Search results for: artificial stock market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5902

Search results for: artificial stock market

2542 Optimal Design Solution in "The Small Module" Within the Possibilities of Ecology, Environmental Science/Engineering, and Economics

Authors: Hassan Wajid

Abstract:

We will commend accommodating an environmentally friendly architectural proposal that is extremely common/usual but whose features will make it a sustainable space. In this experiment, the natural and artificial built space is being proposed in such a way that deals with Environmental, Ecological, and Economic Criteria under different climatic conditions. Moreover, the criteria against ecology-environment-economics reflect in the different modules which are being experimented with and analyzed by multiple research groups. The ecological, environmental, and economic services are provided used as units of production side by side, resulting in local job creation and saving resources, for instance, conservation of rainwater, soil formation or protection, less energy consumption to achieve Net Zero, and a stable climate as a whole. The synthesized results from the collected data suggest several aspects to consider when designing buildings for beginning the design process under the supervision of instructors/directors who are responsible for developing curricula and sustainable goals. Hence, the results of the research and the suggestions will benefit the sustainable design through multiple results, heat analysis of different small modules, and comparisons. As a result, it is depleted as the resources are either consumed or the pollution contaminates the resources.

Keywords: optimization, ecology, environment, sustainable solution

Procedia PDF Downloads 73
2541 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
2540 Assessment of the Simulation Programs Usable to Support Decision Making Processes of the Critical Infrastructure Emergency Management

Authors: Jiří Barta, Oldřich Svoboda

Abstract:

This article deals with the issue of practical training of the management staff during emergency events in the frame of critical infrastructure. Critical infrastructure represents one of the possible targets of destructive activities as well as operational accidents and incidents which can seriously influence the functioning of the system of ensuring the basic needs of the inhabitants. Therefore, protection of critical infrastructure and training of the staff in dealing with emergencies becomes a broadly discussed topic. Nowadays, the market offers a wide range of simulation tools which proclaim that they are suitable for practical training of management staff and completing their tasks. Another group of programs declares that they are not primarily designed for this type of simulations. However, after some minor adaptations, for example by adding or changing users‘ roles, they are able to fulfil the needs of practical training as well as the process of emergency simulation. This paper characterises and selects simulators and programs for simulating emergency events.

Keywords: computer simulation, Symos´97, simulation software, harmful substances, Konstruktivní simulace, SIMEX

Procedia PDF Downloads 258
2539 Stacking Ensemble Approach for Combining Different Methods in Real Estate Prediction

Authors: Sol Girouard, Zona Kostic

Abstract:

A home is often the largest and most expensive purchase a person makes. Whether the decision leads to a successful outcome will be determined by a combination of critical factors. In this paper, we propose a method that efficiently handles all the factors in residential real estate and performs predictions given a feature space with high dimensionality while controlling for overfitting. The proposed method was built on gradient descent and boosting algorithms and uses a mixed optimizing technique to improve the prediction power. Usually, a single model cannot handle all the cases thus our approach builds multiple models based on different subsets of the predictors. The algorithm was tested on 3 million homes across the U.S., and the experimental results demonstrate the efficiency of this approach by outperforming techniques currently used in forecasting prices. With everyday changes on the real estate market, our proposed algorithm capitalizes from new events allowing more efficient predictions.

Keywords: real estate prediction, gradient descent, boosting, ensemble methods, active learning, training

Procedia PDF Downloads 277
2538 Volatility Transmission among European Bank CDS

Authors: Aida Alemany, Laura Ballester, Ana González-Urteaga

Abstract:

From 2007 subprime crisis to the recent Eurozone debt crisis the European banking industry has experienced a terrible financial instability situation with increasing levels of CDS spreads (used as a proxy of credit risk). This paper investigates whether volatility transmission channels in European banking markets have changed after three significant crises’ events during the period January 2006 to March 2013. The global financial crisis is characterized by a unidirectional volatility shocks spillovers effect in credit risk from inside to outside the Eurozone. By contrast, the Eurozone debt crisis is revealed to be local in nature with the euro as the key element suggesting a market fragmentation between distressed peripheral and non-distressed core Eurozone countries, whereas retaining the local currency have acted as a firewall. With these findings we are able to shed light on the impact of the different crises on the European banking credit risk dynamics.

Keywords: CDS spreads, credit risk, volatility spillovers, financial crisis

Procedia PDF Downloads 468
2537 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 127
2536 Impact of Wastewater Irrigation on Soil Quality and Productivity of Tuberose (Polianthes tuberosa L. cv. Prajwal)

Authors: D. S. Gurjar, R. Kaur, K. P. Singh, R. Singh

Abstract:

A greater volume of wastewater generate from urban areas in India. Due to the adequate availability, less energy requirement and nutrient richness, farmers of urban and peri-urban areas are deliberately using wastewater to grow high value vegetable crops. Wastewater contains pathogens and toxic pollutants, which can enter in the food chain system while using wastewater for irrigating vegetable crops. Hence, wastewater can use for growing commercial flower crops that may avoid food chain contamination. Tuberose (Polianthes tuberosa L.) is one of the most important commercially grown, cultivated over 30, 000 ha area, flower crop in India. Its popularity is mainly due to the sweet fragrance as well as the long keeping quality of the flower spikes. The flower spikes of tuberose has high market price and usually blooms during summer and rainy seasons when there is meager supply of other flowers in the market. It has high irrigation water requirement and fresh water supply is inadequate in tuberose growing areas of India. Therefore, wastewater may fulfill the water and nutrients requirements and may enhance the productivity of tuberose. Keeping in view, the present study was carried out at WTC farm of ICAR-Indian Agricultural Research Institute, New Delhi in 2014-15. Prajwal was the variety of test crop. The seven treatments were taken as T-1. Wastewater irrigation at 0.6 ID/CPE, T-2: Wastewater irrigation at 0.8 ID/CPE, T-3: Wastewater irrigation at 1.0 ID/CPE, T-4: Wastewater irrigation at 1.2 ID/CPE, T-5: Wastewater irrigation at 1.4 ID/CPE, T-6: Conjunctive use of Groundwater and Wastewater irrigation at 1.0 ID/CPE in cyclic mode, T-7: Control (Groundwater irrigation at 1.0 ID/CPE) in randomized block design with three replication. Wastewater and groundwater samples were collected on monthly basis (April 2014 to March 2015) and analyzed for different parameters of irrigation quality (pH, EC, SAR, RSC), pollution hazard (BOD, toxic heavy metals and Faecal coliforms) and nutrients potential (N, P, K, Cu, Fe, Mn, Zn) as per standard methods. After harvest of tuberose crop, soil samples were also collected and analyzed for different parameters of soil quality as per standard methods. The vegetative growth and flower parameters were recorded at flowering stage of tuberose plants. Results indicated that wastewater samples had higher nutrient potential, pollution hazard as compared to groundwater used in experimental crop. Soil quality parameters such as pH EC, available phosphorous & potassium and heavy metals (Cu, Fe, Mn, Zn, Cd. Pb, Ni, Cr, Co, As) were not significantly changed whereas organic carbon and available nitrogen were significant higher in the treatments where wastewater irrigations were given at 1.2 and 1.4 ID/CPE as compared to groundwater irrigations. Significantly higher plant height (68.47 cm), leaves per plant (78.35), spike length (99.93 cm), rachis length (37.40 cm), numbers of florets per spike (56.53), cut spike yield (0.93 lakh/ha) and loose flower yield (8.5 t/ha) were observed in the treatment of Wastewater irrigation at 1.2 ID/CPE. Study concluded that given quality of wastewater improves the productivity of tuberose without an adverse impact on soil quality/health. However, its long term impacts need to be further evaluated.

Keywords: conjunctive use, irrigation, tuberose, wastewater

Procedia PDF Downloads 335
2535 Price Setting and the Role of Accounting Information

Authors: Chris Durden, Peter Lane

Abstract:

Cost accounting information potentially plays an important role in price setting. According to prior research fixed and variable cost information often is a key influence on pricing decisions. The literature highlights the benefits of applying systematic costing systems for enhanced price setting processes. This paper explores how costing systems are used for pricing decisions in the tourism and hospitality industry relative to other sources of price setting information. Pricing based on full cost information was found to have relatively greater importance and short-term survival and customer oriented objectives were found to be the more important pricing objectives. This paper contributes to the literature by providing a recent analysis of accounting’s role in price setting within the tourism and hospitality industry.

Keywords: cost accounting systems, pricing decisions, cost-plus pricing, market pricing, tourism industry

Procedia PDF Downloads 387
2534 The Effect of Relocating a Red Deer Stag on the Size of Its Home Range and Activity

Authors: Erika Csanyi, Gyula Sandor

Abstract:

In the course of the examination, we sought to answer the question of how and to what extent the home range and daily activity of a deer stag relocated from its habitual surroundings changes. We conducted the examination in two hunting areas in Hungary, about 50 km from one another. The control area was in the north of Somogy County, while the sample area was an area of similar features in terms of forest cover, tree stock, agricultural structure, altitude above sea level, climate, etc. in the south of Somogy County. Three middle-aged red deer stags were captured with rocket nets, immobilized and marked with GPS-Plus Collars manufactured by Vectronic Aerospace Gesellschaft mit beschränkter Haftung. One captured species was relocated. We monitored deer movements over 24-hour periods at 3 months. In the course of the examination, we analysed the behaviour of the relocated species and those that remained in their original habitat, as well as the temporal evolution of their behaviour. We examined the characteristics of the marked species’ daily activities and the hourly distance they covered. We intended to find out the difference between the behaviour of the species remaining in their original habitat and of those relocated to a more distant, but similar habitat. In summary, based on our findings, it can be established that such enforced relocations to a different habitat (e.g., game relocation) significantly increases the home range of the species in the months following relocation. Home ranges were calculated using the full data set and the minimum convex polygon (MCP) method. Relocation did not increase the nocturnal and diurnal movement activity of the animal in question. Our research found that the home range of the relocated species proved to be significantly higher than that of those species that were not relocated. The results have been presented in tabular form and have also been displayed on a map. Based on the results, it can be established that relocation inherently includes the risk of falling victim to poaching, vehicle collision. It was only in the third month following relocation that the home range of the relocated species subsided to the level of those species that were not relocated. It is advisable to take these observations into consideration in relocating red deer for nature conservation or game management purposes.

Keywords: Cervus elaphus, home range, relocation, red deer stag

Procedia PDF Downloads 137
2533 Raising Test of English for International Communication (TOEIC) Scores through Purpose-Driven Vocabulary Acquisition

Authors: Edward Sarich, Jack Ryan

Abstract:

In contrast to learning new vocabulary incidentally in one’s first language, foreign language vocabulary is often acquired purposefully, because a lack of natural exposure requires it to be studied in an artificial environment. It follows then that foreign language vocabulary may be more efficiently acquired if it is purpose-driven, or linked to a clear and desirable outcome. The research described in this paper relates to the early stages of what is seen as a long-term effort to measure the effectiveness of a methodology for purpose-driven foreign language vocabulary instruction, specifically by analyzing whether directed studying from high-frequency vocabulary lists leads to an improvement in Test of English for International Communication (TOEIC) scores. The research was carried out in two sections of a first-year university English composition class at a small university in Japan. The results seem to indicate that purposeful study from relevant high-frequency vocabulary lists can contribute to raising TOEIC scores and that the test preparation methodology used in this study was thought by students to be beneficial in helping them to prepare to take this high-stakes test.

Keywords: corpus vocabulary, language asssessment, second language vocabulary acquisition, TOEIC test preparation

Procedia PDF Downloads 149
2532 Mastering Digitization: A Quality-Adapted Digital Transformation Model

Authors: Franziska Schaefer, Marlene Kuhn, Heiner Otten

Abstract:

In the very near future, digitization will be the main challenge a company has to master to survive in a highly competitive market. Developing the right transformation strategy by considering all relevant aspects determines the success or failure of a company. Especially the digital focus on the customer plays a key role in creating sustainable competitive advantages, also leading to new tasks within the quality management. Therefore, quality management needs to be particularly addressed to support the upcoming digital change. In this paper, we present an analysis of existing digital transformation approaches and derive a transformation strategy from a quality management perspective. We identify and classify different transformation dimensions and assess their relevance to quality management tasks, resulting in a quality-adapted digital transformation model. Furthermore, we introduce applicable and customized quality management methods to support the presented digital transformation tasks. With our developed model we provide a digital transformation guideline from a quality perspective to master future disruptive changes.

Keywords: digital transformation, digitization, quality management, strategy

Procedia PDF Downloads 480
2531 Contradictive Representation of Women in Postfeminist Japanese Media

Authors: Emiko Suzuki

Abstract:

Although some claim that we are in a post-feminist society, the word “postfeminism” still raises questions to many. In postfeminist media, as a British sociologist Rosalind Gill points out, on the one hand, it seems to promote an empowering image of women who are active, positively sexually motivated, has free will to make market choices, and have surveillance and discipline for their personality and body, yet on the other hand, such beautiful and attractive feminist image imposes stronger surveillance of their mind and body for women. Similar representation, which is that femininity is described in a contradictive way, is seen in Japanese media as well. This study tries to capture how post-feminist Japanese media is, contrary to its ostensible messages, encouraging women to join the obedience to the labor system by affirming the traditional image of attractive women using sexual objectification and promoting values of neoliberalism. The result shows an interesting insight into how Japanese media is creating a conflicting ideal representation of women through repeatedly exposing such images.

Keywords: postfeminism, Japanese media, sexual objectification, embodiment

Procedia PDF Downloads 196
2530 [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion

Authors: Albert Alexander Stonier

Abstract:

Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability.

Keywords: solar photovoltaic, power electronics, power quality, PWM

Procedia PDF Downloads 281
2529 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network

Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar

Abstract:

Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.

Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network

Procedia PDF Downloads 517
2528 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases

Authors: Suglo Tohari Luri

Abstract:

Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.

Keywords: data, engine, intelligence, customer, neo4j, database

Procedia PDF Downloads 193
2527 The New Waterfront: Examining the Impact of Planning on Waterfront Regeneration in Da Nang

Authors: Ngoc Thao Linh Dang

Abstract:

Urban waterfront redevelopment is a global phenomenon, and thousands of schemes are being carried out in large metropoles, medium-sized cities, and even small towns all over the world. This opportunity brings the city back to the river and rediscovers waterfront revitalization as a unique opportunity for cities to reconnect with their unique historical and cultural image. The redevelopment can encourage economic investments, serve as a social platform for public interactions, and allow dwellers to express their rights to the city. Many coastal cities have effectively transformed the perception of their waterfront area through years of redevelopment initiatives, having been neglected for over a century. However, this process has never been easy due to the particular complexity of the space: local culture, history, and market-led development. Moreover, municipal governments work out the balance of diverse stakeholder interests, especially when repurposing high-profile and redundant spaces that form the core of urban economic investment while also accommodating the present and future generations in sustainable environments. Urban critics consistently grapple with the effectiveness of the planning process on the new waterfront, where public spaces are criticized for presenting a lack of opportunities for actual public participation due to privatization and authoritarian governance while no longer doing what they are ‘meant to’: all arise in reaction to the perceived failure of these places to meet expectations. The planning culture and the decision-making context determine the level of public involvement in the planning process; however, in the context of competing market forces and commercial interests dominating cities’ planning agendas, planning for public space in urban waterfronts tends to be for economic gain rather than supporting residents' social needs. These newly pleasing settings satisfied the cluster of middle-class individuals, new communities living along the waterfront, and tourists. A trend of public participatory exclusion is primarily determined by the nature of the planning being undertaken and the decision-making context in which it is embedded. Starting from this context, the research investigates the influence of planning on waterfront regeneration and the role of participation in this process. The research aims to look specifically at the characteristics of the planning process of the waterfront in Da Nang and its impact on the regeneration of the place to regain the city’s historical value and enhance local cultural identity and images. Vietnam runs a top-down planning system where municipal governments have control or power over what happens in their city following the approved planning from the national government. The community has never been excluded from development; however, their participation is still marginalized. In order to ensure social equality, a proposed approach called "bottom-up" should be considered and implemented alongside the traditional "top-down" process and provide a balance of perspectives, as it allows for the voices of the most underprivileged social group involved in a planning project to be heard, rather than ignored. The research provides new insights into the influence of the planning process on the waterfront regeneration in the context of Da Nang.

Keywords: planning process, public participation, top-down planning, waterfront regeneration

Procedia PDF Downloads 71
2526 A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting

Authors: Analise Borg, Paul Micallef

Abstract:

Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organize the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that non-parametric analysis offer potential results as the ones mentioned in the literature.

Keywords: audio fingerprinting, mapping algorithm, Gaussian Mixture Models, MFCC, MPEG-7

Procedia PDF Downloads 421
2525 A Neural Network Model to Simulate Urban Air Temperatures in Toulouse, France

Authors: Hiba Hamdi, Thomas Corpetti, Laure Roupioz, Xavier Briottet

Abstract:

Air temperatures are generally higher in cities than in their rural surroundings. The overheating of cities is a direct consequence of increasing urbanization, characterized by the artificial filling of soils, the release of anthropogenic heat, and the complexity of urban geometry. This phenomenon, referred to as urban heat island (UHI), is more prevalent during heat waves, which have increased in frequency and intensity in recent years. In the context of global warming and urban population growth, helping urban planners implement UHI mitigation and adaptation strategies is critical. In practice, the study of UHI requires air temperature information at the street canyon level, which is difficult to obtain. Many urban air temperature simulation models have been proposed (mostly based on physics or statistics), all of which require a variety of input parameters related to urban morphology, land use, material properties, or meteorological conditions. In this paper, we build and evaluate a neural network model based on Urban Weather Generator (UWG) model simulations and data from meteorological stations that simulate air temperature over Toulouse, France, on days favourable to UHI.

Keywords: air temperature, neural network model, urban heat island, urban weather generator

Procedia PDF Downloads 91
2524 Major Variables Influencing Marketed Surplus of Seed Cotton in District Khanewal, Pakistan

Authors: Manan Aslam, Shafqat Rasool

Abstract:

This paper attempts to examine impact of major factors affecting marketed surplus of seed cotton in district Khanewal (Punjab) using primary source of data. A representative sample of 40 cotton farmers was selected using stratified random sampling technique. The impact of major factors on marketed surplus of seed cotton growers was estimated by employing double log form of regression analysis. The value of adjusted R2 was 0.64 whereas the F-value was 10.81. The findings of analysis revealed that experience of farmers, education of farmers, area under cotton crop and distance from wholesale market were the significant variables affecting marketed surplus of cotton whereas the variables (marketing cost and sale price) showed insignificant impact. The study suggests improving prevalent marketing practices to increase volume of marketed surplus of cotton in district Khanewal.

Keywords: seed cotton, marketed surplus, double log regression analysis

Procedia PDF Downloads 307
2523 Active Space Debris Removal by Extreme Ultraviolet Radiation

Authors: A. Anandha Selvan, B. Malarvizhi

Abstract:

In recent year the problem of space debris have become very serious. The mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now most of space debris object orbiting in LEO region about 97%. The catastrophic collision can be mostly occurred in LEO region, where this collision generate the new debris. Thus, we propose a concept for cleaning the space debris in the region of thermosphere by passing the Extreme Ultraviolet (EUV) radiation to in front of space debris object from the re-orbiter. So in our concept the Extreme Ultraviolet (EUV) radiation will create the thermosphere expansion by reacting with atmospheric gas particles. So the drag is produced in front of the space debris object by thermosphere expansion. This drag force is high enough to slow down the space debris object’s relative velocity. Therefore the space debris object gradually reducing the altitude and finally enter into the earth’s atmosphere. After the first target is removed, the re-orbiter can be goes into next target. This method remove the space debris object without catching debris object. Thus it can be applied to a wide range of debris object without regard to their shapes or rotation. This paper discusses the operation of re-orbiter for removing the space debris in thermosphere region.

Keywords: active space debris removal, space debris, LEO, extreme ultraviolet, re-orbiter, thermosphere

Procedia PDF Downloads 462
2522 An Analytic Network Process Approach towards Academic Staff Selection

Authors: Nasrullah khan

Abstract:

Today business environment is very dynamic and most of organizations are in tough competition for their added values and sustainable hold in market. To achieve such objectives, organizations must have dynamic and creative people as optimized process. To get these people, there should strong human resource management system in organizations. There are multiple approaches have been devised in literature to hire more job relevant and more suitable people. This study proposed an ANP (Analytic Network Process) approach to hire faculty members for a university system. This study consists of two parts. In fist part, a through literature survey and universities interview are conducted in order to find the common criteria for the selection of academic staff. In second part the available candidates are prioritized on the basis of the relative values of these criteria. According to results the GRE & foreign language, GPA and research paper writing were most important factors for the selection of academic staff.

Keywords: creative people, ANP, academic staff, business environment

Procedia PDF Downloads 415
2521 A Vision Making Exercise for Twente Region; Development and Assesment

Authors: Gelareh Ghaderi

Abstract:

the overall objective of this study is to develop two alternative plans of spatial and infrastructural development for the Netwerkstad Twente (Twente region) until 2040 and to assess the impacts of those two alternative plans. This region is located on the eastern border of the Netherlands, and it comprises of five municipalities. Based on the strengths and opportunities of the five municipalities of the Netwerkstad Twente, and in order develop the region internationally, strengthen the job market and retain skilled and knowledgeable young population, two alternative visions have been developed; environmental oriented vision, and economical oriented vision. Environmental oriented vision is based mostly on preserving beautiful landscapes. Twente would be recognized as an educational center, driven by green technologies and environment-friendly economy. Market-oriented vision is based on attracting and developing different economic activities in the region based on visions of the five cities of Netwerkstad Twente, in order to improve the competitiveness of the region in national and international scale. On the basis of the two developed visions and strategies for achieving the visions, land use and infrastructural development are modeled and assessed. Based on the SWOT analysis, criteria were formulated and employed in modeling the two contrasting land use visions by the year 2040. Land use modeling consists of determination of future land use demand, assessment of suitability land (Suitability analysis), and allocation of land uses on suitable land. Suitability analysis aims to determine the available supply of land for future development as well as assessing their suitability for specific type of land uses on the basis of the formulated set of criteria. Suitability analysis was operated using CommunityViz, a Planning Support System application for spatially explicit land suitability and allocation. Netwerkstad Twente has highly developed transportation infrastructure, consists of highways network, national road network, regional road network, street network, local road network, railway network and bike-path network. Based on the assumptions of speed limitations on different types of roads provided, infrastructure accessibility level of predicted land use parcels by four different transport modes is investigated. For evaluation of the two development scenarios, the Multi-criteria Evaluation (MCE) method is used. The first step was to determine criteria used for evaluation of each vision. All factors were categorized as economical, ecological and social. Results of Multi-criteria Evaluation show that Environmental oriented cities scenario has higher overall score. Environment-oriented scenario has impressive scores in relation to economical and ecological factors. This is due to the fact that a large percentage of housing tends towards compact housing. Twente region has immense potential, and the success of this project will define the Eastern part of The Netherlands and create a real competitive local economy with innovations and attractive environment as its backbone.

Keywords: economical oriented vision, environmental oriented vision, infrastructure, land use, multi criteria assesment, vision

Procedia PDF Downloads 227
2520 Hydroxyapatite from Biowaste for the Reinforcement of Polymer

Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam

Abstract:

Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: biomaterial, biopolymer, bone, hydroxyapatite

Procedia PDF Downloads 321
2519 Effect of Migrant Influx toward Betterment of Aging and Low Fertility Rate: Statistical Analyses in Japan

Authors: Sari K. Ishii

Abstract:

This study considers a wider viewpoint to connect migration studies with questions about financial capitalism, which seeks cheap, disposable labour transnationally. This study offers insight into whether the current state of immigration acceptance contributes to stabilizing the aging society of the nation in the long term or merely fulfills the ephemeral requirements of industries. The analyses in this study focused on three aspects. First, it examined how many migrants in Japan joined the labour market. Second, it analyzed the number of migrants that are aging. Third, it determined the number of dependent migrants accepted through labour migrants. The study findings raise further questions for future empirical studies to verify the schema of financial capitalism through the lens of migration. The scheme of seeking cheap, disposable labour transnationally may result in the descendants of both locals and mobilized labour becoming more unstable than the prior generations.

Keywords: migration, aging society, low fertility rate, Japan

Procedia PDF Downloads 42
2518 Potential for Massive Use of Biodiesel for Automotive in Italy

Authors: Domenico Carmelo Mongelli

Abstract:

The context of this research is that of the Italian reality, which, in order to adapt to the EU Directives that prohibit the production of internal combustion engines in favor of electric mobility from 2035, is extremely concerned about the significant loss of jobs resulting from the difficulty of the automotive industry in converting in such a short time and due to the reticence of potential buyers in the face of such an epochal change. The aim of the research is to evaluate for Italy the potential of the most valid alternative to this transition to electric: leaving the current production of diesel engines unchanged, no longer powered by gasoil, imported and responsible for greenhouse gas emissions, but powered entirely by a nationally produced and eco-sustainable fuel such as biodiesel. Today in Italy, the percentage of biodiesel mixed with gasoil for diesel engines is too low (around 10%); for this reason, this research aims to evaluate the functioning of current diesel engines powered 100% by biodiesel and the ability of the Italian production system to cope to this hypothesis. The research geographically identifies those abandoned lands in Italy, now out of the food market, which is best suited to an energy crop for the final production of biodiesel. The cultivation of oilseeds is identified, which for the Italian agro-industrial reality allows maximizing the agricultural and industrial yields of the transformation of the agricultural product into a final energy product and minimizing the production costs of the entire agro-industrial chain. To achieve this objective, specific databases are used, and energy and economic balances are prepared for the different agricultural product alternatives. Solutions are proposed and tested that allow the optimization of all production phases in both the agronomic and industrial phases. The biodiesel obtained from the most feasible of the alternatives examined is analyzed, and its compatibility with current diesel engines is identified, and from the evaluation of its thermo-fluid-dynamic properties, the engineering measures that allow the perfect functioning of current internal combustion engines are examined. The results deriving from experimental tests on the engine bench are evaluated to evaluate the performance of different engines fueled with biodiesel alone in terms of power, torque, specific consumption and useful thermal efficiency and compared with the performance of engines fueled with the current mixture of fuel on the market. The results deriving from experimental tests on the engine bench are evaluated to evaluate the polluting emissions of engines powered only by biodiesel and compared with current emissions. At this point, we proceed with the simulation of the total replacement of gasoil with biodiesel as a fuel for the current fleet of diesel vehicles in Italy, drawing the necessary conclusions in technological, energy, economic, and environmental terms and in terms of social and employment implications. The results allow us to evaluate the potential advantage of a total replacement of diesel fuel with biodiesel for powering road vehicles with diesel cycle internal combustion engines without significant changes to the current vehicle fleet and without requiring future changes to the automotive industry.

Keywords: biodiesel, economy, engines, environment

Procedia PDF Downloads 75
2517 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology

Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando

Abstract:

Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.

Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry

Procedia PDF Downloads 151
2516 Investigating Best Strategies Towards Creating Alternative Assessment in Literature

Authors: Sandhya Rao Mehta

Abstract:

As ChatGpt and other Artificial Intelligence (AI) forms are becoming part of our regular academic world, the consequences are being gradually discussed. The extent to which an essay written by a student is itself of any value if it has been downloaded by some form of AI is perhaps central to this discourse. A larger question is whether writing should be taught as an academic skill at all. In literature classrooms, this has major consequences as writing a traditional paper is still the single most preferred form of assessment. This study suggests that it is imperative to investigate alternative forms of assessment in literature, not only because the existing forms can be written by AI, but in a larger sense, students are increasingly skeptical of the purpose of such work. The extent to which an essay actually helps the students professionally is a question that academia has not yet answered. This paper suggests that using real-world tasks like creating podcasts, video tutorials, and websites is a far better way to evaluate students' critical thinking and application of ideas, as well as to develop digital skills which are important to their future careers. Using the example of a course in literature, this study will examine the possibilities and challenges of creating digital projects as a way of confronting the complexities of student evaluation in the future. The study is based on a specific university English as a Foreign Language (EFL) context.

Keywords: assessment, literature, digital humanities, chatgpt

Procedia PDF Downloads 86
2515 Integration of Artificial Neural Network with Geoinformatics Technology to Predict Land Surface Temperature within Sun City Jodhpur, Rajasthan, India

Authors: Avinash Kumar Ranjan, Akash Anand

Abstract:

The Land Surface Temperature (LST) is an essential factor accompanying to rise urban heat and climate warming within a city in micro level. It is also playing crucial role in global change study as well as radiation budgets measuring in heat balance studies. The information of LST is very substantial to recognize the urban climatology, ecological changes, anthropological and environmental interactions etc. The Chief motivation of present study focus on time series of ANN model that taken a sequence of LST values of 2000, 2008 and 2016, realize the pattern of variation within the data set and predict the LST values for 2024 and 2032. The novelty of this study centers on evaluation of LST using series of multi-temporal MODIS (MOD 11A2) satellite data by Maximum Value Composite (MVC) techniques. The results derived from this study endorse the proficiency of Geoinformatics Technology with integration of ANN to gain knowledge, understanding and building of precise forecast from the complex physical world database. This study will also focus on influence of Land Use/ Land Cover (LU/LC) variation on Land Surface Temperature.

Keywords: LST, geoinformatics technology, ANN, MODIS satellite imagery, MVC

Procedia PDF Downloads 240
2514 A Dynamic Curriculum as a Platform for Continuous Competence Development

Authors: Niina Jallinoja, Anu Moisio

Abstract:

Focus on adult learning is vital to overcome economic challenges as well as to respond to the demand for new competencies and sustained productivity in the digitalized world economy. Employees of all ages must be able to carry on continuous professional development to remain competitive in the labor market. According to EU policies, countries should offer more flexible opportunities for adult learners who study online and in so-called ‘second chance’ qualification programmes. Traditionally, adult education in Finland has comprised of not only liberal adult education but also the government funding to study for Bachelor, Master's, and Ph.D. degrees in Finnish Universities and Universities of Applied Sciences (UAS). From the beginning of 2021, public funding is allocated not only to degrees but also to courses to achieve new competencies for adult learners in Finland. Consequently, there will be degree students (often younger of age) and adult learners studying in the same evening, online and blended courses. The question is thus: How are combined studies meeting the different needs of degree students and adult learners? Haaga-Helia University of Applied Sciences (UAS), located in the metropolitan area of Finland, is taking up the challenge of continuous learning for adult learners. Haaga-Helia has been reforming the bachelor level education and respective shorter courses from 2019 in the biggest project in its history. By the end of 2023, Haaga-Helia will have a flexible, modular curriculum for the bachelor's degrees of hospitality management, business administration, business information technology, journalism and sports management. Building on the shared key competencies, degree students will have the possibility to build individual study paths more flexibly, thanks to the new modular structure of the curriculum. They will be able to choose courses across all degrees, and thus, build their own unique competence combinations. All modules can also be offered as separate courses or learning paths to non-degree students, both publicly funded and as commercial services for employers. Consequently, there will be shared course implementations for degree studies and adult learners with various competence requirements. The newly designed courses are piloted in parallel of the designing of the curriculum in Haaga-Helia during 2020 and 2021. Semi-structured online surveys are composed among the participants for the key competence courses. The focus of the research is to understand how students in the bachelor programme and adult learners from Open UAE perceive the learning experience in such a diverse learning group. A comparison is also executed between learning methods of in-site teaching, online implementation, blended learning and virtual self-learning courses to understand how the pedagogy is meeting the learning objectives of these two different groups. The new flexible curricula and the study modules are to be designed to fill the most important competence gaps that exist in the Finnish labor markets. The new curriculum will be dynamic and constantly evolving over time according to the future competence needs in the labor market. This type of approach requires constant dialogue between Haaga-Helia and workplaces during and after designing of the shared curriculum.

Keywords: ccompetence development, continuous learning, curriculum, higher education

Procedia PDF Downloads 127
2513 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine

Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li

Abstract:

Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.

Keywords: false alarm, fault diagnosis, SVM, k-means, BIT

Procedia PDF Downloads 155