Search results for: thermal dissipcation probe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3922

Search results for: thermal dissipcation probe

562 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability

Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard

Abstract:

The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.

Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty

Procedia PDF Downloads 186
561 Ni-Based Hardfacing Alloy Reinforced with Fused Eutectic Tungsten Carbide Deposited on Infiltrated WC-W-Ni Substrate by Oxyacetylene Welding

Authors: D. Miroud, H. Mokaddem, M. Tata, N. Foucha

Abstract:

The body of PDC (polycrystalline diamond compact) drill bit can be manufactured from two different materials, steel and tungsten carbide matrix. Commonly the steel body is produced by machining, thermal spraying a bonding layer and hardfacing of Ni-based matrix reinforced with fused eutectic tungsten carbide (WC/W2C). The matrix body bit is manufactured by infiltrating tungsten carbide particles, with a Copper binary or ternary alloy. By erosion-corrosion mechanisms, the PDC drill bits matrix undergoes severe damage, occurring particularly around the PDC inserts and near injection nozzles. In this study, we investigated the possibility to repair the damaged matrix regions by hardfacing technic. Ni-based hardfacing alloy reinforced with fused eutectic tungsten carbide is deposited on infiltrated WC-W-Ni substrate by oxyacetylene welding (OAW). The microstructure at the hardfacing / matrix interface is characterized by SEM- EDS, XRD and micro hardness Hv0.1. The hardfacing conditions greatly affect the dilution phenomenon and the distribution of carbides at the interface, without formation of transition zone. During OAW welding deposition, interdiffusion of atoms occurs: Cu and Sn diffuse from infiltrated matrix substrate into hardfacing and simultaneously Cr and Si alloy elements from hardfacing diffuse towards the substrate. The dilution zone consists of a nickel-rich phase with a heterogeneous distribution of eutectic spherical (Ni-based hardfacing alloy) and irregular (matrix) WC/W2C carbides and a secondary phase rich in Cr-W-Si. Hardfacing conditions cause the dissolution of banding around both spherical and irregular carbides. The micro-hardness of interface is significantly improved by the presence of secondary phase in the inter-dendritic structure.

Keywords: dilution, dissolution, hardfacing, infiltrated matrix, PDC drill bits

Procedia PDF Downloads 341
560 Adsorption of Phosphate from Aqueous Solution Using Filter Cake for Urban Wastewater Treatment

Authors: Girmaye Abebe, Brook Lemma

Abstract:

Adsorption of phosphorus (P as PO43-) in filter cake was studied to assess the media's capability in removing phosphorous from wastewaters. The composition of the filter cake that was generated from alum manufacturing process as waste residue has high amount of silicate from the complete silicate analysis of the experiment. Series of batches adsorption experiments were carried out to evaluate parameters that influence the adsorption capacity of PO43-. The factors studied include the effect of contact time, adsorbent dose, thermal pretreatment of the adsorbent, neutralization of the adsorbent, initial PO43- concentration, pH of the solution and effect of co-existing anions. Results showed that adsorption of PO43- is fairly rapid in first 5 min and after that it increases slowly to reach the equilibrium in about 1 h. The treatment efficiency of PO43- was increased with adsorbent extent. About 90% removal efficiency was increased within 1 h at an optimum adsorbent dose of 10 g/L for initial PO43- concentration of 10 mg/L. The amount of PO43- adsorbed increased with increasing initial PO43- concentration. Heat treatment and surface neutralization of the adsorbent did not improve the PO43- removal capacity and efficiency. The percentage of PO43- removal remains nearly constant within the pH range of 3-8. The adsorption data at ambient pH were well fitted to the Langmuir Isotherm and Dubinin–Radushkevick (D–R) isotherm model with a capacity of 25.84 and 157.55 mg/g of the adsorbent respectively. The adsorption kinetic was found to follow a pseudo-second-order rate equation with an average rate constant of 3.76 g.min−1.mg−1. The presence of bicarbonate or carbonate at higher concentrations (10–1000 mg/L) decreased the PO43- removal efficiency slightly while other anions (Cl-, SO42-, and NO3-) have no significant effect within the concentration range tested. The overall result shows that the filter cake is an efficient PO43- removing adsorbent against many parameters.

Keywords: wastewater, filter cake, adsorption capacity, phosphate (PO43-)

Procedia PDF Downloads 231
559 Elastomeric Nanocomposites for Space Applications

Authors: Adriana Stefan, Cristina-Elisabeta Pelin, George Pelin, Maria Daniela Stelescu, Elena Manaila

Abstract:

Elastomeric composites have been known for a long time, but, to our knowledge, space and the aeronautic community has been directing a special attention to them only in the last decade. The required properties of advanced elastomeric materials used in space applications (such as O-rings) are sealing, abrasion, low-temperature flexibility, the long-term compression set properties, impact resistance and low-temperature thermal stability in different environments, such as ionized radiations. Basically, the elastomeric nanocomposites are composed of a rubber matrix and a wide and varied range of nanofillers, added with the aim of improving the physico-mechanical and elasticity modulus properties of the materials as well as their stability in different environments. The paper presents a partial synthesis of the research regarding the use of silicon carbide in nanometric form and/or organophylized montmorillonite as fillers in butyl rubber matrix. The need of composite materials arose from the fact that stand-alone polymers are ineffective in providing all the superior properties required by different applications. These drawbacks can be diminished or even eliminated by incorporating a new range of additives into the organic matrix, fillers that have important roles in modifying properties of various polymers. A composite material can provide superior and unique mechanical and physical properties because it combines the most desirable properties of its constituents while suppressing their least desirable properties. The commercial importance of polymers and the continuous increase of their use results in the continuous demand for improvement in their properties to meet the necessary conditions. To study the performance of the elastomeric nanocomposites were mechanically tested, it will be tested the qualities of tensile at low temperatures and RT and the behavior at the compression at cryogenic to room temperatures and under different environments. The morphology of specimens will be investigated by optical and scanning electronic microscopy.

Keywords: elastomeric nanocomposites, O-rings, space applications, mechanical properties

Procedia PDF Downloads 288
558 Evaluation of Oligocene-Miocene Clay from the Northern Part of Palmyra Region (Syria) for Industrial Ceramic Applications

Authors: Abdul Salam Turkmani

Abstract:

Clay of the northern Palmyra region is one of the most important raw materials used in the Syrian ceramics industry. This study is focused on the evaluation of various laboratory analyses such as chemical analysis (XRF), mineral X-ray diffraction analysis (XRD), differential thermal analysis (DTA), and semi-industrial tests carried out on samples collected on two representative locations of the upper Oligocene in AlMkamen valley (MK) and lower Miocene in AlZukara valley (ZR) of the northern part of Palmyra, Syria. Chemical results classify the (MK) and (ZR) clays as semi-plastic red clay slightly carbonate and (eliminate probable) illite-chlorite clays with a very fine particle size distribution. Content of SiO₂ between 46.28-57.66%, Al2O3 13.81-25.2%, Fe₂O₃ 3.47-11.58%, CaO 1.15-7.19%, Na₂O+K₂O varied between 3.34-3.71%. Based on clay chemical composition and iron and carbonate content, these deposits can be considered as red firing clays. Their mineralogical composition is mainly represented by illite, kaolinite and quartz, and accessories minerals such as calcite, feldspar, phillipsite, and goethite. The results of the DTA test confirm the presence of gypsum and quartz phases in (MK) clay. Ceramic testing shows good green and dry bending strength values, which varied between 9-14 kg/cm², at 1160°C to 1180°C. Water absorption moves from 14.6 % at 1120°C to 2.2% at 1180°C to 1.6% at 1200°C. Breaking load after firing changes from 400 to 590 kg/cm². At 1200°C (MK), clay reaches perfect vitrification. After firing, the color of the clay changes from orange-hazel to red-brown at 1180°C. Technological results confirmed the suitability of the studied clays to produce floor and wall ceramic tiles. Using one of the two types of clay into the ceramic body or both types together gave satisfactory industrial results.

Keywords: ceramic, clay, industry , Palmyra

Procedia PDF Downloads 196
557 Experimental Study of Complete Loss of Coolant Flow (CLOF) Test by System–Integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL) with Passive Residual Heat Removal System (PRHRS)

Authors: Jin Hwa Yang, Hwang Bae, Sung Uk Ryu, Byong Guk Jeon, Sung Jae Yi, Hyun Sik Park

Abstract:

Experimental studies using a large-scale thermal-hydraulic integral test facility, System–integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL), have been carried out to validate the performance of the prototype, SMART. After Fukushima accident, the passive safety systems have been dealt as important designs for retaining of nuclear safety. One of the concerned scenarios for evaluating the passive safety system is a Complete Loss of Coolant Flow (CLOF). The flowrate of coolant in the primary system is maintained by Reactor Coolant Pump (RCP). When the supply of electric power of RCP is shut off, the flowrate of coolant decreases sharply, and the temperature of the coolant increases rapidly. Therefore, the reactor trip signal is activated to prevent the over-heating of the core. In this situation, Passive Residual Heat Removal System (PRHRS) plays a significant role to assure the soundness of the SMART. The PRHRS using a two-phase natural circulation is a passive safety system in the SMART to eliminate the heat of steam generator in the secondary system with heat exchanger submarined in the Emergency Cooling Tank (ECT). As the RCPs continue to coast down, inherent natural circulation in the primary system transfers heat to the secondary system. The transferred heat is removed by PRHRS in the secondary system. In this paper, the progress of the CLOF accident is described with experimental data of transient condition performed by SMART-ITL. Finally, the capability of passive safety system and inherent natural circulation will be evaluated.

Keywords: CLOF, natural circulation, PRHRS, SMART-ITL

Procedia PDF Downloads 437
556 Study on Novel Reburning Process for NOx Reduction by Oscillating Injection of Reburn Fuel

Authors: Changyeop Lee, Sewon Kim, Jongho Lee

Abstract:

Reburning technology has been developed to adopt various commercial combustion systems. Fuel lean reburning is an advanced reburning method to reduce NOx economically without using burnout air, however it is not easy to get high NOx reduction efficiency. In the fuel lean reburning system, the localized fuel rich eddies are used to establish partial fuel rich regions so that the NOx can react with hydrocarbon radical restrictively. In this paper, a new advanced reburning method which supplies reburn fuel with oscillatory motion is introduced to increase NOx reduction rate effectively. To clarify whether forced oscillating injection of reburn fuel can effectively reduce NOx emission, experimental tests were conducted in vertical combustion furnace. Experiments were performed in flames stabilized by a gas burner, which was mounted at the bottom of the furnace. The natural gas is used as both main and reburn fuel and total thermal input is about 40kW. The forced oscillating injection of reburn fuel is realized by electronic solenoid valve, so that fuel rich region and fuel lean region is established alternately. In the fuel rich region, NOx is converted to N2 by reburning reaction, however unburned hydrocarbon and CO is oxidized in fuel lean zone and mixing zone at downstream where slightly fuel lean region is formed by mixing of two regions. This paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. All experimental data has been measured at steady state. The NOx reduction rate increases up to 41% by forced oscillating reburn motion. The CO emissions were shown to be kept at very low level. And this paper makes clear that in order to decrease NOx concentration in the exhaust when oscillating reburn fuel injection system is adopted, the control of factors such as frequency and duty ratio is very important.

Keywords: NOx, CO, reburning, pollutant

Procedia PDF Downloads 288
555 Generative Design Method for Cooled Additively Manufactured Gas Turbine Parts

Authors: Thomas Wimmer, Bernhard Weigand

Abstract:

The improvement of gas turbine efficiency is one of the main drivers of research and development in the gas turbine market. This has led to elevated gas turbine inlet temperatures beyond the melting point of the utilized materials. The turbine parts need to be actively cooled in order to withstand these harsh environments. However, the usage of compressor air as coolant decreases the overall gas turbine efficiency. Thus, coolant consumption needs to be minimized in order to gain the maximum advantage from higher turbine inlet temperatures. Therefore, sophisticated cooling designs for gas turbine parts aim to minimize coolant mass flow. New design space is accessible as additive manufacturing is maturing to industrial usage for the creation of hot gas flow path parts. By making use of this technology more efficient cooling schemes can be manufacture. In order to find such cooling schemes a generative design method is being developed. It generates cooling schemes randomly which adhere to a set of rules. These assure the sanity of the design. A huge amount of different cooling schemes are generated and implemented in a simulation environment where it is validated. Criteria for the fitness of the cooling schemes are coolant mass flow, maximum temperature and temperature gradients. This way the whole design space is sampled and a Pareto optimum front can be identified. This approach is applied to a flat plate, which resembles a simplified section of a hot gas flow path part. Realistic boundary conditions are applied and thermal barrier coating is accounted for in the simulation environment. The resulting cooling schemes are presented and compared to representative conventional cooling schemes. Further development of this method can give access to cooling schemes with an even better performance having higher complexity, which makes use of the available design space.

Keywords: additive manufacturing, cooling, gas turbine, heat transfer, heat transfer design, optimization

Procedia PDF Downloads 352
554 Synthesis and Properties of Oxidized Corn Starch Based Wood Adhesive

Authors: Salise Oktay, Nilgun Kizilcan, Basak Bengu

Abstract:

At present, formaldehyde-based adhesives such as urea-formaldehyde (UF), melamine-formaldehyde (MF), melamine – urea-formaldehyde (MUF), etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non- renewable resources and also formaldehyde is classified as a probable human carcinogen (Group B1) by the U.S. Environmental Protection Agency (EPA). Therefore, there has been a growing interest in the development of environment-friendly, economically competitive, bio-based wood adhesives to meet wood-based panel industry requirements. In this study, like a formaldehyde-free adhesive, oxidized starch – urea wood adhesives was synthesized. In this scope, firstly, acid hydrolysis of corn starch was conducted and then acid thinned corn starch was oxidized by using hydrogen peroxide and CuSO₄ as an oxidizer and catalyst, respectively. Secondly, the polycondensation reaction between oxidized starch and urea conducted. Finally, nano – TiO₂ was added to the reaction system to strengthen the adhesive network. Solid content, viscosity, and gel time analyses of the prepared adhesive were performed to evaluate the adhesive processability. FTIR, DSC, TGA, SEM characterization techniques were used to investigate chemical structures, thermal, and morphological properties of the adhesive, respectively. Rheological analysis of the adhesive was also performed. In order to evaluate the quality of oxidized corn starch – urea adhesives, particleboards were produced in laboratory scale and mechanical and physical properties of the boards were investigated such as an internal bond, modulus of rupture, modulus of elasticity, formaldehyde emission, etc. The obtained results revealed that oxidized starch – urea adhesives were synthesized successfully and it can be a good potential candidate to use the wood-based panel industry with some developments.

Keywords: nano-TiO₂, corn starch, formaldehyde emission, wood adhesives

Procedia PDF Downloads 151
553 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion

Authors: J. H. Park, R. H. Hwang, K. B. Yi

Abstract:

Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.

Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method

Procedia PDF Downloads 209
552 Structural Changes and Formation of Calcium Complexes in Corn Starch Processed by Nixtamalization

Authors: Arámbula-Villa Gerónimo, García-Lara Kenia Y., Figueroa-Cárdenas J. D., Pérez-Robles J. F., Jiménez-Sandoval S., Salazar-López R., Herrera-Corredor J. A.

Abstract:

The nixtamalization process (thermal-alkaline method) improves the nutritional part of the corn grain. In this process, the using of Ca(OH)₂ is basic, although the chemical mechanisms between this alkali and the carbohydrates (starch), proteins, lipids, and fiber have not been fully identified. In this study, the native corn starch was taken as a model, and it was subjected to cooking with different concentrations of lime (nixtamalization process) and specific studies of FTIR and XRD were carried out to identify the formation of chemical compounds, and the physical, physicochemical, rheological (paste) and structural properties of material obtained were determined. The FTIR spectra showed the formation of calcium-starch complexes. The treatments with Ca(OH)₂ showed a band shift towards 1675 cm⁻¹ and a band in 1436 cm⁻¹ (COO⁻), indicating the oxidation of starch. Three bands were identified (1575, 1550, and 1540 cm⁻¹) characteristics of carboxylic acid salts for three types of coordinated structures: monodentate, pseudo-bridged, and bidentate. The XRD spectra of starch treated with Ca(OH)₂ showed a peak corresponding to CaCO₃ (29.40°). The oxidation of starch was favored with low concentrations of Ca(OH)₂, producing carboxyl and carbonyl groups and increasing the residual CaCO₃. The increased concentration of Ca(OH)₂ showed the formation of calcium carboxylates, with a decrease in relative crystallinity and residual CaCO₃. Samples with low concentrations of Ca(OH)₂ slowed the onset of gelatinization and increased the swelling of the granules and the peak viscosity. The higher concentrations of Ca(OH)₂ difficulted the water absorption and decreased the viscosity rate and peak viscosity. These results can be used to improve the quality characteristics of the dough and tortillas and to get better acceptance by consumers.

Keywords: maize starch, nixtamalization, gelatinization, calcium carboxylates

Procedia PDF Downloads 95
551 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation

Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely

Abstract:

Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.

Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations

Procedia PDF Downloads 92
550 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems

Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai

Abstract:

The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).

Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation

Procedia PDF Downloads 253
549 Oil-Oil Correlation Using Polar and Non-Polar Fractions of Crude Oil: A Case Study in Iranian Oil Fields

Authors: Morteza Taherinezhad, Ahmad Reza Rabbani, Morteza Asemani, Rudy Swennen

Abstract:

Oil-oil correlation is one of the most important issues in geochemical studies that enables to classify oils genetically. Oil-oil correlation is generally estimated based on non-polar fractions of crude oil (e.g., saturate and aromatic compounds). Despite several advantages, the drawback of using these compounds is their susceptibility of being affected by secondary processes. The polar fraction of crude oil (e.g., asphaltenes) has similar characteristics to kerogen, and this structural similarity is preserved during migration, thermal maturation, biodegradation, and water washing. Therefore, these structural characteristics can be considered as a useful correlation parameter, and it can be concluded that asphaltenes from different reservoirs with the same genetic signatures have a similar origin. Hence in this contribution, an integrated study by using both non-polar and polar fractions of oil was performed to use the merits of both fractions. Therefore, five oil samples from oil fields in the Persian Gulf were studied. Structural characteristics of extracted asphaltenes were investigated by Fourier transform infrared (FTIR) spectroscopy. Graphs based on aliphatic and aromatic compounds (predominant compounds in asphaltenes structure) and sulphoxide and carbonyl functional groups (which are representatives of sulphur and oxygen abundance in asphaltenes) were used for comparison of asphaltenes structures in different samples. Non-polar fractions were analyzed by GC-MS. The study of asphaltenes showed the studied oil samples comprise two oil families with distinct genetic characteristics. The first oil family consists of Salman and Reshadat oil samples, and the second oil family consists of Resalat, Siri E, and Siri D oil samples. To validate our results, biomarker parameters were employed, and this approach completely confirmed previous results. Based on biomarker analyses, both oil families have a marine source rock, whereby marl and carbonate source rocks are the source rock for the first and the second oil family, respectively.

Keywords: biomarker, non-polar fraction, oil-oil correlation, petroleum geochemistry, polar fraction

Procedia PDF Downloads 135
548 Exploring Individual Decision Making Processes and the Role of Information Structure in Promoting Uptake of Energy Efficient Technologies

Authors: Rebecca J. Hafner, Daniel Read, David Elmes

Abstract:

The current research applies decision making theory in order to address the problem of increasing uptake of energy-efficient technologies in the market place, where uptake is currently slower than one might predict following rational choice models. Specifically, in two studies we apply the alignable/non-alignable features effect and explore the impact of varying information structure on the consumers’ preference for standard versus energy efficient technologies. As researchers in the Interdisciplinary centre for Storage, Transformation and Upgrading of Thermal Energy (i-STUTE) are currently developing energy efficient heating systems for homes and businesses, we focus on the context of home heating choice, and compare preference for a standard condensing boiler versus an energy efficient heat pump, according to experimental manipulations in the structure of prior information. In Study 1, we find that people prefer stronger alignable features when options are similar; an effect which is mediated by an increased tendency to infer missing information is the same. Yet, in contrast to previous research, we find no effects of alignability on option preference when options differ. The advanced methodological approach used here, which is the first study of its kind to randomly allocate features as either alignable or non-alignable, highlights potential design effects in previous work. Study 2 is designed to explore the interaction between alignability and construal level as an explanation for the shift in attentional focus when options differ. Theoretical and applied implications for promoting energy efficient technologies are discussed.

Keywords: energy-efficient technologies, decision-making, alignability effects, construal level theory, CO2 reduction

Procedia PDF Downloads 329
547 Crosslinked PVA/Bentonite Clay Nanocomposite Membranes: An Effective Membrane for the Separation of Azeotropic Composition of Isopropanol and Water

Authors: Soney C. George, Thomasukutty Jose, Sabu Thomas

Abstract:

Membrane based separation is the most important energy –efficient separation processes. There are wide ranges of membrane based separation process such as Micro-filtration, ultra filtration, reverse osmosis, electro-dialysis etc. Among these pervaporation is one of the most promising techniques. The promising technique is in the sense that it needs an ease of process design, low energy consumption, environmentally clean, economically cost effective and easily separate azeotropic composition without losing any components, unlike distillation in a short period of time. In the present work, we developed a new bentonite clay reinforced cross-linked PVA nano-composite membranes by solution casting method. The membranes were used for the pervaporation separation of azeotropic composition of isopropanol and water mixtures. The azeotropic composition of water and isopropanol is difficult to separate and we can’t get a better separation by normal separation processes. But the better separation was achieved here using cross-linked PVA/Clay nano-composite membranes. The 2wt% bentonite clay reinforced 5vol% GA cross-linked nano-composite membranes showed better separation efficiency. The selectivity of the cross-linked membranes increases 65% upon filler loading. The water permeance is showed tremendous enhancement upon filler loading. The permeance value changes from 4100 to 8200, due to the incorporation hydrophilic bentonite clay to the cross-linked PVA membranes. The clay reinforced membranes shows better thermal stability upon filler loading was confirmed from TGA and DSC analysis. The dispersion of nanoclay in the polymeric matrix was clearly evident from the TEM analysis. The better dispersed membranes showed better separation performance. Thus the developed cross-linked PVA/Clay membranes can be effectively used for the separation of azeotropic composition of water and isopropanol.

Keywords: poly(vinyl alcohol), membrane, gluraldehyde, permeance

Procedia PDF Downloads 306
546 Reduction of Transient Receptor Potential Vanilloid 1 for Chronic Pain and Depression Co-Morbidity through Electroacupuncture and Gene Deletion in Mice Brain

Authors: Bernice Lottering, Yi-Wen Lin

Abstract:

Chronic pain and depression have an estimated 80% rate of comorbidity with unsatisfactory treatment interventions signifying the importance of developing effective therapeutic interventions for a serious chronic condition affecting a large majority of the global population. Chronic pain is defined as persistent pain presenting for over 3 months. This disease state increases the risk of developing depression in comparison to healthy individuals. In the current study, complete Freund’s adjuvant (CFA) was used to induce cell-mediated chronic inflammatory pain in a murine model. Significant mechanical and thermal hyperalgesia was induced, alongside observable depression-like behaviors. These conditions were attenuated through the use of electroacupuncture (EA). Similarly, these effects were also investigated with respect to the transient receptor potential vanilloid 1 (TRPV1), by analyzing the effects of TRPV1 gene deletion on the comorbidity of chronic pain and depression. The expression of the TRPV1 inflammatory response, and related downstream molecules, including protein kinases (PKs), mitogen-activated protein kinase (MAPKs), and transcriptional factors, were significantly reduced in the thalamus, prefrontal cortex (PFC), hippocampus, and periaqueductal gray (PAG) of CFA-treated mice. In addition, phosphorylated N-methyl-D-aspartate (NMDA) receptor 1 was also found to be reduced in the aforementioned areas, suggesting potential application and validity in a clinical setting. Our study determined the prospective therapeutic effects of EA in the treatment of chronic inflammatory pain and depression comorbidity and provides a novel and detailed mechanism underlying EA-mediated analgesia. These findings may be relevant in the utilization of clinical intervention approaches related to chronic pain and depression comorbidity.

Keywords: chronic pain, depression, NMDA, prefrontal cortex, TRPV1

Procedia PDF Downloads 133
545 Impact of Ventilation Systems on Indoor Air Quality in Swedish Primary School Classrooms

Authors: Sarka Langer, Despoina Teli, Blanka Cabovska, Jan-Olof Dalenbäck, Lars Ekberg, Gabriel Bekö, Pawel Wargocki, Natalia Giraldo Vasquez

Abstract:

The aim of the study was to investigate the impact of various ventilation systems on indoor climate, air pollution, chemistry, and perception. Measurements of thermal environment and indoor air quality were performed in 45 primary school classrooms in Gothenburg, Sweden. The classrooms were grouped into three categories according to their ventilation system: category A) natural or exhaust ventilation or automated window opening; category B) balanced mechanical ventilation systems with constant air volume (CAV); and category C) balanced mechanical ventilation systems with variable air volume (VAV). A questionnaire survey about indoor air quality, perception of temperature, odour, noise and light, and sensation of well-being, alertness focus, etc., was distributed among the 10-12 years old children attending the classrooms. The results (medians) showed statistically significant differences between ventilation category A and categories B and C, but not between categories B and C in air change rates, median concentrations of carbon dioxide, individual volatile organic compounds formaldehyde and isoprene, in-door-to-outdoor ozone ratios and products of ozonolysis of squalene, a constituent of human skin oils, 6-methyl-5-hepten-2-one and decanal. Median ozone concentration, ozone loss -a difference between outdoor and indoor ozone concentrations- were different only between categories A and C. Median concentration of total VOCs and a perception index based on survey responses on perceptions and sensations indoors were not significantly different. In conclusion, ventilation systems have an impact on air change rates, indoor air quality, and chemistry, but the Swedish primary school children’s perception did not differ with the ventilation systems of the classrooms.

Keywords: indoor air pollutants, indoor climate, indoor chemistry, air change rate, perception

Procedia PDF Downloads 62
544 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study

Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya

Abstract:

The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.

Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory

Procedia PDF Downloads 408
543 A Study of Learning Achievement for Heat Transfer by Using Experimental Sets of Convection with the Predict-Observe-Explain Teaching Technique

Authors: Wanlapa Boonsod, Nisachon Yangprasong, Udomsak Kitthawee

Abstract:

Thermal physics education is a complicated and challenging topic to discuss in any classroom. As a result, most students tend to be uninterested in learning this topic. In the current study, a convection experiment set was devised to show how heat can be transferred by a convection system to a thermoelectric plate until a LED flashes. This research aimed to 1) create a natural convection experimental set, 2) study learning achievement on the convection experimental set with the predict-observe-explain (POE) technique, and 3) study satisfaction for the convection experimental set with the predict-observe-explain (POE) technique. The samples were chosen by purposive sampling and comprised 28 students in grade 11 at Patumkongka School in Bangkok, Thailand. The primary research instrument was the plan for predict-observe-explain (POE) technique on heat transfer using a convection experimental set. Heat transfer experimental set by convection. The instruments used to collect data included a heat transfer achievement model by convection, a Satisfaction Questionnaire after the learning activity, and the predict-observe-explain (POE) technique for heat transfer using a convection experimental set. The research format comprised a one-group pretest-posttest design. The data was analyzed by GeoGebra program. The statistics used in the research were mean, standard deviation and t-test for dependent samples. The results of the research showed that achievement on heat transfer using convection experimental set was composed of thermo-electrics on the top side attached to the heat sink and another side attached to a stainless plate. Electrical current was displayed by the flashing of a 5v LED. The entire set of thermo-electrics was set up on the top of the box and heated by an alcohol burner. The achievement of learning was measured with the predict-observe-explain (POE) technique, with the natural convection experimental set statistically higher than before learning at a 0.01 level. Satisfaction with POE for physics learning of heat transfer by using convection experimental set was at a high level (4.83 from 5.00).

Keywords: convection, heat transfer, physics education, POE

Procedia PDF Downloads 218
542 Approaches for Minimizing Radioactive Tritium and ¹⁴C in Advanced High Temperature Gas-Cooled Reactors

Authors: Longkui Zhu, Zhengcao Li

Abstract:

High temperature gas-cooled reactors (HTGRs) are considered as one of the next-generation advanced nuclear reactors, in which porous nuclear graphite is used as neutron moderators, reflectors, structure materials, and cooled by inert helium. Radioactive tritium and ¹⁴C are generated in terms of reactions of thermal neutrons and ⁶Li, ¹⁴N, ¹⁰B impurely within nuclear graphite and the coolant during HTGRs operation. Currently, hydrogen and nitrogen diffusion behavior together with nuclear graphite microstructure evolution were investigated to minimize the radioactive waste release, using thermogravimetric analysis, X-ray computed tomography, the BET and mercury standard porosimetry methods. It is found that the peak value of graphite weight loss emerged at 573-673 K owing to nitrogen diffusion from graphite pores to outside when the system was subjected to vacuum. Macropore volume became larger while porosity for mesopores was smaller with temperature ranging from ambient temperature to 1073 K, which was primarily induced by coalescence of the subscale pores. It is suggested that the porous nuclear graphite should be first subjected to vacuum at 573-673 K to minimize the nitrogen and the radioactive 14°C before operation in HTGRs. Then, results on hydrogen diffusion show that the diffusible hydrogen and tritium could permeate into the coolant with diffusion coefficients of > 0.5 × 10⁻⁴ cm²·s⁻¹ at 50 bar. As a consequence, the freshly-generated diffusible tritium could release quickly to outside once formed, and an effective approach for minimizing the amount of radioactive tritium is to make the impurity contents extremely low in nuclear graphite and the coolant. Besides, both two- and three-dimensional observations indicate that macro and mesopore volume along with total porosity decreased with temperature at 50 bar on account of synergistic effects of applied compression strain, sharpened pore morphology, and non-uniform temperature distribution.

Keywords: advanced high temperature gas-cooled reactor, hydrogen and nitrogen diffusion, microstructure evolution, nuclear graphite, radioactive waste management

Procedia PDF Downloads 311
541 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection

Authors: Jayakrishnan U.

Abstract:

A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.

Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption

Procedia PDF Downloads 304
540 The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments

Authors: Mohammed Badereldien, Rezk Diab, Mohamoud Ali, Ayman Aboelkassem

Abstract:

The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties.

Keywords: calcium carbonate nanoparticles, consolidation, nanocomposites, calcareous stone, colorimetric measurements, compressive strength

Procedia PDF Downloads 134
539 Solution of Reduced Mass in Solar Glider with Electric Engine

Authors: Piotr Żabicki, Paweł Skutta

Abstract:

The project of a glider with an electric motor charged by solar power is an step toward the future of Polish gliding. Due to the popularity of the SZD-50-3 glider and its type of usage, the project was developed based on this model. By placing an auxiliary engine in the glider, the pilot is guaranteed a safe return to the airport. Since it is a training glider, and routes are mainly flown by student pilots and instructors, the guarantee of returning to the airport allows flights in more challenging thermal conditions, which contributes to better pilot training. In case of worsening weather, the pilot has a reliable return option, which prevents time loss due to field landings and saves money by avoiding delays in training. The glider uses the NOVA 15 LW engine, a solar installation, and technical modifications to reduce the glider's weight. This includes the Misztal spar solution, previously used in the PZL 19 aircraft. Additionally, the use of lighter coverings and materials that handle loads from pulling, straining, and sharing improves the aerodynamic performance of the glider, enhancing its overall efficiency. Every component added to the glider's construction (battery, engine, etc.) has been placed to avoid shifting loads along the axis, thus preventing unintended spins and flat spins. Safety concerns were also addressed. In the event of a battery or engine fire, the pilot's cabin is designed as a detachable part of the structure and is made of composites covered with non-flammable resin. The batteries are also enclosed in separate boxes located in the former "luggage" compartment. Access to the installation connecting the engine, panel, and battery is convenient due to the detachable cabin from the structure and the fact that the entire installation runs under the structure. The batteries also have easy access due to the current closed hatch. Cooling for the battery is provided this way.

Keywords: engineering, girder, glider, solar, spar

Procedia PDF Downloads 7
538 Treatment of Acid Mine Lake by Ultrasonically Modified Fly Ash at Different Frequencies

Authors: Burcu Ileri, Deniz Sanliyuksel Yucel, Onder Ayyildiz

Abstract:

The oxidation of pyrite in water results in the formation of acid mine drainage, which typically forms extremely acid mine lake (AML) in the depression areas of abandoned Etili open-pit coal mine site, Northwest Turkey. Nine acid mine lakes of various sizes have been located in the Etili coal mine site. Hayirtepe AML is one of the oldest lake having a mean pH value of 2.9 and conductivity of 4550 μS/cm, and containing elevated concentrations of Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn. The water quality of the lake has been deteriorated due to its high chemical composition, in particular, increasing heavy metal pollution. In this study, fly ash (FA), a coal combustion by-product from fluidized bed thermal power plant in the northwestern part of Turkey, was used as an adsorbent for the treatment of Hayirtepe AML. The FA is a relatively abundant and cost effective material, but its use in adsorption processes usually require excessive adsorbent doses. To increase adsorption efficiency and lower the adsorbent dose, we modified the FA by means of ultrasonic treatment (20 kHz and 40 kHz). The images of scanning electron microscopy (SEM) have demonstrated that ultrasonic treatment not only decreased the size of ash particles but also created pits and cracks on their surfaces which in turn led to a significant increase in the BET surface area. Both FA and modified fly ash were later tested for the removal of heavy metals from the AML. The effect of various operating parameters such as ultrasonic power, pH, ash dose, and adsorption contact time were examined to obtain the optimum conditions for the treatment process. The results have demonstrated that removal of heavy metals by ultrasound-modified fly ash requires much shorter treatment times and lower adsorbent doses than those attained by the unmodified fly ash. This research was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK), (Project no: 116Y510).

Keywords: acid mine lake, heavy metal, modified fly ash, ultrasonic treatment

Procedia PDF Downloads 198
537 Dwindling the Stability of DNA Sequence by Base Substitution at Intersection of COMT and MIR4761 Gene

Authors: Srishty Gulati, Anju Singh, Shrikant Kukreti

Abstract:

The manifestation of structural polymorphism in DNA depends on the sequence and surrounding environment. Ample of folded DNA structures have been found in the cellular system out of which DNA hairpins are very common, however, are indispensable due to their role in the replication initiation sites, recombination, transcription regulation, and protein recognition. We enumerate this approach in our study, where the two base substitutions and change in temperature embark destabilization of DNA structure and misbalance the equilibrium between two structures of a sequence present at the overlapping region of the human COMT gene and MIR4761 gene. COMT and MIR4761 gene encodes for catechol-O-methyltransferase (COMT) enzyme and microRNAs (miRNAs), respectively. Environmental changes and errors during cell division lead to genetic abnormalities. The COMT gene entailed in dopamine regulation fosters neurological diseases like Parkinson's disease, schizophrenia, velocardiofacial syndrome, etc. A 19-mer deoxyoligonucleotide sequence 5'-AGGACAAGGTGTGCATGCC-3' (COMT19) is located at exon-4 on chromosome 22 and band q11.2 at the intersection of COMT and MIR4761 gene. Bioinformatics studies suggest that this sequence is conserved in humans and few other organisms and is involved in recognition of transcription factors in the vicinity of 3'-end. Non-denaturating gel electrophoresis and CD spectroscopy of COMT sequences indicate the formation of hairpin type DNA structures. Temperature-dependent CD studies revealed an unusual shift in the slipped DNA-Hairpin DNA equilibrium with the change in temperature. Also, UV-thermal melting techniques suggest that the two base substitutions on the complementary strand of COMT19 did not affect the structure but reduces the stability of duplex. This study gives insight about the possibility of existing structurally polymorphic transient states within DNA segments present at the intersection of COMT and MIR4761 gene.

Keywords: base-substitution, catechol-o-methyltransferase (COMT), hairpin-DNA, structural polymorphism

Procedia PDF Downloads 121
536 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 389
535 Anti-Inflammatory, Anti-Nociceptive and Anti-Arthritic Effects of Mirtazapine, Venalfaxine and Escitalopram in Rats

Authors: Sally A. El Awdan

Abstract:

Objective and Design: The purpose of this study was to evaluate the anti inflammatory, anti-arthritic and analgesic effects of antidepressants. Methods: Carrageenan model was used to assess effect on acute inflammation. Paw volume were measured at 1, 2, 3 and 4th hour post challenge. Anti-nociceptive effect was evaluated by hot plate method. Chronic inflammation was developed using Complete Freund's Adjuvant (CFA). The animals were injected with Freund’s adjuvant in sub-plantar tissue of the right posterior paw. Paw volume, ankle flexion scores, adjuvant-induced hyperalgesia and serum cytokine levels were assessed. Results: Results obtained demonstrate that mirtazapine, venalfaxine and escitalopram significantly and dose-dependently inhibited carrageenan-induced rat paw oedema. Mirtazapine, venalfaxine and escitalopram increased the reaction time of rats in hot plate test. We observed an increase in paw volume, ankle flexion scores, thermal hyperalgesia, serum levels of interleukin-1β, PGE2 and TNF-α, induced by intraplantar CFA injection. Regular treatment up to 28 days of adjuvant-induced arthritic rats with mirtazapine, venalfaxine and escitalopram showed anti anti-inflammatory and analgesic activities by suppressing the paw volume, recovering the paw withdrawal latency, and by inhibiting the ankle flexion scores in CFA-induced rats. In addition significant reduction in serum levels of interleukin-1β, PGE2 and TNF-α level in arthritic rats was reduced by treatment with drugs. Conclusion: These results suggest that antidepressants have significant anti-inflammatory and anti-nociceptive effects in acute and chronic models in rats, which may be associated with the reduction of interleukin-1β, PGE2 and TNF-α levels.

Keywords: antidepressants, carrageenan, anti-nociceptive, Complete Freund's Adjuvant

Procedia PDF Downloads 492
534 Influence of UV Aging on the Mechanical Properties of Polycarbonate

Authors: S. Redjala, N. Ait Hocine, M. Gratton, N. Poirot, R. Ferhoum, S. Azem

Abstract:

Polycarbonate (PC) is a promising polymer with high transparency in the range of the visible spectrum and is used in various fields, for example medical, electronic, automotive. Its low weight, chemical inertia, high impact resistance and relatively low cost are of major importance. In recent decades, some materials such as metals and ceramics have been replaced by polymers because of their superior advantages. However, some characteristics of the polymers are highly modified under the effect of ultraviolet (UV) radiation and temperature. The changes induced in the material by such aging depend on the exposure time, the wavelength of the UV radiation and the temperature level. The UV energy is sufficient to break the chemical bonds leading to a cleavage of the molecular chains. This causes changes in the mechanical, thermal, optical and morphological properties of the material. The present work is focused on the study of the effects of aging under ultraviolet (UV) radiation and under different temperature values on the physical-chemical and mechanical properties of a PC. Thus, various investigations, such as FTIR and XRD analyses, SEM and optical microscopy observations, micro-hardness measurements and monotonic and cyclic tensile tests, were carried out on the PC in the initial state and after aging. Results have shown the impact of aging on the properties of the PC studied. In fact, the MEB highlighted changes in the superficial morphology of the material by the presence of cracks and material de-bonding in the form of debris. The FTIR spectra reveal an attenuation of the peaks like the hydroxyl (OH) groups located at 3520 cm-1. The XRD lines shift towards a larger angle, reaching a maximum of 3°. In addition, Vickers micro-hardness measurements show that aging affects the surface and the core of the material, which results in different mechanical behaviours under monotonic and cyclic tensile tests. This study pointed out effects of aging on the macroscopic properties of the PC studied, in relationship with its microstructural changes.

Keywords: mechanical properties, physical-chemical properties, polycarbonate, UV aging, temperature aging

Procedia PDF Downloads 142
533 Land Suitability Assessment for Vineyards in Afghanistan Based on Physical and Socio-Economic Criteria

Authors: Sara Tokhi Arab, Tariq Salari, Ryozo Noguchi, Tofael Ahamed

Abstract:

Land suitability analysis is essential for table grape cultivation in order to increase its production and productivity under the dry condition of Afghanistan. In this context, the main aim of this paper was to determine the suitable locations for vineyards based on satellite remote sensing and GIS (geographical information system) in Kabul Province of Afghanistan. The Landsat8 OLI (operational land imager) and thermal infrared sensor (TIRS) and shuttle radar topography mission digital elevation model (SRTM DEM) images were processed to obtain the normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI), land surface temperature (LST), and topographic criteria (elevation, aspect, and slope). Moreover, Jaxa rainfall (mm per hour), soil properties information are also used for the physical suitability of vineyards. Besides, socio-economic criteria were collected through field surveys from Kabul Province in order to develop the socio-economic suitability map. Finally, the suitable classes were determined using weighted overly based on a reclassification of each criterion based on AHP (Analytical Hierarchy Process) weights. The results indicated that only 11.1% of areas were highly suitable, 24.8% were moderately suitable, 35.7% were marginally suitable and 28.4% were not physically suitable for grapes production. However, 15.7% were highly suitable, 17.6% were moderately suitable, 28.4% were marginally suitable and 38.3% were not socio-economically suitable for table grapes production in Kabul Province. This research could help decision-makers, growers, and other stakeholders with conducting precise land assessments by identifying the main limiting factors for the production of table grapes management and able to increase land productivity more precisely.

Keywords: vineyards, land physical suitability, socio-economic suitability, AHP

Procedia PDF Downloads 170