Search results for: scientific modeling
2576 The Relationships between the Feelings of Bullying, Self- Esteem, Employee Silence, Anger, Self- Blame and Shame
Authors: Şebnem Aslan, Demet Akarçay
Abstract:
The objective of this study is to investigate the feelings of health employees occurred by bullying and the relationships between these feelings at work place. In this context, the relationships between bullying and the feelings of self-esteem, employee silence, anger, self- blame and shame. This study was conducted among 512 health employees in three hospitals in Konya by using survey method and simple random sampling. The scales of bullying, self-esteem, employee silence, anger, self-blame, and shame were performed within the study. The obtained data were analyzed with descriptive analysis, correlation, confirmative factor analysis, structural equation modeling and path analysis. The results of the study showed that while bullying had a positive effect on self-esteem (.61), employee silence (.41), anger (.18), a negative effect on self-blame and shame (-.26) was observed. Employee silence affected self-blame and shame (.83) as positively. Besides, self-esteem impacted on self- blame and shame (.18), employee silence (.62) positively and self-blame and shame was observed as negatively affecting on anger (-.20). Similarly, self-esteem was found as negatively affected on anger (-.13).Keywords: bullying, self-esteem, employee silence, anger, shame and guilt, healthcare employee
Procedia PDF Downloads 3002575 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole
Authors: Hasan Keshavarzian, Tayebeh Nesari
Abstract:
Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.Keywords: rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis
Procedia PDF Downloads 3822574 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 1512573 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology
Authors: I. F. Ejim, F. L. Kamen
Abstract:
Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction
Procedia PDF Downloads 3442572 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself
Authors: Frederic Jumelle, Kelvin So, Didan Deng
Abstract:
In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).Keywords: neural computing, human machine interation, artificial general intelligence, decision processing
Procedia PDF Downloads 1292571 Fall Avoidance Control of Wheeled Inverted Pendulum Type Robotic Wheelchair While Climbing Stairs
Authors: Nan Ding, Motoki Shino, Nobuyasu Tomokuni, Genki Murata
Abstract:
The wheelchair is the major means of transport for physically disabled people. However, it cannot overcome architectural barriers such as curbs and stairs. In this paper, the authors proposed a method to avoid falling down of a wheeled inverted pendulum type robotic wheelchair for climbing stairs. The problem of this system is that the feedback gain of the wheels cannot be set high due to modeling errors and gear backlash, which results in the movement of wheels. Therefore, the wheels slide down the stairs or collide with the side of the stairs, and finally the wheelchair falls down. To avoid falling down, the authors proposed a slider control strategy based on skyhook model in order to decrease the movement of wheels, and a rotary link control strategy based on the staircase dimensions in order to avoid collision or slide down. The effectiveness of the proposed fall avoidance control strategy was validated by ODE simulations and the prototype wheelchair.Keywords: EPW, fall avoidance control, skyhook, wheeled inverted pendulum
Procedia PDF Downloads 3352570 The Status of BIM Adoption in Six Continents
Authors: Wooyoung Jung, Ghang Lee
Abstract:
This paper paper reports the worldwide status of building information modeling (BIM) adoption from the perspectives of the engagement level, the Hype Cycle model, the technology diffusion model, and BIM-uses. An online survey was distributed, and 156 experts from six continents responded. Overall, North America was the most advanced continent, followed by Oceania and Europe. Countries in Asia perceived their phase mainly as slope of enlightenment (mature) in the Hype Cycle model. In the technology diffusion model, the main BIM-users worldwide were “early majority” (third phase), but those in the Middle East/Africa and South America were “early adopters” (second phase). In addition, the more advanced the country, the more number of BIM services employed in general. In summary, North America, Europe, Oceania, and Asia were advancing rapidly toward the mature stage of BIM, whereas the Middle East/Africa and South America were still in the early phase. The simple indexes used in this study may be used to track the worldwide status of BIM adoption in long-term surveys.Keywords: BIM adoption, BIM services, hype cycle model, technology diffusion model
Procedia PDF Downloads 5622569 Building Information Modelling Based Value for Money Assessment in Public-Private Partnership
Authors: Guoqian Ren, Haijiang Li, Jisong Zhang
Abstract:
Over the past 40 years, urban development has undergone large-scale, high-speed expansion, beyond what was previously considered normal and in a manner not proportionally related to population growth or physical considerations. With more scientific and refined decision-making in the urban construction process, new urbanization approaches, aligned with public-private partnerships (PPPs) which evolved in the early 1990s, have become acceptable and, in some situations, even better solutions to outstanding urban municipal construction projects, especially in developing countries. However, as the main driving force to deal with urban public services, PPPs are still problematic regarding value for money (VFM) process in most large-scale construction projects. This paper therefore reviews recent PPP articles in popular project management journals and relevant toolkits, published in the last 10 years, to identify the indicators that influence VFM within PPPs across regions. With increasing concerns about profitability and environmental and social impacts, the current PPP structure requires a more integrated platform to manage multi-performance project life cycles. Building information modelling (BIM), a popular approach to the procurement process in AEC sectors, provides the potential to ensure VFM while also working in tandem with the semantic approach to holistically measure life cycle costs (LCC) and achieve better sustainability. This paper suggests that BIM applied to the entire PPP life cycle could support holistic decision-making regarding VFM processes and thus meet service targets.Keywords: public-private partnership, value for money, building information modelling, semantic approach
Procedia PDF Downloads 2132568 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models
Authors: Yoonsuh Jung
Abstract:
As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search
Procedia PDF Downloads 4172567 The Copyright Eligibility of Sports Events and Performances
Authors: Emre Bayamlıoğlu
Abstract:
Apart from being the subject of neighboring rights when broadcasted on TV or of cinematographic work when fixed to a tangible medium including a hard drive, the copyright eligibility of a sports performance, and eventually the sporting event has once again given rise to controversy following the CJEU judgment in the Murphy case. Most of the arguments which deny copyright protection for sports performances focus on the fact that unlike movies, plays, television programs, or operas, athletic events are competitive and have no underlying script. The first part of the paper aims to explain that such rhetoric is rather weak simply for the fact that, several types of performances such as improvised musical or dramatic shows are still protected by copyright despite the fact that they are not based on a script. The second part argues that the core reason for the denial copyright protection was the functionality aiming certain practical results such as winning the game, scoring, eliminating an opponent, obstructing a shot and etc., but no scientific or artistic expression in whatsoever form. The paper further argues that expanding copyright protection to functional performances would give rise to unintended copyright claims by the athletes on tackles, shoots, passes, crosses etc. resulting with further restrictions on reporting and photographing of sporting events. The final part provides a policy analysis of the trend to broaden the scope of copyright to cover sports performances. It is argued that such expansion will clearly undermine the ratio legis of copyright laws since it will give rise to excessive commodification of information beyond the needs of a viable market economy. Therefore, remedies other than copyright protection such as unfair competition and unjust enrichment provides sufficient redress for the damages to be sustained by the investors of sporting events.Keywords: copyright eligibility, idea-expression dichotomy, sports performance
Procedia PDF Downloads 4782566 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)
Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze
Abstract:
Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.Keywords: groundwater, vulnerability, DRASTIC model, pollution
Procedia PDF Downloads 2112565 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki
Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas
Abstract:
The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5
Procedia PDF Downloads 822564 Simulated Microgravity Inhibits L-Type Calcium Channel Currents by Up-Regulation of miR-103 in Osteoblasts
Authors: Zhongyang Sun, Shu Zhang
Abstract:
In osteoblasts, L-type voltage sensitive calcium channels (LTCCs), especially the Cav1.2 LTCCs, play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. Several lines of evidence have revealed that the density of bone is increased and the resorption of bone is decreased when these calcium channels in osteoblasts are activated. And numerous studies have shown that mechanical loading promotes bone formation in the modeling skeleton, whereas removal of this stimulus in microgravity results in a reduction in bone mass. However, the effect of microgravity on LTCCs in osteoblasts is still unknown. The aim of this study was to determine whether microgravity exerts influence on LTCCs in osteoblasts and the possible mechanisms underlying. In this study, we demonstrate that simulated microgravity substantially inhibits LTCCs in osteoblast by suppressing the expression of Cav1.2. Then we show that the up-regulation of miR-103 is involved in the down-regulation of Cav1.2 expression and inhibition of LTCCs by simulated microgravity in osteoblasts. Our study provides a novel mechanism of simulated microgravity-induced adverse effects on osteoblasts, offering a new avenue to further investigate the bone loss caused by microgravity.Keywords: L-type voltage sensitive calcium channels, Cav1.2, osteoblasts, microgravity
Procedia PDF Downloads 3092563 Chemical Study of Volatile Organic Compounds (VOCS) from Xylopia aromatica (LAM.) Mart (Annonaceae)
Authors: Vanessa G. P. Severino, JOÃO Gabriel M. Junqueira, Michelle N. G. do Nascimento, Francisco W. B. Aquino, João B. Fernandes, Ana P. Terezan
Abstract:
The scientific interest in analyzing VOCs represents a significant modern research field as a result of importance in most branches of the present life and industry. Therefore it is extremely important to investigate, identify and isolate volatile substances, since they can be used in different areas, such as food, medicine, cosmetics, perfumery, aromatherapy, pesticides, repellents and other household products through methods for extracting volatile constituents, such as solid phase microextraction (SPME), hydrodistillation (HD), solvent extraction (SE), Soxhlet extraction, supercritical fluid extraction (SFE), stream distillation (SD) and vacuum distillation (VD). The Chemometrics is an area of chemistry that uses statistical and mathematical tools for the planning and optimization of the experimental conditions, and to extract relevant chemical information multivariate chemical data. In this context, the focus of this work was the study of the chemical VOCs by SPME of the specie X. aromatica, in search of constituents that can be used in the industrial sector as well as in food, cosmetics and perfumery, since these areas industrial has a considerable role. In addition, by chemometric analysis, we sought to maximize the answers of this research, in order to search for the largest number of compounds. The investigation of flowers from X. aromatica in vitro and in alive mode proved consistent, but certain factors supposed influence the composition of metabolites, and the chemometric analysis strengthened the analysis. Thus, the study of the chemical composition of X. aromatica contributed to the VOCs knowledge of the species and a possible application.Keywords: chemometrics, flowers, HS-SPME, Xylopia aromatica
Procedia PDF Downloads 3672562 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 622561 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 762560 Elements of a Culture of Quality in the Implementation of Quality Assurance Systems of Countries in the European Higher Education Area
Authors: Laura Mion
Abstract:
The implementation of quality management systems in higher education in different countries is determined by national regulatory choices and supranational indications (such as the European Standard Guidelines for Quality Assurance). The effective functioning and transformative capacity of these quality management systems largely depend on the organizational context in which they are applied and, more specifically, on the culture of quality developed in single universities or in single countries. The University's concept of quality culture integrates the structural dimension of QA (quality management manuals, process definitions, tools) with the value dimension of an organization (principles, skills, and attitudes). Within the EHEA (European Higher Education Area), countries such as Portugal, the Netherlands, the UK, and Norway demonstrate a greater integration of QA principles in the various organizational levels and areas of competence of university institutions or have greater experience in implementation or scientific and political debate on the matter. Therefore, the study, through an integrative literature review, of the quality management systems of these countries is aimed at determining a framework of the culture of quality, helpful in defining the elements which, both in structural-organizational terms and in terms of values and skills and attitudes, have proved to be factors of success in the effective implementation of quality assurance systems in universities and in the countries considered in the research. In order for a QA system to effectively aim for continuous improvement in a complex and dynamic context such as the university one, it must embrace a holistic vision of quality from an integrative perspective, focusing on the objective of transforming the reality being evaluated.Keywords: higher education, quality assurance, quality culture, Portugal, Norway, Netherlands, United Kingdom
Procedia PDF Downloads 742559 Study on Beta-Ray Detection System in Water Using a MCNP Simulation
Authors: Ki Hyun Park, Hye Min Park, Jeong Ho Kim, Chan Jong Park, Koan Sik Joo
Abstract:
In the modern days, the use of radioactive substances is on the rise in the areas like chemical weaponry, industrial usage, and power plants. Although there are various technologies available to detect and monitor radioactive substances in the air, the technologies to detect underwater radioactive substances are scarce. In this study, computer simulation of the underwater detection system measuring beta-ray, a radioactive substance, has been done through MCNP. CaF₂, YAP(Ce) and YAG(Ce) have been used in the computer simulation to detect beta-ray as scintillator. Also, the source used in the computer simulation is Sr-90 and Y-90, both of them emitting only pure beta-ray. The distance between the source and the detector was shifted from 1mm to 10mm by 1 mm in the computer simulation. The result indicated that Sr-90 was impossible to measure below 1 mm since its emission energy is low while Y-90 was able to be measured up to 10mm underwater. In addition, the detector designed with CaF₂ had the highest efficiency among 3 scintillators used in the computer simulation. Since it was possible to verify the detectable range and the detection efficiency according to modeling through MCNP simulation, it is expected that such result will reduce the time and cost in building the actual beta-ray detector and evaluating its performances, thereby contributing the research and development.Keywords: Beta-ray, CaF₂, detector, MCNP simulation, scintillator
Procedia PDF Downloads 5142558 Importance-Performance Analysis of Volunteer Tourism in Ethiopia: Host and Guest Case Study
Authors: Zita Fomukong Andam
Abstract:
With a general objective of evaluating the importance and Performance attributes of Volunteer Tourism in Ethiopia and also specifically intending to rank out the importance to evaluate the competitive performance of Ethiopia to host volunteer tourists, laying them in a four quadrant grid and conduct the IPA Iso-Priority Line comparison of Volunteer Tourism in Ethiopia. From hosts and guests point of view, a deeper research discourse was conducted with a randomly selected 384 guests and 165 hosts in Ethiopia. Findings of the discourse through an exploratory research design on both the hosts and the guests confirm that attributes of volunteer tourism generally and marginally fall in the South East quadrant of the matrix where their importance is relatively higher than their performance counterpart, also referred as ‘Concentrate Here’ quadrant. The fact that there are more items in this particular place in both the host and guest study, where they are highly important, but their relative performance is low, strikes a message that the country has more to do. Another focus point of this study is mapping the scores of attributes regarding the guest and host importance and performance against the Iso-Priority Line. Results of Iso-Priority Line Analysis of the IPA of Volunteer Tourism in Ethiopia from the Host’s Perspective showed that there are no attributes where their importance is exactly the same as their performance. With this being found, the fact that this research design inhabits many characters of exploratory nature, it is not confirmed research output. This paper reserves from prescribing anything to the applied world before further confirmatory research is conducted on the issue and rather calls the scientific community to augment this study through comprehensive, exhaustive, extensive and extended works of inquiry in order to get a refined set of recommended items to the applied world.Keywords: volunteer tourism, competitive performance importance-performance analysis, Ethiopian tourism
Procedia PDF Downloads 2382557 Temporal Conundrums: Navigating the Gravitational Time of Flow
Authors: Ogaeze Onyedikachukwu Francis
Abstract:
Let’s embark on a microcosmic exploration of the universe to delve into the gravitational time flow and its profound implications for manipulating temporal distances, ushering in the possibilities of time travel and inter-universe leaps with instantaneous teleportation. Envision the universe reduced to a minimalist scenario—two perfectly identical mass spheres intricately entwined in a manner where any alteration affecting one sphere instantaneously impacts the other. However, the complexity deepens: despite their indistinguishable nature, the gravitational pull between these spheres—coined the “gravitational Time of flow” in essence dynamics research—remains constant, ensuring universal stability. Consider now tampering with one of these spheres to test the veracity of their entanglement and sameness. Introducing a third body disrupts the equilibrium, complicating gravitational laws while maintaining their essence. This interference alters the gravitational time flow between the spheres, unraveling their initial entanglement as they diverge into distinct entities owing to the influence of the additional body. Yet, a reaffirmation of their initial entwined state becomes feasible by recalibrating the spatial arrangement and gravitational dynamics among the three bodies and beyond. This contemplation underscores the gravitational law as the linchpin connecting and anchoring the universe’s fabric, cocooning all within its omnipresent grasp. Our focal point—the gravitational time of flow—emerges as a gateway to unraveling the mysteries behind temporal distance manipulation, offering tantalizing prospects for traversing realms of time and space with unprecedented fluidity and expanding horizons in the realms of scientific inquiry and exploration.Keywords: time, space, gravity, gravitational time flow, temporal leap, temporal-distance manipulation, multi-verse, teleportation, gravitational time flow device, time travel, distance
Procedia PDF Downloads 92556 Economic and Financial Crime, Forensic Accounting and Sustainable Developments Goals (SDGs). Bibliometric Analysis
Authors: Monica Violeta Achim, Sorin Nicolae Borlea
Abstract:
This aim of this work is to stress the needs for enhancing the role of forensic accounting in fighting economic and financial crime, in the context of the new international regulation movements in this area enhanced by the International Federation of Accountants (IFAC). Corruption, money laundering, tax evasion and other frauds significant hamper the economic growth and human development and, ultimately, the UN Sustainable Development Goals. The present paper also stresses the role of good governance in fighting the frauds, in order to achieve the most suitable sustainable development of the society. In this view, we made a bibliometric systematic review on forensic accounting and its contribution towards fraud detection and prevention and theirs relationship with good governance and Sustainable Developments Goals (SDGs). In this view, two powerful bibliometric visual software tools, VosViewer and CiteSpace are used in order to analyze published papers identifies in Scopus and Web of Science databases over the time. Our findings reveal the main red flags identified in literature as used tools by forensic accounting, the evolution in time of the interest of the topic, the distribution in space among world countries and connectivity with patterns of a good governance. Visual designs and scientific maps are useful to show these findings, in a visual way. Our findings are useful for managers and policy makers to provide important avenues that may help in reaching the 2030 Agenda for Sustainable Development, adopted by all United Nations Member States in 2015, in the area of using forensic accounting in preventing frauds.Keywords: forensic accounting, frauds, red flags, SDGs
Procedia PDF Downloads 1452555 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption
Authors: I. O. Nascimento, J. T. Manzi
Abstract:
The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.Keywords: thermodynamic optimization, drying, entropy minimization, modeling dryers
Procedia PDF Downloads 2642554 Machine Learning-Based Workflow for the Analysis of Project Portfolio
Authors: Jean Marie Tshimula, Atsushi Togashi
Abstract:
We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.Keywords: machine learning, topic modeling, natural language processing, big data
Procedia PDF Downloads 1692553 Modelling Suspended Solids Transport in Dammam (Saudi Arabia) Coastal Areas
Authors: Hussam Alrabaiah
Abstract:
Some new projects (new proposed harbor, recreational projects) are considered in the eastern coasts of Dammam city, Saudi Arabia. Dredging operations would significantly alter coast hydrological and sediment transport processes. It is important that the project areas must keep flushing the fresh sea water in and out with good water quality parameters, which are currently facing increased pressure from urbanization and navigation requirements in conjunction with industrial developments. A suspended solids or sediments are expected to affect the flora and fauna in that area. Governing advection-diffusion equations are considered to understand the consequences of such projects. A numerical modeling study is developed to study the effect of dredging and, in particular, the suspended sediments concentrations (mg/L) changed in the region. The results were obtained using finite element method using an in-house or commercial software. Results show some consistency with data observed in that region. Recommendations based on results could be formulated for decision makers to protect the environment in the long term.Keywords: finite element, method, suspended solids transport, advection-diffusion
Procedia PDF Downloads 2882552 Knowledge Sharing within a Team: Exploring the Antecedents and Role of Trust
Authors: Li Yan Hei, Au Wing Tung
Abstract:
Knowledge sharing is a process in which individuals mutually exchange existing knowledge and co-create new knowledge. Previous research has confirmed that trust is positively associated with knowledge sharing. However, only few studies systematically examined the antecedents of trust and these antecedents’ impacts on knowledge sharing. In order to explore and understand the relationships between trust and knowledge sharing in depth, this study proposed a relationship maintenance-based model to examine the antecedents of trust in knowledge sharing in project teams. Three critical elements within a project team were measured, including the environment, project team partner and interaction. It was hypothesized that the trust would lead to knowledge sharing and in turn result in perceived good team performance. With a sample of 200 Hong Kong employees, the proposed model was evaluated with structural equation modeling. Expected findings are trust will contribute to knowledge sharing, resulting in better team performance. The results will also offer insights into antecedents of trust that play a heavy role in the focal relationship. The present study contributes to a more holistic understanding of relationship between trust and knowledge sharing by linking the antecedents and outcomes. The findings will raise the awareness of project managers on ways to promote knowledge sharing.Keywords: knowledge sharing, project management, team, trust
Procedia PDF Downloads 6202551 Nanostructure and Adhesion of Cement/Polymer Fiber Interfaces
Authors: Faezeh Shalchy
Abstract:
Concrete is the most used materials in the world. It is also one of the most versatile while complex materials which human have used for construction. However, concrete is weak in tension, over the past thirty years many studies were accomplished to improve the tensile properties of concrete (cement-based materials) using a variety of methods. One of the most successful attempts is to use polymeric fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. Understanding the mechanical behavior of fiber reinforced concrete requires the knowledge of the fiber/matrix interfaces at the small scale. In this study, a combination of numerical simulations and experimental techniques have been used to study the nano structure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is proposed based on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. The adhesion energy between the C-S-H gel and 2 different polymeric fibers (polyvinyl alcohol and polypropylene) was numerically studied at the atomistic level since adhesion is one of the key factors in the design of fiber reinforced composites. The mechanisms of adhesion as a function of the nano structure of fiber/matrix interfaces are also studied and discussed.Keywords: fiber-reinforced concrete, adhesion, molecular modeling
Procedia PDF Downloads 3312550 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)
Procedia PDF Downloads 902549 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software
Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan
Abstract:
Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine
Procedia PDF Downloads 3962548 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming
Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe
Abstract:
Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.Keywords: induction heating, single point incremental forming, FE modeling, advanced high strength steel
Procedia PDF Downloads 2112547 An Integration of Life Cycle Assessment and Techno-Economic Optimization in the Supply Chains
Authors: Yohanes Kristianto
Abstract:
The objective of this paper is to compose a sustainable supply chain that integrates product, process and networks design. An integrated life cycle assessment and techno-economic optimization is proposed that might deliver more economically feasible operations, minimizes environmental impacts and maximizes social contributions. Closed loop economy of the supply chain is achieved by reusing waste to be raw material of final products. Societal benefit is given by the supply chain by absorbing waste as source of raw material and opening new work opportunities. A case study of ethanol supply chain from rice straws is considered. The modeling results show that optimization within the scope of LCA is capable of minimizing both CO₂ emissions and energy and utility consumptions and thus enhancing raw materials utilization. Furthermore, the supply chain is capable of contributing to local economy through jobs creation. While the model is quite comprehensive, the future research recommendation on energy integration and global sustainability is proposed.Keywords: life cycle assessment, techno-economic optimization, sustainable supply chains, closed loop economy
Procedia PDF Downloads 153