Search results for: wireless sensor networks (WSN)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4326

Search results for: wireless sensor networks (WSN)

966 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses

Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee

Abstract:

Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.

Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles

Procedia PDF Downloads 163
965 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: multiclass classification, convolution neural network, OpenCV

Procedia PDF Downloads 176
964 Development of Micelle-Mediated Sr(II) Fluorescent Analysis System

Authors: K. Akutsu, S. Mori, T. Hanashima

Abstract:

Fluorescent probes are useful for the selective detection of trace amount of ions and biomolecular imaging in living cells. Various kinds of metal ion-selective fluorescent compounds have been developed, and some compounds have been applied as effective metal ion-selective fluorescent probes. However, because competition between the ligand and water molecules for the metal ion constitutes a major contribution to the stability of a complex in aqueous solution, it is difficult to develop a highly sensitive, selective, and stable fluorescent probe in aqueous solution. The micelles, these are formed in the surfactant aqueous solution, provides a unique hydrophobic nano-environment for stabilizing metal-organic complexes in aqueous solution. Therefore, we focused on the unique properties of micelles to develop a new fluorescence analysis system. We have been developed a fluorescence analysis system for Sr(II) by using a Sr(II) fluorescent sensor, N-(2-hydroxy-3-(1H-benzimidazol-2-yl)-phenyl)-1-aza-18-crown-6-ether (BIC), and studied its complexation behavior with Sr(II) in micellar solution. We revealed that the stability constant of Sr(II)-BIC complex was 10 times higher than that in aqueous solution. In addition, its detection limit value was also improved up to 300 times by this system. However, the mechanisms of these phenomena have remained obscure. In this study, we investigated the structure of Sr(II)-BIC complex in aqueous micellar solution by combining use the extended X-ray absorption fine structure (EXAFS) and neutron reflectivity (NR) method to understand the unique properties of the fluorescence analysis system from the view point of structural chemistry. EXAFS and NR experiments were performed on BL-27B at KEK-PF and on BL17 SHARAKU at J-PARC MLF, respectively. The obtained EXAFS spectra and their fitting results indicated that Sr(II) and BIC formed a Sr(18-crown-6-ether)-like complex in aqueous micellar solution. The EXAFS results also indicated that the hydrophilic head group of surfactant molecule was directly coordinated with Sr(II). In addition, the NR results also indicated that Sr(II)-BIC complex would interact with the surface of micelle molecules. Therefore, we concluded that Sr(II), BIC, and surfactant molecule formed a ternary complexes in aqueous micellar solution, and at least, it is clear that the improvement of the stability constant in micellar solution is attributed to the result of the formation of Sr(BIC)(surfactant) complex.

Keywords: micell, fluorescent probe, neutron reflectivity, EXAFS

Procedia PDF Downloads 183
963 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 392
962 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 149
961 A Biomechanical Perfusion System for Microfluidic 3D Bioprinted Structure

Authors: M. Dimitri, M. Ricci, F. Bigi, M. Romiti, A. Corvi

Abstract:

Tissue engineering has reached a significant milestone with the integration of 3D printing for the creation of complex bioconstructs equipped with vascular networks, crucial for cell maintenance and growth. This study aims to demonstrate the effectiveness of a portable microperfusion system designed to adapt dynamically to the evolving conditions of cell growth within 3D-printed bioconstructs. The microperfusion system was developed to provide a constant and controlled flow of nutrients and oxygen through the integrated vessels in the bioconstruct, replicating in vivo physiological conditions. Through a series of preliminary experiments, we evaluated the system's ability to maintain a favorable environment for cell proliferation and differentiation. Measurements of cell density and viability were performed to monitor the health and functionality of the tissue over time. Preliminary results indicate that the portable microperfusion system not only supports but optimizes cell growth, effectively adapting to changes in metabolic needs during the bioconstruct maturation process. This research opens perspectives in tissue engineering, demonstrating that a portable microperfusion system can be successfully integrated into 3D-printed bioconstructs, promoting sustainable and uniform cell growth. The implications of this study are far-reaching, with potential applications in regenerative medicine and pharmacological research, providing a platform for the development of functional and complex tissues.

Keywords: biofabrication, microfluidic perfusion system, 4D bioprinting

Procedia PDF Downloads 30
960 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism

Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng

Abstract:

Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.

Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition

Procedia PDF Downloads 183
959 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 131
958 Elucidation of the Sequential Transcriptional Activity in Escherichia coli Using Time-Series RNA-Seq Data

Authors: Pui Shan Wong, Kosuke Tashiro, Satoru Kuhara, Sachiyo Aburatani

Abstract:

Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. This method presented here works to augment existing regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. This method is applied on a time-series RNA-Seq data set from Escherichia coli as it transitions from growth to stationary phase over five hours. Investigations are conducted on the various metabolic activities in gene regulation processes by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. Especially, the changes in metabolic activity during phase transition are analyzed with focus on the pagP gene as well as other associated transcription factors. The visualization of the sequential transcriptional activity is used to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. The results show a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli.

Keywords: Escherichia coli, gene regulation, network, time-series

Procedia PDF Downloads 372
957 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model

Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh

Abstract:

Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.

Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding

Procedia PDF Downloads 9
956 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 409
955 Gene Expression Profile Reveals Breast Cancer Proliferation and Metastasis

Authors: Nandhana Vivek, Bhaskar Gogoi, Ayyavu Mahesh

Abstract:

Breast cancer metastasis plays a key role in cancer progression and fatality. The present study examines the potential causes of metastasis in breast cancer by investigating the novel interactions between genes and their pathways. The gene expression profile of GSE99394, GSE1246464, and GSE103865 was downloaded from the GEO data repository to analyze the differentially expressed genes (DEGs). Protein-protein interactions, target factor interactions, pathways and gene relationships, and functional enrichment networks were investigated. The proliferation pathway was shown to be highly expressed in breast cancer progression and metastasis in all three datasets. Gene Ontology analysis revealed 11 DEGs as gene targets to control breast cancer metastasis: LYN, DLGAP5, CXCR4, CDC6, NANOG, IFI30, TXP2, AGTR1, MKI67, and FTH1. Upon studying the function, genomic and proteomic data, and pathway involvement of the target genes, DLGAP5 proved to be a promising candidate due to it being highly differentially expressed in all datasets. The study takes a unique perspective on the avenues through which DLGAP5 promotes metastasis. The current investigation helps pave the way in understanding the role DLGAP5 plays in metastasis, which leads to an increased incidence of death among breast cancer patients.

Keywords: genomics, metastasis, microarray, cancer

Procedia PDF Downloads 97
954 Alternative Epinephrine Injector to Combat Allergy Induced Anaphylaxis

Authors: Jeremy Bost, Matthew Brett, Jacob Flynn, Weihui Li

Abstract:

One response during anaphylaxis is reduced blood pressure due to blood vessels relaxing and dilating. Epinephrine causes the blood vessels to constrict, which raises blood pressure to counteract the symptoms. When going through an allergic reaction, an Epinephrine injector is used to administer a shot of epinephrine intramuscularly. Epinephrine injectors have become an integral part of day-to-day life for people with allergies. Current Epinephrine injectors (EpiPen) are completely mechanical and have no sensors to monitor the vital signs of patients or give suggestions the optimal time for the shot. The EpiPens are also large and inconvenient to carry daily. The current price of an EpiPen is roughly 600$ for a pack of two. This makes carrying an EpiPen very expensive, especially when they need to be switched out when the epinephrine expires. This new design is in the form of a bracelet, which has the ability to inject epinephrine. The bracelet will be equipped with vital signs monitors that can aid the patient to sense the allergic reaction. The vital signs that would be of interest are blood pressure, heart rate and Electrodermal activity (EDA). The heart rate of the patient will be tracked by a photoplethysmograph (PPG) that is incorporated into the sensors. The heart rate is expected to increase during anaphylaxis. Blood pressure will be monitored through a radar sensor, which monitors the phase changes in electromagnetic waves as they reflect off of the blood vessel. EDA is under autonomic control. Allergen-induced anaphylaxis is caused by a release of chemical mediators from mast cells and basophils, thus changes the autonomic activity of the patient. So by measuring EDA, it will give the wearer an alert on how their autonomic nervous system is reacting. After the vital signs are collected, they will be sent to an application on a smartphone to be analyzed, which can then alert an emergency contact if the epinephrine injector on the bracelet is activated. Overall, this design creates a safer system by aiding the user in keeping track of their epinephrine injector, while making it easier to track their vital signs. Also, our design will be more affordable and more convenient to replace. Rather than replacing the entire product, only the needle and drug will be switched out and not the entire design.

Keywords: allergy, anaphylaxis, epinephrine, injector, vital signs monitor

Procedia PDF Downloads 253
953 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning

Authors: Eiman Kattan

Abstract:

This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.

Keywords: conventional neural network, remote sensing, land cover, land use

Procedia PDF Downloads 370
952 Formal Implementation of Routing Information Protocol Using Event-B

Authors: Jawid Ahmad Baktash, Tadashi Shiroma, Tomokazu Nagata, Yuji Taniguchi, Morikazu Nakamura

Abstract:

The goal of this paper is to explore the use of formal methods for Dynamic Routing, The purpose of network communication with dynamic routing is sending a massage from one node to others by using pacific protocols. In dynamic routing connections are possible based on protocols of Distance vector (Routing Information Protocol, Border Gateway protocol), Link State (Open Shortest Path First, Intermediate system Intermediate System), Hybrid (Enhanced Interior Gateway Routing Protocol). The responsibility for proper verification becomes crucial with Dynamic Routing. Formal methods can play an essential role in the Routing, development of Networks and testing of distributed systems. Event-B is a formal technique consists of describing rigorously the problem; introduce solutions or details in the refinement steps to obtain more concrete specification, and verifying that proposed solutions are correct. The system is modeled in terms of an abstract state space using variables with set theoretic types and the events that modify state variables. Event-B is a variant of B, was designed for developing distributed systems. In Event-B, the events consist of guarded actions occurring spontaneously rather than being invoked. The invariant state properties must be satisfied by the variables and maintained by the activation of the events.

Keywords: dynamic rout RIP, formal method, event-B, pro-B

Procedia PDF Downloads 401
951 Cost-Effective Mechatronic Gaming Device for Post-Stroke Hand Rehabilitation

Authors: A. Raj Kumar, S. Bilaloglu

Abstract:

Stroke is a leading cause of adult disability worldwide. We depend on our hands for our activities of daily living(ADL). Although many patients regain the ability to walk, they continue to experience long-term hand motor impairments. As the number of individuals with young stroke is increasing, there is a critical need for effective approaches for rehabilitation of hand function post-stroke. Motor relearning for dexterity requires task-specific kinesthetic, tactile and visual feedback. However, when a stroke results in both sensory and motor impairment, it becomes difficult to ascertain when and what type of sensory substitutions can facilitate motor relearning. In an ideal situation, real-time task-specific data on the ability to learn and data-driven feedback to assist such learning will greatly assist rehabilitation for dexterity. We have found that kinesthetic and tactile information from the unaffected hand can assist patients re-learn the use of optimal fingertip forces during a grasp and lift task. Measurement of fingertip grip force (GF), load forces (LF), their corresponding rates (GFR and LFR), and other metrics can be used to gauge the impairment level and progress during learning. Currently ATI mini force-torque sensors are used in research settings to measure and compute the LF, GF, and their rates while grasping objects of different weights and textures. Use of the ATI sensor is cost prohibitive for deployment in clinical or at-home rehabilitation. A cost effective mechatronic device is developed to quantify GF, LF, and their rates for stroke rehabilitation purposes using off-the-shelf components such as load cells, flexi-force sensors, and an Arduino UNO microcontroller. A salient feature of the device is its integration with an interactive gaming environment to render a highly engaging user experience. This paper elaborates the integration of kinesthetic and tactile sensing through computation of LF, GF and their corresponding rates in real time, information processing, and interactive interfacing through augmented reality for visual feedback.

Keywords: feedback, gaming, kinesthetic, rehabilitation, tactile

Procedia PDF Downloads 240
950 Critical Factors in the Formation, Development and Survival of an Eco-Industrial Park: A Systemic Understanding of Industrial Symbiosis

Authors: Iván González, Pablo Andrés Maya, Sebastián Jaén

Abstract:

Eco-industrial parks (EIPs) work as networks for the exchange of by-products, such as materials, water, or energy. This research identifies the relevant factors in the formation of EIPs in different industrial environments around the world. Then an aggregation of these factors is carried out to reduce them from 50 to 17 and classify them according to 5 fundamental axes. Subsequently, the Vester Sensitivity Model (VSM) systemic methodology is used to determine the influence of the 17 factors on an EIP system and the interrelationship between them. The results show that the sequence of effects between factors: Trust and Cooperation → Business Association → Flows → Additional Income represents the “backbone” of the system, being the most significant chain of influences. In addition, the Organizational Culture represents the turning point of the Industrial Symbiosis on which it must act correctly to avoid falling into unsustainable economic development. Finally, the flow of Information should not be lost since it is what feeds trust between the parties, and the latter strengthens the system in the face of individual or global imbalances. This systemic understanding will enable the formulation of pertinent policies by the actors that interact in the formation and permanence of the EIP. In this way, it seeks to promote large-scale sustainable industrial development, integrating various community actors, which in turn will give greater awareness and appropriation of the current importance of sustainability in industrial production.

Keywords: critical factors, eco-industrial park, industrial symbiosis, system methodology

Procedia PDF Downloads 124
949 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation

Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier

Abstract:

Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.

Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet

Procedia PDF Downloads 270
948 Energy Efficient Microgrid Design with Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, power quality improvement

Procedia PDF Downloads 143
947 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 59
946 TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs

Authors: Siddharth Sarma, Ayush Majumdar, Nidhi Sabu, Mufaddal Jiruwaala, Shilpa Paygude

Abstract:

Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling.

Keywords: DEM, ESRGAN, image upscaling, super resolution, computer vision

Procedia PDF Downloads 10
945 Heritage and Tourism in the Era of Big Data: Analysis of Chinese Cultural Tourism in Catalonia

Authors: Xinge Liao, Francesc Xavier Roige Ventura, Dolores Sanchez Aguilera

Abstract:

With the development of the Internet, the study of tourism behavior has rapidly expanded from the traditional physical market to the online market. Data on the Internet is characterized by dynamic changes, and new data appear all the time. In recent years the generation of a large volume of data was characterized, such as forums, blogs, and other sources, which have expanded over time and space, together they constitute large-scale Internet data, known as Big Data. This data of technological origin that derives from the use of devices and the activity of multiple users is becoming a source of great importance for the study of geography and the behavior of tourists. The study will focus on cultural heritage tourist practices in the context of Big Data. The research will focus on exploring the characteristics and behavior of Chinese tourists in relation to the cultural heritage of Catalonia. Geographical information, target image, perceptions in user-generated content will be studied through data analysis from Weibo -the largest social networks of blogs in China. Through the analysis of the behavior of heritage tourists in the Big Data environment, this study will understand the practices (activities, motivations, perceptions) of cultural tourists and then understand the needs and preferences of tourists in order to better guide the sustainable development of tourism in heritage sites.

Keywords: Barcelona, Big Data, Catalonia, cultural heritage, Chinese tourism market, tourists’ behavior

Procedia PDF Downloads 138
944 Leviathan, the Myth of Evil, Based on Northrop Frye's Archetypal Criticism

Authors: Maryam Pirdehghan

Abstract:

The myth of Leviathan, its ontology and appearance is often one of the problems of Judeo-Christian religious commentators so that some of them have tried to interpret and explain formation or symbolic implications of this myth in different contexts their specific methods and proofs. However, the Bible has presented only vague references in this field and it is not clear why and how to develop such mentions to create a powerful myth with allegorical and symbolic capacity as Leviathan. Therefore, the paper aims to clarify the process of formation of Leviathan and explore the mythical and symbolic systems related to it, first by adopting the imagological approach and then using the Northrop Frye's Archetypal Criticism. Finally, it is concluded that The Leviathan is rooted in the stories of legendary battles of the beginning of creation and almost continues to live with the same nature into the Old Testament, but continuously, in an interactive process between the Greek and Egyptian mythological networks, it attracts more stories and implications about his existence while maintaining its satanic nature. After intense metamorphosis in Jewish interpretations, it appears in the book of Revelation and finally, becomes one of the princes of Hell in the tradition of Christian demonology. The myth, that has become the archetype and fluidized symbol of evil because of the ambiguity and lack of objectivity on its apparent characteristics, finds symbolical extensive capabilities in Judeo-Christian culture, especially in the mysticism, so that its presence or death has special implications and also fighting against it is taken into account as an external and more internal action.

Keywords: Leviathan, The Evil, Bible, myth, Northrop Frye

Procedia PDF Downloads 220
943 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks

Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox

Abstract:

miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.

Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network

Procedia PDF Downloads 511
942 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: electric propulsion, mass gauging, propellant, PVT, xenon

Procedia PDF Downloads 345
941 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle

Procedia PDF Downloads 134
940 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural

Authors: Mohammad Heidari

Abstract:

In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network

Procedia PDF Downloads 416
939 Autonomous Taxiing Robot for Grid Resilience Enhancement in Green Airport

Authors: Adedayo Ajayi, Patrick Luk, Liyun Lao

Abstract:

This paper studies the supportive needs for the electrical infrastructure of the green airport. In particular, the core objective revolves around the choice of electric grid configuration required to meet the expected electrified loads, i.e., the taxiing and charging loads of hybrid /pure electric aircraft in the airport. Further, reliability and resilience are critical aspects of a newly proposed grid; the concept of mobile energy storage as energy as a service (EAAS) for grid support in the proposed green airport is investigated using an autonomous electric taxiing robot (A-ETR) at a case study (Cranfield Airport). The performance of the model is verified and validated through DigSILENT power factory simulation software to compare the networks in terms of power quality, short circuit fault levels, system voltage profile, and power losses. Contingency and reliability index analysis are further carried out to show the potential of EAAS on the grid. The results demonstrate that the low voltage a.c network ( LVAC) architecture gives better performance with adequate compensation than the low voltage d.c (LVDC) microgrid architecture for future green airport electrification integration. And A-ETR can deliver energy as a service (EaaS) to improve the airport's electrical power system resilience and energy supply.

Keywords: reliability, voltage profile, flightpath 2050, green airport

Procedia PDF Downloads 82
938 Crowdsourced Economic Valuation of the Recreational Benefits of Constructed Wetlands

Authors: Andrea Ghermandi

Abstract:

Constructed wetlands have long been recognized as sources of ancillary benefits such as support for recreational activities. To date, there is a lack of quantitative understanding of the extent and welfare impact of such benefits. Here, it is shown how geotagged, passively crowdsourced data from online social networks (e.g., Flickr and Panoramio) and Geographic Information Systems (GIS) techniques can: (1) be used to infer annual recreational visits to 273 engineered wetlands worldwide; and (2) be integrated with non-market economic valuation techniques (e.g., travel cost method) to infer the monetary value of recreation in these systems. Counts of social media photo-user-days are highly correlated with the number of observed visits in 62 engineered wetlands worldwide (Pearson’s r = 0.811; p-value < 0.001). The estimated, mean willingness to pay for access to 115 wetlands ranges between $5.3 and $374. In 50% of the investigated wetlands providing polishing treatment to advanced municipal wastewater, the present value of such benefits exceeds that of the capital, operation and maintenance costs (lifetime = 45 years; discount rate = 6%), indicating that such systems are sources of net societal benefits even before factoring in benefits derived from water quality improvement and storage. Based on the above results, it is argued that recreational benefits should be taken into account in the design and management of constructed wetlands, as well as when such green infrastructure systems are compared with conventional wastewater treatment solutions.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, social media

Procedia PDF Downloads 129
937 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms

Authors: M. Dezvarei, S. Morovati

Abstract:

In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.

Keywords: clonal algorithm, proton exchange membrane fuel cell (PEMFC), particle swarm optimization (PSO), real-valued mutation (RVM)

Procedia PDF Downloads 351