Search results for: spatial information network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16186

Search results for: spatial information network

12826 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 42
12825 Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification

Authors: Hafida Ferfera-Harrar, Nacera Aiouaz, Nassima Dairi

Abstract:

Super absorbents polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling super absorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from waste water is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels super absorbents. In this study, novel multi-functional super absorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’ -methylenebisacrylamide as initiator and cross linker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and thermo gravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these super absorbent composites was examined in various media (distilled water, saline and pH-solutions).The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic. These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from waste water.

Keywords: chitosan, gelatin, superabsorbent, water absorbency

Procedia PDF Downloads 464
12824 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 79
12823 Pattern of Anisometropia, Management and Outcome of Anisometropic Amblyopia

Authors: Husain Rajib, T. H. Sheikh, D. G. Jewel

Abstract:

Background: Amblyopia is a frequent cause of monocular blindness in children. It can be unilateral or bilateral reduction of best corrected visual acuity associated with decrement in visual processing, accomodation, motility, spatial perception or spatial projection. Anisometropia is an important risk factor for amblyopia that develops when unequal refractive error causes the image to be blurred in the critical developmental period and central inhibition of the visual signal originating from the affected eye associated with significant visual problems including anisokonia, strabismus, and reduced stereopsis. Methods: It is a prospective hospital based study of newly diagnosed of amblyopia seen at the pediatric clinic of Chittagong Eye Infirmary & Training Complex. There were 50 anisometropic amblyopia subjects were examined & questionnaire was piloted. Included were all patients diagnosed with refractive amblyopia between 3 to 13 years, without previous amblyopia treatment, and whose parents were interested to participate in the study. Patients diagnosed with strabismic amblyopia were excluded. Patients were first corrected with the best correction for a month. When the VA in the amblyopic eye did not improve over month, then occlusion treatment was started. Occlusion was done daily for 6-8 hours (full time) together with vision therapy. The occlusion was carried out for 3 months. Results: In this study about 8% subjects had anisometropia from myopia, 18% from hyperopia, 74% from astigmatism. The initial mean visual acuity was 0.74 ± 0.39 Log MAR and after intervention of amblyopia therapy with active vision therapy mean visual acuity was 0.34 ± 0.26 Log MAR. About 94% of subjects were improving at least two lines. The depth of amblyopia associated with type of anisometropic refractive error and magnitude of Anisometropia (p<0.005). By doing this study 10% mild amblyopia, 64% moderate and 26% severe amblyopia were found. Binocular function also decreases with magnitude of Anisometropia. Conclusion: Anisometropic amblyopia is a most important factor in pediatric age group because it can lead to visual impairment. Occlusion therapy with at least one instructed hour of active visual activity practiced out of school hours was effective in anisometropic amblyopes who were diagnosed at the age of 8 years and older, and the patients complied well with the treatment.

Keywords: refractive error, anisometropia, amblyopia, strabismic amblyopia

Procedia PDF Downloads 276
12822 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
12821 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria

Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi

Abstract:

In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.

Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network

Procedia PDF Downloads 115
12820 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.

Keywords: JPSO, operation, optimization, water distribution system

Procedia PDF Downloads 245
12819 21st Century Teacher Image to Stakeholders of Teacher Education Institutions in the Philippines

Authors: Marilyn U. Balagtas, Maria Ruth M. Regalado, Carmelina E. Barrera, Ramer V. Oxiño, Rosarito T. Suatengco, Josephine E. Tondo

Abstract:

This study presents the perceptions of the students and teachers from kindergarten to tertiary level of the image of the 21st century teacher to provide basis in designing teacher development programs in Teacher Education Institutions (TEIs) in the Philippines. The highlights of the report are the personal, psychosocial, and professional images of the 21st century teacher in basic education and the teacher educators based on a survey done to 612 internal stakeholders of nine member institutions of the National Network of Normal Schools (3NS). Data were obtained through the use of a validated researcher-made instrument which allowed generation of both quantitative and qualitative descriptions of the teacher image. Through the use of descriptive statistics, the common images of the teacher were drawn, which were validated and enriched by the information drawn from the qualitative data. The study recommends a repertoire of teacher development programs to create the good image of the 21st century teachers for a better Philippines.

Keywords: teacher image, 21st century teacher, teacher education, development program

Procedia PDF Downloads 367
12818 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 97
12817 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks

Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir

Abstract:

Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.

Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.

Procedia PDF Downloads 89
12816 Path Planning for Multiple Unmanned Aerial Vehicles Based on Adaptive Probabilistic Sampling Algorithm

Authors: Long Cheng, Tong He, Iraj Mantegh, Wen-Fang Xie

Abstract:

Path planning is essential for UAVs (Unmanned Aerial Vehicle) with autonomous navigation in unknown environments. In this paper, an adaptive probabilistic sampling algorithm is proposed for the GPS-denied environment, which can be utilized for autonomous navigation system of multiple UAVs in a dynamically-changing structured environment. This method can be used for Unmanned Aircraft Systems Traffic Management (UTM) solutions and in autonomous urban aerial mobility, where a number of platforms are expected to share the airspace. A path network is initially built off line based on available environment map, and on-board sensors systems on the flying UAVs are used for continuous situational awareness and to inform the changes in the path network. Simulation results based on MATLAB and Gazebo in different scenarios and algorithms performance measurement show the high efficiency and accuracy of the proposed technique in unknown environments.

Keywords: path planning, adaptive probabilistic sampling, obstacle avoidance, multiple unmanned aerial vehicles, unknown environments

Procedia PDF Downloads 156
12815 Obstacles in Integrating ICT in Education: A Cross-Sectional Study in GCC Countries

Authors: Mohammed Alhawiti

Abstract:

This paper investigates the insight of educational practitioners concerning challenges that seriously obstruct the comprehension of ICT-related goals of educational institutes. ICT education is a broad area encircling a variety of discipline; both those traditionally classified as IT such as information systems, engineering etc., as well as recent areas, which cross over a variety of educational fields. The results are from a local survey among national representative samples of institutes across GCC countries. The research entails a brief synopsis of the design of this project, a review of key indicators regarding ICT (Information and Communication Technologies) in various institutions, key obstacles and an investigation of the co-variation between challenges and related factors at the country-level.

Keywords: information, communication technology, GCC countries, education sector

Procedia PDF Downloads 431
12814 Spatiotemporal Variability of Snow Cover and Snow Water Equivalent over Eurasia

Authors: Yinsheng Zhang

Abstract:

Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972–2006 and the Global Monthly EASE-Grid SWE data for 1979–2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972–2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as the partial area of Central Asia and northwestern Russia but varied little in other parts of Eurasia. ‘Snow-free breaks’ (SFBs) with intermittent snow cover in the cold season were mainly observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1–14 weeks in the Tibetan Plateau during 1972–2006 and the maximum intermittence could reach 25 weeks in some extreme years. At a seasonal scale, the SWE usually peaked in February or March but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979–2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China.

Keywords: Eurasia, snow cover extent, snow cover persistence period, snow-free breaks, onset and disappearance timings, snow water equivalent

Procedia PDF Downloads 146
12813 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 57
12812 Highway Capacity and Level of Service

Authors: Kidist Mesfin Nguse

Abstract:

Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.

Keywords: capacity, level of service, traffic volume, free flow speed

Procedia PDF Downloads 51
12811 The Capabilities of New Communication Devices in Development of Informing: Case Study Mobile Functions in Iran

Authors: Mohsen Shakerinejad

Abstract:

Due to the growing momentum of technology, the present age is called age of communication and information. And With Astounding progress of Communication and information tools, current world Is likened to the "global village". That a message can be sent from one point to another point of the world in a Time scale Less than a minute. However, one of the new sociologists -Alain Touraine- in describing the destructive effects of new changes arising from the development of information appliances refers to the "new fields for undemocratic social control And the incidence of acute and unrest social and political tensions", Yet, in this era That With the advancement of the industry, the life of people has been industrial too, quickly and accurately Data Transfer, Causes Blowing new life in the Body of Society And according to the features of each society and the progress of science and technology, Various tools should be used. One of these communication tools is Mobile. Cellular phone As Communication and telecommunication revolution in recent years, Has had a great influence on the individual and collective life of societies. This powerful communication tool Have had an Undeniable effect, On all aspects of life, including social, economic, cultural, scientific, etc. so that Ignoring It in Design, Implementation and enforcement of any system is not wise. Nowadays knowledge and information are one of the most important aspects of human life. Therefore, in this article, it has been tried to introduce mobile potentials in receive and transmit News and Information. As it follows, among the numerous capabilities of current mobile phones features such as sending text, photography, sound recording, filming, and Internet connectivity could indicate the potential of this medium of communication in the process of sending and receiving information. So that nowadays, mobile journalism as an important component of citizen journalism Has a unique role in information dissemination.

Keywords: mobile, informing, receiving information, mobile journalism, citizen journalism

Procedia PDF Downloads 410
12810 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor

Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung

Abstract:

One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.

Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible

Procedia PDF Downloads 88
12809 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels

Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra

Abstract:

In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.

Keywords: alternative energy, solar tracker, energy efficiency, photovoltaic panels

Procedia PDF Downloads 147
12808 Effect of Political and Social Context in Libya on Accounting Information System to Meet Development Needs

Authors: Bubaker F. Shareia, Almuetaz R. Boubakr

Abstract:

The aim of this paper is to show how Libya’s legal, economic, political, social, and cultural systems have shaped Libyan development. This will provide a background to develop an understanding of the current role of the accounting information system in Libya and the challenges facing the design of the aeronautical information system to meet the development needs of Libya. Our knowledge of the unified economic operating systems of the world paves the way for the economic development of every developing country. In order to achieve this understanding, every developing country should be provided with a high-efficiency communications system in order to be able to interact globally. From the point of view of the theory of globalization, Libya's understanding of its socio-economic and political systems is vital in order to be able to adopt and apply accounting techniques that will assist in the economic development of Libya.

Keywords: accounting, economic development, globalisation theory, information system

Procedia PDF Downloads 272
12807 Bandwidth Efficient Cluster Based Collision Avoidance Multicasting Protocol in VANETs

Authors: Navneet Kaur, Amarpreet Singh

Abstract:

In Vehicular Adhoc Networks, Data Dissemination is a challenging task. There are number of techniques, types and protocols available for disseminating the data but in order to preserve limited bandwidth and to disseminate maximum data over networks makes it more challenging. There are broadcasting, multicasting and geocasting based protocols. Multicasting based protocols are found to be best for conserving the bandwidth. One such protocol named BEAM exists that improves the performance of Vehicular Adhoc Networks by reducing the number of in-network message transactions and thereby efficiently utilizing the bandwidth during an emergency situation. But this protocol may result in multicar chain collision as there was no V2V communication. So, this paper proposes a new protocol named Enhanced Bandwidth Efficient Cluster Based Multicasting Protocol (EBECM) that will overcome the limitations of existing BEAM protocol. And Simulation results will show the improved performance of EBECM in terms of Routing overhead, throughput and PDR when compared with BEAM protocol.

Keywords: BEAM, data dissemination, emergency situation, vehicular adhoc network

Procedia PDF Downloads 348
12806 Quantitative Comparisons of Different Approaches for Rotor Identification

Authors: Elizabeth M. Annoni, Elena G. Tolkacheva

Abstract:

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.

Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors

Procedia PDF Downloads 324
12805 Analysis of Hotel Websites to Attract Tourists in Iran, Case Study: Yazd County

Authors: Leila Habibi, Hadi Hakimi, Hadi Sadeghian, Maryam Jafari Mehrabadi

Abstract:

Nowadays, the importance of information technology and web-based information in tourism is very obvious. Increasing of sales and promotion of brands, the rise of information about tourist attractions and tourist areas, entrepreneurship and making money, introducing of hotels and side information to tourists via web are some examples of website effects on tourism. The hotels using web-based information can succeed in attracting tourists and improve the quality of services to the tourists. So, the study of hotel websites has become one of the most important issues in tourism. Therefore, this research aims to analyze the status of hotel websites in Yazd County as one of the most tourist visited counties in Iran. The quality of hotel website in a county can be very vital for tourism. Hence, this research compares the status of hotel websites in Yazd County with standard indexes and items that extracted from literature and theoretical framework. Content analysis is used for analyzing hotel websites with indexes and items in methodology. In the other words, all of the items are compared with the content of hotel-websites in Yazd one by one. Finally, every hotel archived final score which represents the position of the hotel among the others. All of scores and status of hotels are displayed in their own figures. The result of this research shows that many hotels do not offer standard web-based services and information. So, the existing situation is not very suitable for the attraction of web users or improving the tourism. The result of this research may help the managers and authorities of tourism to offer and improve the web-based services and information.

Keywords: e-tourism, hotel websites, tourism, web-tourism

Procedia PDF Downloads 292
12804 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events

Authors: Andrey V. Timofeev

Abstract:

The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.

Keywords: Lipschitz Classifier, classifiers ensembles, LPBoost, C-OTDR systems

Procedia PDF Downloads 461
12803 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 136
12802 Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging

Authors: Jae Won Lee, Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee

Abstract:

To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging.

Keywords: calcium carbonate, mineralization, ultrasound imaging, magnetic resonance imaging

Procedia PDF Downloads 236
12801 The Penetration of Urban Mobility Multi-Modality Enablers in a Vehicle-Dependent City

Authors: Lama Yaseen, Nourah Al-Hosain

Abstract:

A Multi-modal system in urban mobility is an essential framework for an optimized urban transport network. Many cities are still heavily dependent on vehicle transportation, dominantly using conventional fuel-based cars for daily travel. With the reliance on motorized vehicles in large cities such as Riyadh, the capital city of Saudi Arabia, traffic congestion is eminent, which ultimately results in an increase in road emissions and loss of time. Saudi Arabia plans to undergo a massive transformation in mobility infrastructure and urban greening projects, including introducing public transport and other massive urban greening infrastructures that enable alternative mobility options. This paper uses a Geographic Information System (GIS) approach that analyzes the accessibility of current and planned public transport stations and how they intertwine with massive urban greening projects that may play a role as an enabler of micro-mobility and walk-ability options in the city.

Keywords: urban development, urban mobility, sustainable mobility, Middle East

Procedia PDF Downloads 100
12800 Order Optimization of a Telecommunication Distribution Center through Service Lead Time

Authors: Tamás Hartványi, Ferenc Tóth

Abstract:

European telecommunication distribution center performance is measured by service lead time and quality. Operation model is CTO (customized to order) namely, a high mix customization of telecommunication network equipment and parts. CTO operation contains material receiving, warehousing, network and server assembly to order and configure based on customer specifications. Variety of the product and orders does not support mass production structure. One of the success factors to satisfy customer is to have a proper aggregated planning method for the operation in order to have optimized human resources and highly efficient asset utilization. Research will investigate several methods and find proper way to have an order book simulation where practical optimization problem may contain thousands of variables and the simulation running times of developed algorithms were taken into account with high importance. There are two operation research models that were developed, customer demand is given in orders, no change over time, customer demands are given for product types, and changeover time is constant.

Keywords: CTO, aggregated planning, demand simulation, changeover time

Procedia PDF Downloads 267
12799 Imaging of Underground Targets with an Improved Back-Projection Algorithm

Authors: Alireza Akbari, Gelareh Babaee Khou

Abstract:

Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.

Keywords: algorithm, back-projection, GPR, remote sensing

Procedia PDF Downloads 452
12798 Calycosin Ameliorates Osteoarthritis by Regulating the Imbalance Between Chondrocyte Synthesis and Catabolism

Authors: Hong Su, Qiuju Yan, Wei Du, En Hu, Zhaoyu Yang, Wei Zhang, Yusheng Li, Tao Tang, Wang yang, Shushan Zhao

Abstract:

Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ATDC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.

Keywords: calycosin, osteoarthritis, network pharmacology, molecular docking, inflammatory, cyclooxygenase 2

Procedia PDF Downloads 102
12797 Analysis of Hotel Websites to Attract Tourists in Iran, Case Study: Yazd City

Authors: Leila Habibi, Hadi Hakimi, Maryam Jafari Mehrabadi, Hadi Sadeghian

Abstract:

Nowadays, the importance of information technology and web- based information in tourism is very obvious. Increasing of sales and promotion of brands, the rise of information about tourist attractions and tourist areas, Entrepreneurship and making money, introducing of hotels and side information to tourists via web are some Examples of website effects on tourism. The hotels using web-based information can succeed in attracting tourists and improve the quality of services to the tourists so; the study of hotel websites has become one of the most important issues in tourism. Therefore, this research aims to analyze the status of hotel websites in Yazd City as one of the most tourist visited counties in Iran. The quality of hotel website in a city such as this city can be very vital for tourism. Hence, this research compares the status of hotel websites in Yazd City with standard indexes and items that extracted from Literature and theoretical framework. It is used content analysis for analyzing of hotel websites with indexes and items in methodology. In the other words, all of the items is compared with the content of hotel-websites in Yazd one by one. Finally, every hotel archived final score and it represents the position of the hotel among the others. All of scores and status of hotels is displayed in their own Figures. The result of this research shows that many hotels do not offer standard web -based services and information. So, the existing situation is not very suitable for the attraction of web users or improving the tourism. The result of this research may help the managers and authorities of tourism to offer and improve the web- based services and information.

Keywords: e-tourism, hotel websites, tourism, web-tourism

Procedia PDF Downloads 293