and HI were significantly (P < 0.05) positively correlated to WUE but WUE significantly (P < 0.05) negatively correlated to sand (%) particle content. The SWS was lower in winter but higher in summer and was significantly correlated to soil organic carbon (SOC), sand (%), grain yield (t/ha), HI and WUE. The WUE linearly increasing from first to last cropping seasons in tillage with returned residues; higher in CT × RT and MT × RT that promoted SOC buildup than where crop residues were removed. Soil tillage decreased effects of residues on SWS, WUE, grain yield and HI. Minimum tillage coupled to residue retention sustainably enhanced WUE but further research to investigate the interaction effects of the tillage on WUE and soil fertility management is required. Understanding and considering the WUE in crops can be a primary condition for cropping system designs. The findings pave way for further research and crop management programmes, allowing to valorize the water in crop production.Keywords: evapotranspiration, infiltration rate, organic mulch, sand, water use efficiency
Procedia PDF Downloads 21527677 Intellectual Property Law as a Tool to Enhance and Sustain Museums in Digital Era
Authors: Nayira Ahmed Galal Elden Hassan, Amr Mostafa Awad Kassem
Abstract:
The management of Intellectual Property (IP) in museums presents a multifaceted challenge, requiring a balance between granting access to cultural assets and maintaining control over them. In the digital age, IP has emerged as a critical aspect of museum operations, encompassing valuable assets within collections and museum-generated content. Effective IP management enables museums to generate revenue, protect rights, and promote cultural heritage while leveraging digital technologies. Opportunities such as e-commerce and licensing can drive economic growth, but they also introduce complexities related to IP protection and regulation. This study explores the dual nature of IP assets—collection-based and museum-generated—highlighting their implications for sustainability and cultural preservation. The analysis includes examples such as the German State Museum’s management of replicas from the Nefertiti bust, showcasing the challenges museums face when navigating IP frameworks. The research underscores the importance of a comprehensive understanding of IP laws to prevent legal disputes, reputational risks, and revenue loss. By adopting an analytical and comparative methodology, this paper examines museums that have effectively implemented IP rules to enhance their operations and sustain their resources. It investigates how IP management can help museums fulfill their mission of community engagement, education, and outreach while ensuring long-term sustainability. The findings demonstrate that balanced IP strategies are essential for securing financial stability, safeguarding cultural heritage, and adapting to the demands of the digital era. This research seeks to explore how museums can effectively fulfill their mission of community engagement, education, and outreach while ensuring long-term sustainability. It examines the extent to which intellectual property (IP) management can contribute to achieving these objectives, focusing on the benefits and challenges associated with adopting IP management strategies. Additionally, the study addresses the question of ownership by investigating who holds the rights to cultural assets and how these rights can be managed effectively to align with both institutional goals and the preservation of cultural heritage.The findings underscore the pivotal role of effective IP management in empowering museums to navigate the digital landscape, maximize revenue streams, and safeguard cultural heritage. The study emphasizes the necessity of adopting a balanced approach to IP management, which aligns institutional goals with the ethical and legal considerations of cultural heritage preservation.Keywords: intellectual property, museums, IP management, digital technologies, sustainability, cultural heritage
Procedia PDF Downloads 5