Search results for: industrial wireless network (IWN)
4896 Challenges, Practices, and Opportunities of Knowledge Management in Industrial Research Institutes: Lessons Learned from Flanders Make
Authors: Zhenmin Tao, Jasper De Smet, Koen Laurijssen, Jeroen Stuyts, Sonja Sioncke
Abstract:
Today, the quality of knowledge management (KM)become one of the underpinning factors in the success of an organization, as it determines the effectiveness of capitalizing the organization’s knowledge. Overall, KMin an organization consists of five aspects: (knowledge) creation, validation, presentation, distribution, and application. Among others, KM in research institutes is considered as the cornerstone as their activities cover all five aspects. Furthermore, KM in a research institute facilitates the steering committee to envision the future roadmap, identify knowledge gaps, and make decisions on future research directions. Likewise, KMis even more challenging in industrial research institutes. From a technical perspective, technology advancement in the past decades calls for combinations of breadth and depth in expertise that poses challenges in talent acquisition and, therefore, knowledge creation. From a regulatory perspective, the strict intellectual property protection from industry collaborators and/or the contractual agreements made by possible funding authoritiesform extra barriers to knowledge validation, presentation, and distribution. From a management perspective, seamless KM activities are only guaranteed by inter-disciplinary talents that combine technical background knowledge, management skills, and leadership, let alone international vision. From a financial perspective, the long feedback period of new knowledge, together with the massive upfront investment costs and low reusability of the fixed assets, lead to low RORC (return on research capital) that jeopardize KM practice. In this study, we aim to address the challenges, practices, and opportunitiesof KM in Flanders Make – a leading European research institute specialized in the manufacturing industry. In particular, the analyses encompass an internal KM project which involves functionalities ranging from management to technical domain experts. This wide range of functionalities provides comprehensive empirical evidence on the challenges and practices w.r.t.the abovementioned KMaspects. Then, we ground our analysis onto the critical dimensions ofKM–individuals, socio‐organizational processes, and technology. The analyses have three steps: First, we lay the foundation and define the environment of this study by briefing the KM roles played by different functionalities in Flanders Make. Second, we zoom in to the CoreLab MotionS where the KM project is located. In this step, given the technical domains covered by MotionS products, the challenges in KM will be addressed w.r.t. the five KM aspects and three critical dimensions. Third, by detailing the objectives, practices, results, and limitations of the MotionSKMproject, we justify the practices and opportunities derived in the execution ofKMw.r.t. the challenges addressed in the second step. The results of this study are twofold: First, a KM framework that consolidates past knowledge is developed. A library based on this framework can, therefore1) overlook past research output, 2) accelerate ongoing research activities, and 3) envision future research projects. Second, the challenges inKM on both individual (actions) level and socio-organizational level (e.g., interactions between individuals)are identified. By doing so, suggestions and guidelines will be provided in KM in the context of industrial research institute. To this end, the results in this study are reflected towards the findings in existing literature.Keywords: technical knowledge management framework, industrial research institutes, individual knowledge management, socio-organizational knowledge management.
Procedia PDF Downloads 1174895 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 2944894 Activity-Based Safety Assessment of Real Estate Projects in Western India
Authors: Patel Parul, Harsh Ganvit
Abstract:
The construction industry is the second highest industry after agriculture provides employment in India. In developing countries like India, many construction projects are coming up to meet the demand. On the one hand, construction projects are increasing; on the other hand still, construction companies are struggling with many problems. One of the major problems is to ensure safe working conditions at the construction site. Due to a lack of safety awareness and ignorance of safety aspects, many fatal accidents are very common at the construction site in India. One of the key success factors for construction projects is “Accident-Free Construction Projects”. The construction projects can be divided into various categories like Infrastructure projects, industrial construction and real estate construction. Real estate projects are mainly comprised of commercial and residential projects. In the construction industry, private sectors play a huge role in urban and rural development and also contribute significantly to the growth of the nation. Infrastructure and Industrial projects are mainly executed by well-qualified construction contractors. For such projects, ensuring safety at construction projects is inevitable and probably one of the major clauses of contract documents as well. These projects are monitored from time to time by national agencies and researchers, too. However, Real estate projects are rarely monitored for safety aspects. No systematic contract system is followed for these projects. Safety is the most neglected aspect of these projects. In the current research projects, an attempt is made to carry out safety auditing for about 75 real estate projects. The objective of this work is to collect the activity-based safety survey of real estate projects in western India. The analysis of activity-based safety implementation for real estate projects is discussed in the present work. The activities are divided into three categories based on the data collected. The findings of this work will help local monitoring authorities to implement a safety management plan for real estate projects.Keywords: construction safety, safety assessment, activity-based safety, real estate projects
Procedia PDF Downloads 574893 Soil Salinity Mapping using Electromagnetic Induction Measurements
Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri
Abstract:
Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinizationKeywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable
Procedia PDF Downloads 1874892 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis
Authors: Syed Asif Hassan, Syed Atif Hassan
Abstract:
Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction
Procedia PDF Downloads 3924891 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends
Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe
Abstract:
Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.Keywords: port, Miami, network, cargo, cruise
Procedia PDF Downloads 814890 Training Undergraduate Engineering Students in Robotics and Automation through Model-Based Design Training: A Case Study at Assumption University of Thailand
Authors: Sajed A. Habib
Abstract:
Problem-based learning (PBL) is a student-centered pedagogy that originated in the medical field and has also been used extensively in other knowledge disciplines with recognized advantages and limitations. PBL has been used in various undergraduate engineering programs with mixed outcomes. The current fourth industrial revolution (digital era or Industry 4.0) has made it essential for many science and engineering students to receive effective training in advanced courses such as industrial automation and robotics. This paper presents a case study at Assumption University of Thailand, where a PBL-like approach was used to teach some aspects of automation and robotics to selected groups of undergraduate engineering students. These students were given some basic level training in automation prior to participating in a subsequent training session in order to solve technical problems with increased complexity. The participating students’ evaluation of the training sessions in terms of learning effectiveness, skills enhancement, and incremental knowledge following the problem-solving session was captured through a follow-up survey consisting of 14 questions and a 5-point scoring system. From the most recent training event, an overall 70% of the respondents indicated that their skill levels were enhanced to a much greater level than they had had before the training, whereas 60.4% of the respondents from the same event indicated that their incremental knowledge following the session was much greater than what they had prior to the training. The instructor-facilitator involved in the training events suggested that this method of learning was more suitable for senior/advanced level students than those at the freshmen level as certain skills to effectively participate in such problem-solving sessions are acquired over a period of time, and not instantly.Keywords: automation, industry 4.0, model-based design training, problem-based learning
Procedia PDF Downloads 1354889 An Industrial Steady State Sequence Disorder Model for Flow Controlled Multi-Input Single-Output Queues in Manufacturing Systems
Authors: Anthony John Walker, Glen Bright
Abstract:
The challenge faced by manufactures, when producing custom products, is that each product needs exact components. This can cause work-in-process instability due to component matching constraints imposed on assembly cells. Clearing type flow control policies have been used extensively in mediating server access between multiple arrival processes. Although the stability and performance of clearing policies has been well formulated and studied in the literature, the growth in arrival to departure sequence disorder for each arriving job, across a serving resource, is still an area for further analysis. In this paper, a closed form industrial model has been formulated that characterizes arrival-to-departure sequence disorder through stable manufacturing systems under clearing type flow control policy. Specifically addressed are the effects of sequence disorder imposed on a downstream assembly cell in terms of work-in-process instability induced through component matching constraints. Results from a simulated manufacturing system show that steady state average sequence disorder in parallel upstream processing cells can be balanced in order to decrease downstream assembly system instability. Simulation results also show that the closed form model accurately describes the growth and limiting behavior of average sequence disorder between parts arriving and departing from a manufacturing system flow controlled via clearing policy.Keywords: assembly system constraint, custom products, discrete sequence disorder, flow control
Procedia PDF Downloads 1794888 Application of Industrial Ergonomics in Vehicle Service System Design
Authors: Zhao Yu, Zhi-Nan Zhang
Abstract:
More and more interactive devices are used in the transportation service system. Our mobile phones, on-board computers, and Head-Up Displays (HUDs) can all be used as the tools of the in-car service system. People can access smart systems with different terminals such as mobile phones, computers, pads and even their cars and watches. Different forms of terminals bring the different quality of interaction by the various human-computer Interaction modes. The new interactive devices require good ergonomics design at each stage of the whole design process. According to the theory of human factors and ergonomics, this paper compared three types of interactive devices by four driving tasks. Forty-eight drivers were chosen to experience these three interactive devices (mobile phones, on-board computers, and HUDs) by a simulate driving process. The subjects evaluated ergonomics performance and subjective workload after the process. And subjects were encouraged to support suggestions for improving the interactive device. The result shows that different interactive devices have different advantages in driving tasks, especially in non-driving tasks such as information and entertainment fields. Compared with mobile phones and onboard groups, the HUD groups had shorter response times in most tasks. The tasks of slow-up and the emergency braking are less accurate than the performance of a control group, which may because the haptic feedback of these two tasks is harder to distinguish than the visual information. Simulated driving is also helpful in improving the design of in-vehicle interactive devices. The paper summarizes the ergonomics characteristics of three in-vehicle interactive devices. And the research provides a reference for the future design of in-vehicle interactive devices through an ergonomic approach to ensure a good interaction relationship between the driver and the in-vehicle service system.Keywords: human factors, industrial ergonomics, transportation system, usability, vehicle user interface
Procedia PDF Downloads 1414887 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform
Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis
Abstract:
For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring
Procedia PDF Downloads 1444886 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong
Abstract:
This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2424885 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers
Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash
Abstract:
Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system
Procedia PDF Downloads 4224884 Extraction, Synthesis, Characterization and Antioxidant Properties of Oxidized Starch from an Abundant Source in Nigeria
Authors: Okafor E. Ijeoma, Isimi C. Yetunde, Okoh E. Judith, Kunle O. Olobayo, Emeje O. Martins
Abstract:
Starch has gained interest as a renewable and environmentally compatible polymer due to the increase in its use. However, starch by itself could not be satisfactorily applied in industrial processes due to some inherent disadvantages such as its hydrophilic character, poor mechanical properties, its inability to withstand processing conditions such as extreme temperatures, diverse pH, high shear rate, freeze-thaw variation and dimensional stability. The range of physical properties of parent starch can be enlarged by chemical modification which invariably enhances their use in a number of applications found in industrial processes and food manufacture. In this study, Manihot esculentus starch was subjected to modification by oxidation. Fourier Transmittance Infra- Red (FTIR) and Raman spectroscopies were used to confirm the synthesis while Scanning Electron Microscopy (SEM) and X- Ray Diffraction (XRD) were used to characterize the new polymer. DPPH (2, 2-diphenyl-1-picryl-hydrazyl-hydrate) free radical assay was used to determine the antioxidant property of the oxidized starch. Our results show that the modification had no significant effect on the foaming capacity as well as on the emulsion capacity. Scanning electron microscopy revealed that oxidation did not alter the predominantly circular-shaped starch granules, while the X-ray pattern of both starch, native and modified were similar. FTIR results revealed a new band at 3007 and 3283cm-1. Differential scanning calorimetry returned two new endothermic peaks in the oxidized starch with an improved gelation capacity and increased enthalpy of gelatinization. The IC50 of oxidized starch was notably higher than that of the reference standard, ascorbic acid.Keywords: antioxidant activity, DPPH, M. esculentus, oxidation, starch
Procedia PDF Downloads 3004883 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems
Authors: M. Beheshti, S. Saegrov, T. M. Muthanna
Abstract:
Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management
Procedia PDF Downloads 3364882 Roadmap to a Bottom-Up Approach Creating Meaningful Contributions to Surgery in Low-Income Settings
Authors: Eva Degraeuwe, Margo Vandenheede, Nicholas Rennie, Jolien Braem, Miryam Serry, Frederik Berrevoet, Piet Pattyn, Wouter Willaert, InciSioN Belgium Consortium
Abstract:
Background: Worldwide, five billion people lack access to safe and affordable surgical care. An added 1.27 million surgeons, anesthesiologists, and obstetricians (SAO) are needed by 2030 to meet the target of 20 per 100,000 population and to reach the goal of the Lancet Commission on Global Surgery. A well-informed future generation exposed early on to the current challenges in global surgery (GS) is necessary to ensure a sustainable future. Methods: InciSioN, the International Student Surgical Network, is a non-profit organization by and for students, residents, and fellows in over 80 countries. InciSioN Belgium, one of the prominent national working groups, has made a vast progression and collaborated with other networks to fill the educational gap, stimulate advocacy efforts and increase interactions with the international network. This report describes a roadmap to achieve sustainable development and education within GS, with the example of InciSioN Belgium. Results: Since the establishment of the organization’s branch in 2019, it has hosted an educational workshop for first-year residents in surgery, engaging over 2500 participants, and established a recurring directing board of 15 members. In the year 2020-2021, InciSioN Ghent has organized three workshops combining educational and interactive sessions for future prime advocates and surgical candidates. InciSioN Belgium has set up a strong formal coalition with the Belgian Medical Students’ Association (BeMSA), with its own standing committee, reaching over 3000+ medical students annually. In 2021-2022, InciSioN Belgium broadened to a multidisciplinary approach, including dentistry and nursing students and graduates within workshops and research projects, leading to a member and exposure increase of 450%. This roadmap sets strategic goals and mechanisms for the GS community to achieve nationwide sustained improvements in the research and education of GS focused on future SAOs, in order to achieve the GS sustainable development goals. In the coming year, expansion is directed to a formal integration of GS into the medical curriculum and increased international advocacy whilst inspiring SAOs to integrate into GS in Belgium. Conclusion: The development and implementation of durable change for GS are necessary. The student organization InciSioN Belgium is growing and hopes to close the colossal gap in GS and inspire the growth of other branches while sharing the know-how of a student organization.Keywords: advocacy, education, global surgery, InciSioN, student network
Procedia PDF Downloads 1754881 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 1224880 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit
Authors: Khalil Ahmad Kakar
Abstract:
In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model
Procedia PDF Downloads 1864879 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation
Authors: Samuel Ahamefula Mba
Abstract:
Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation
Procedia PDF Downloads 954878 In silico Analysis towards Identification of Host-Microbe Interactions for Inflammatory Bowel Disease Linked to Reactive Arthritis
Authors: Anukriti Verma, Bhawna Rathi, Shivani Sharda
Abstract:
Reactive Arthritis (ReA) is a disorder that causes inflammation in joints due to certain infections at distant sites in the body. ReA begins with stiffness, pain, and inflammation in these areas especially the ankles, knees, and hips. It gradually causes several complications such as conjunctivitis in the eyes, skin lesions in hand, feet and nails and ulcers in the mouth. Nowadays the diagnosis of ReA is based upon a differential diagnosis pattern. The parameters for differentiating ReA from other similar disorders include physical examination, history of the patient and a high index of suspicion. There are no standard lab tests or markers available for ReA hence the early diagnosis of ReA becomes difficult and the chronicity of disease increases with time. It is reported that enteric disorders such as Inflammatory Bowel Disease (IBD) that is inflammation in gastrointestinal tract namely Crohn’s Disease (CD) and Ulcerative Colitis (UC) are reported to be linked with ReA. Several microorganisms are found such as Campylobacter, Salmonella, Shigella and Yersinia causing IBD leading to ReA. The aim of our study was to perform the in-silico analysis in order to find interactions between microorganisms and human host causing IBD leading to ReA. A systems biology approach for metabolic network reconstruction and simulation was used to find the essential genes of the reported microorganisms. Interactomics study was used to find the interactions between the pathogen genes and human host. Genes such as nhaA (pathogen), dpyD (human), nagK (human) and kynU (human) were obtained that were analysed further using the functional, pathway and network analysis. These genes can be used as putative drug targets and biomarkers in future for early diagnosis, prevention, and treatment of IBD leading to ReA.Keywords: drug targets, inflammatory bowel disease, reactive arthritis, systems biology
Procedia PDF Downloads 2764877 Characterization of Aerosol Particles in Ilorin, Nigeria: Ground-Based Measurement Approach
Authors: Razaq A. Olaitan, Ayansina Ayanlade
Abstract:
Understanding aerosol properties is the main goal of global research in order to lower the uncertainty associated with climate change in the trends and magnitude of aerosol particles. In order to identify aerosol particle types, optical properties, and the relationship between aerosol properties and particle concentration between 2019 and 2021, a study conducted in Ilorin, Nigeria, examined the aerosol robotic network's ground-based sun/sky scanning radiometer. The AERONET algorithm version 2 was utilized to retrieve monthly data on aerosol optical depth and angstrom exponent. The version 3 algorithm, which is an almucantar level 2 inversion, was employed to retrieve daily data on single scattering albedo and aerosol size distribution. Excel 2016 was used to analyze the data's monthly, seasonal, and annual mean averages. The distribution of different types of aerosols was analyzed using scatterplots, and the optical properties of the aerosol were investigated using pertinent mathematical theorems. To comprehend the relationships between particle concentration and properties, correlation statistics were employed. Based on the premise that aerosol characteristics must remain constant in both magnitude and trend across time and space, the study's findings indicate that the types of aerosols identified between 2019 and 2021 are as follows: 29.22% urban industrial (UI) aerosol type, 37.08% desert (D) aerosol type, 10.67% biomass burning (BB), and 23.03% urban mix (Um) aerosol type. Convective wind systems, which frequently carry particles as they blow over long distances in the atmosphere, have been responsible for the peak-of-the-columnar aerosol loadings, which were observed during August of the study period. The study has shown that while coarse mode particles dominate, fine particles are increasing in seasonal and annual trends. Burning biomass and human activities in the city are linked to these trends. The study found that the majority of particles are highly absorbing black carbon, with the fine mode having a volume median radius of 0.08 to 0.12 meters. The investigation also revealed that there is a positive coefficient of correlation (r = 0.57) between changes in aerosol particle concentration and changes in aerosol properties. Human activity is rapidly increasing in Ilorin, causing changes in aerosol properties, indicating potential health risks from climate change and human influence on geological and environmental systems.Keywords: aerosol loading, aerosol types, health risks, optical properties
Procedia PDF Downloads 644876 Chemicals to Remove and Prevent Biofilm
Authors: Cynthia K. Burzell
Abstract:
Aequor's Founder, a Marine and Medical Microbiologist, discovered novel, non-toxic chemicals in the ocean that uniquely remove biofilm in minutes and prevent its formation for days. These chemicals and over 70 synthesized analogs that Aequor developed can replace thousands of toxic biocides used in consumer and industrial products and, as new drug candidates, kill biofilm-forming bacteria and fungi Superbugs -the antimicrobial-resistant (AMR) pathogens for which there is no cure. Cynthia Burzell, PhD., is a Marine and Medical Microbiologist studying natural mechanisms that inhibit biofilm formation on surfaces in contact with water. In 2002, she discovered a new genus and several new species of marine microbes that produce small molecules that remove biofilm in minutes and prevent its formation for days. The molecules include new antimicrobials that can replace thousands of toxic biocides used in consumer and industrial products and can be developed into new drug candidates to kill the biofilm-forming bacteria and fungi -- including the antimicrobial-resistant (AMR) Superbugs for which there is no cure. Today, Aequor has over 70 chemicals that are divided into categories: (1) Novel natural chemicals. Lonza validated that the primary natural chemical removed biofilm in minutes and stated: "Nothing else known can do this at non-toxic doses." (2) Specialty chemicals. 25 of these structural analogs are already approved under the U.S. Environmental Protection Agency (EPA)'s Toxic Substances Control Act, certified as "green" and available for immediate sale. These have been validated for the following agro-industrial verticals: (a) Surface cleaners: The U.S. Department of Agriculture validated that low concentrations of Aequor's formulations provide deep cleaning of inert, nano and organic surfaces and materials; (b) Water treatments: NASA validated that one dose of Aequor's treatment in the International Space Station's water reuse/recycling system lasted 15 months without replenishment. DOE validated that our treatments lower energy consumption by over 10% in buildings and industrial processes. Future validations include pilot projects with the EPA to test efficacy in hospital plumbing systems. (c) Algae cultivation and yeast fermentation: The U.S. Department of Energy (DOE) validated that Aequor's treatment boosted biomass of renewable feedstocks by 40% in half the time -- increasing the profitability of biofuels and biobased co-products. DOE also validated increased yields and crop protection of algae under cultivation in open ponds. A private oil and gas company validated decontamination of oilfield water. (3) New structural analogs. These kill Gram-negative and Gram-positive bacteria and fungi alone, in combinations with each other, and in combination with low doses of existing, ineffective antibiotics (including Penicillin), "potentiating" them to kill AMR pathogens at doses too low to trigger resistance. Both the U.S. National Institutes for Health (NIH) and Department of Defense (DOD) has executed contracts with Aequor to provide the pre-clinical trials needed for these new drug candidates to enter the regulatory approval pipelines. Aequor seeks partners/licensees to commercialize its specialty chemicals and support to evaluate the optimal methods to scale-up of several new structural analogs via activity-guided fractionation and/or biosynthesis in order to initiate the NIH and DOD pre-clinical trials.Keywords: biofilm, potentiation, prevention, removal
Procedia PDF Downloads 1024875 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 1204874 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1074873 Performance Evaluation and Kinetics of Artocarpus heterophyllus Seed for the Purification of Paint Industrial Wastewater by Coagulation-Flocculation Process
Authors: Ifeoma Maryjane Iloamaeke, Kelvin Obazie, Mmesoma Offornze, Chiamaka Marysilvia Ifeaghalu, Cecilia Aduaka, Ugomma Chibuzo Onyeije, Claudine Ifunanaya Ogu, Ngozi Anastesia Okonkwo
Abstract:
This work investigated the effects of pH, settling time, and coagulant dosages on the removal of color, turbidity, and heavy metals from paint industrial wastewater using the seed of Artocarpus heterophyllus (AH) by the coagulation-flocculation process. The paint effluent was physicochemically characterized, while AH coagulant was instrumentally characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), and X-ray diffraction (XRD). A Jar test experiment was used for the coagulation-flocculation process. The result showed that paint effluent was polluted with color, turbidity (36000 NTU), mercury (1.392 mg/L), lead (0.252 mg/L), arsenic (1.236 mg/L), TSS (63.40mg/L), and COD (121.70 mg/L). The maximum color removal efficiency was 94.33% at the dosage of 0.2 g/L, pH 2 at a constant time of 50 mins, and 74.67% at constant pH 2, coagulant dosage of 0.2 g/L and 50 mins. The highest turbidity removal efficiency was 99.94% at 0.2 g/L and 50 mins at constant pH 2 and 96.66% at pH 2 and 0.2 g/L at constant time of 50 mins. The mercury removal efficiency of 99.29% was achieved at the optimal condition of 0.8 g/L coagulant dosage, pH 8, and constant time of 50 mins and 99.57% at coagulant dosage of 0.8 g/L, time of 50 mins constant pH 8. The highest lead removal efficiency was 99.76% at a coagulant dosage of 10 g/L, time of 40 mins at constant pH 10, and 96.53% at pH 10, coagulant dosage of 10 g/L and constant time of 40 mins. For arsenic, the removal efficiency is 75.24 % at 0.8 g/L coagulant dosage, time of 40 mins, and constant pH of 8. XRD imaging before treatment showed that Artocarpus heterophyllus coagulant was crystalline and changed to amorphous after treatment. The SEM and FTIR results of the AH coagulant and sludge suggested there were changes in the surface morphology and functional groups before and after treatment. The reaction kinetics were modeled best in the second order.Keywords: Artocarpus heterophyllus, coagulation-flocculation, coagulant dosages, setting time, paint effluent
Procedia PDF Downloads 1024872 Comprehensive Risk Analysis of Decommissioning Activities with Multifaceted Hazard Factors
Authors: Hyeon-Kyo Lim, Hyunjung Kim, Kune-Woo Lee
Abstract:
Decommissioning process of nuclear facilities can be said to consist of a sequence of problem solving activities, partly because there may exist working environments contaminated by radiological exposure, and partly because there may also exist industrial hazards such as fire, explosions, toxic materials, and electrical and physical hazards. As for an individual hazard factor, risk assessment techniques are getting known to industrial workers with advance of safety technology, but the way how to integrate those results is not. Furthermore, there are few workers who experienced decommissioning operations a lot in the past. Therefore, not a few countries in the world have been trying to develop appropriate counter techniques in order to guarantee safety and efficiency of the process. In spite of that, there still exists neither domestic nor international standard since nuclear facilities are too diverse and unique. In the consequence, it is quite inevitable to imagine and assess the whole risk in the situation anticipated one by one. This paper aimed to find out an appropriate technique to integrate individual risk assessment results from the viewpoint of experts. Thus, on one hand the whole risk assessment activity for decommissioning operations was modeled as a sequence of individual risk assessment steps, and on the other, a hierarchical risk structure was developed. Then, risk assessment procedure that can elicit individual hazard factors one by one were introduced with reference to the standard operation procedure (SOP) and hierarchical task analysis (HTA). With an assumption of quantification and normalization of individual risks, a technique to estimate relative weight factors was tried by using the conventional Analytic Hierarchical Process (AHP) and its result was reviewed with reference to judgment of experts. Besides, taking the ambiguity of human judgment into consideration, debates based upon fuzzy inference was added with a mathematical case study.Keywords: decommissioning, risk assessment, analytic hierarchical process (AHP), fuzzy inference
Procedia PDF Downloads 4264871 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability
Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi
Abstract:
The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine
Procedia PDF Downloads 3784870 Gender Differences in Wrist Kinematics and the Impact of Club Choice on Collegiate Golfers
Authors: Ka Hin Kevin Lee, Jacob Lindh, Yue Qing LI
Abstract:
The biomechanics of golf swing performance are increasingly being investigated to better understand the relationship between gender and equipment choices. Gender-based variations in swing mechanics, particularly wrist kinematics, are thought to have a substantial influence on performance. While current studies show gender differences in wrist motions and the impact of club selection, there is little study on amateur collegiate golfers. This demography provides a unique perspective, spanning professional and leisure activity and providing significant biomechanical aspects. This study looks into gender differences in wrist kinematics during golf swings, specifically angular velocities (yaw, pitch, and roll) and the impact of club choice. Ten undergraduate golfers (five male and five female) took part in the study, each doing five swings with a 7-iron and a driver. Participants used their own clubs to guarantee familiarity and minimize variation. Xsens MTw Awinda wireless motion sensors were mounted on their forearms and wrists, gathering high-resolution motion data at 100 Hz. A thorough calibration procedure was used to synchronise sensor data with individual stances. The trial replicated real-world playing settings, with players told to take full-power swings. Data were processed and analysed in MATLAB, with angular velocity profiles extracted for each swing.Keywords: biomechanics, sports, performance, gender, wrist, kinematics
Procedia PDF Downloads 164869 Three Tier Indoor Localization System for Digital Forensics
Authors: Dennis L. Owuor, Okuthe P. Kogeda, Johnson I. Agbinya
Abstract:
Mobile localization has attracted a great deal of attention recently due to the introduction of wireless networks. Although several localization algorithms and systems have been implemented and discussed in the literature, very few researchers have exploited the gap that exists between indoor localization, tracking, external storage of location information and outdoor localization for the purpose of digital forensics during and after a disaster. The contribution of this paper lies in the implementation of a robust system that is capable of locating, tracking mobile device users and store location information for both indoor and partially outdoor the cloud. The system can be used during disaster to track and locate mobile phone users. The developed system is a mobile application built based on Android, Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), JavaScript and MATLAB for the Android mobile users. Using Waterfall model of software development, we have implemented a three level system that is able to track, locate and store mobile device information in secure database (cloud) on almost a real time basis. The outcome of the study showed that the developed system is efficient with regard to the tracking and locating mobile devices. The system is also flexible, i.e. can be used in any building with fewer adjustments. Finally, the system is accurate for both indoor and outdoor in terms of locating and tracking mobile devices.Keywords: indoor localization, digital forensics, fingerprinting, tracking and cloud
Procedia PDF Downloads 3394868 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 2884867 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA
Authors: Catelyn Coyle, Helena Kwakwa
Abstract:
Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.Keywords: HCV, routine testing, linkage to care, community health centers
Procedia PDF Downloads 357