Search results for: data-supported design
9170 Liquid Illumination: Fabricating Images of Fashion and Architecture
Authors: Sue Hershberger Yoder, Jon Yoder
Abstract:
“The appearance does not hide the essence, it reveals it; it is the essence.”—Jean-Paul Sartre, Being and Nothingness Three decades ago, transarchitect Marcos Novak developed an early form of algorithmic animation he called “liquid architecture.” In that project, digitally floating forms morphed seamlessly in cyberspace without claiming to evolve or improve. Change itself was seen as inevitable. And although some imagistic moments certainly stood out, none was hierarchically privileged over another. That project challenged longstanding assumptions about creativity and artistic genius by posing infinite parametric possibilities as inviting alternatives to traditional notions of stability, originality, and evolution. Through ephemeral processes of printing, milling, and projecting, the exhibition “Liquid Illumination” destabilizes the solid foundations of fashion and architecture. The installation is neither worn nor built in the conventional sense, but—like the sensual art forms of fashion and architecture—it is still radically embodied through the logics and techniques of design. Appearances are everything. Surface pattern and color are no longer understood as minor afterthoughts or vapid carriers of dubious content. Here, they become essential but ever-changing aspects of precisely fabricated images. Fourteen silk “colorways” (a term from the fashion industry) are framed selections from ongoing experiments with intricate pattern and complex color configurations. Whether these images are printed on fabric, milled in foam, or illuminated through projection, they explore and celebrate the untapped potentials of the surficial and superficial. Some components of individual prints appear to float in front of others through stereoscopic superimpositions; some figures appear to melt into others due to subtle changes in hue without corresponding changes in value; and some layers appear to vibrate via moiré effects that emerge from unexpected pattern and color combinations. The liturgical atmosphere of Liquid Illumination is intended to acknowledge that, like the simultaneously sacred and superficial qualities of rose windows and illuminated manuscripts, artistic and religious ideologies are also always malleable. The intellectual provocation of this paper pushes the boundaries of current thinking concerning viable applications for fashion print designs and architectural images—challenging traditional boundaries between fine art and design. The opportunistic installation of digital printing, CNC milling, and video projection mapping in a gallery that is normally reserved for fine art exhibitions raises important questions about cultural/commercial display, mass customization, digital reproduction, and the increasing prominence of surface effects (color, texture, pattern, reflection, saturation, etc.) across a range of artistic practices and design disciplines.Keywords: fashion, print design, architecture, projection mapping, image, fabrication
Procedia PDF Downloads 889169 Visualising Charles Bonnet Syndrome: Digital Co-Creation of Pseudohallucinations
Authors: Victoria H. Hamilton
Abstract:
Charles Bonnet Syndrome (CBS) is when a person experiences pseudohallucinations that fill in visual information from any type of sight loss. CBS arises from an epiphenomenal process, with the physical actions of sight resulting in the mental formations of images. These pseudohallucinations—referred to as visions by the CBS community—manifest in a wide range of forms, from complex scenes to simple geometric shapes. To share these unique visual experiences, a remote co-creation website was created where CBS participants communicated their lived experiences. This created a reflexive process, and we worked to produce true representations of these interesting and little-known phenomena. Digital reconstruction of the visions is utilised as it echoes the vivid, experiential movie-like nature of what is being perceived. This paper critically analyses co-creation as a method for making digital assets. The implications of the participants' vision impairments and the application of ethical safeguards are examined in this context. Important to note, this research is of a medical syndrome for a non-medical, practice-based design. CBS research to date is primarily conducted by the ophthalmic, neurological, and psychiatric fields and approached with the primary concerns of these specialties. This research contributes a distinct approach incorporating practice-based digital design, autoethnography, and phenomenology. Autoethnography and phenomenology combine as a foundation, with the first bringing understanding and insights, balanced by the second philosophical, bigger picture, and established approach. With further refining, it is anticipated that the research may be applied to other conditions. Conditions where articulating internal experiences proves challenging and the use of digital methods could aid communication. Both the research and CBS communities will benefit from the insights regarding the relationship between cognitive perceptions and the vision process. This research combines the digital visualising of visions with interest in the link between metaphor, embodied cognition, and image. The argument for a link between CBS visions and metaphor may appear evident due to the cross-category mapping of images that is necessary for comprehension. They both are— CBS visions and metaphors—the experience of picturing images, often with lateral connections and imaginative associations.Keywords: Charles Bonnet Syndrome, digital design, visual hallucinations, visual perception
Procedia PDF Downloads 449168 Conformation Prediction of Human Plasmin and Docking on Gold Nanoparticle
Authors: Wen-Shyong Tzou, Chih-Ching Huang, Chin-Hwa Hu, Ying-Tsang Lo, Tun-Wen Pai, Chia-Yin Chiang, Chung-Hao Li, Hong-Jyuan Jian
Abstract:
Plasmin plays an important role in the human circulatory system owing to its catalytic ability of fibrinolysis. The immediate injection of plasmin in patients of strokes has intrigued many scientists to design vectors that can transport plasmin to the desired location in human body. Here we predict the structure of human plasmin and investigate the interaction of plasmin with the gold-nanoparticle. Because the crystal structure of plasminogen has been solved, we deleted N-terminal domain (Pan-apple domain) of plasminogen and generate a mimic of the active form of this enzyme (plasmin). We conducted a simulated annealing process on plasmin and discovered a very large conformation occurs. Kringle domains 1, 4 and 5 had been observed to leave its original location relative to the main body of the enzyme and the original doughnut shape of this enzyme has been transformed to a V-shaped by opening its two arms. This observation of conformational change is consistent with the experimental results of neutron scattering and centrifugation. We subsequently docked the plasmin on the simulated gold surface to predict their interaction. The V-shaped plasmin could utilize its Kringle domain and catalytic domain to contact the gold surface. Our findings not only reveal the flexibility of plasmin structure but also provide a guide for the design of a plasmin-gold nanoparticle.Keywords: docking, gold nanoparticle, molecular simulation, plasmin
Procedia PDF Downloads 4729167 Ground Motion Modelling in Bangladesh Using Stochastic Method
Authors: Mizan Ahmed, Srikanth Venkatesan
Abstract:
Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard
Procedia PDF Downloads 2499166 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members
Authors: Sami W. Tabsh
Abstract:
The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety
Procedia PDF Downloads 4309165 Pinch Technology for Minimization of Water Consumption at a Refinery
Authors: W. Mughees, M. Alahmad
Abstract:
Water is the most significant entity that controls local and global development. For the Gulf region, especially Saudi Arabia, with its limited potable water resources, the potential of the fresh water problem is highly considerable. In this research, the study involves the design and analysis of pinch-based water/wastewater networks. Multiple water/wastewater networks were developed using pinch analysis involving direct recycle/material recycle method. Property-integration technique was adopted to carry out direct recycle method. Particularly, a petroleum refinery was considered as a case study. In direct recycle methodology, minimum water discharge and minimum fresh water resource targets were estimated. Re-design (or retrofitting) of water allocation in the networks was undertaken. Chemical Oxygen Demand (COD) and hardness properties were taken as pollutants. This research was based on single and double contaminant approach for COD and hardness and the amount of fresh water was reduced from 340.0 m3/h to 149.0 m3/h (43.8%), 208.0 m3/h (61.18%) respectively. While regarding double contaminant approach, reduction in fresh water demand was 132.0 m3/h (38.8%). The required analysis was also carried out using mathematical programming technique. Operating software such as LINGO was used for these studies which have verified the graphical method results in a valuable and accurate way. Among the multiple water networks, the one possible water allocation network was developed based on mass exchange.Keywords: minimization, water pinch, water management, pollution prevention
Procedia PDF Downloads 4789164 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect
Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary
Abstract:
Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error
Procedia PDF Downloads 3259163 Robust Control of Traction Motors based Electric Vehicles by Means of High-Gain
Authors: H. Mekki, A. Djerioui, S. Zeghlache, L. Chrifi-Alaoui
Abstract:
Induction motor (IM)Induction motor (IM) are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system.Keywords: electric vehicles, sliding mode control, induction motor drive, high gain observer
Procedia PDF Downloads 749162 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis
Authors: Sahil Kapahi
Abstract:
A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE
Procedia PDF Downloads 2479161 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution
Abstract:
Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design
Procedia PDF Downloads 1699160 Photocatalytic Degradation of Aqueous Organic Pollutant under UV Light Irradiation
Authors: D. Tassalit, N. Chekir, O. Benhabiles, N. A. Laoufi, F. Bentahar
Abstract:
In the setting of the waters purification, some molecules appear recalcitrant to the traditional treatments. The exploitation of the properties of some catalysts permits to amplify the oxidization performances with ultraviolet radiance and to remove this pollution by a non biological way. This study was conducted to investigate the effect of a photocatalysis oxidation system for organic pollutants treatment using a new reactor design and ZnO/TiO2 as a catalyst under UV light. Oxidative degradation of tylosin by hydroxyl radicals (OH°) was studied in aqueous medium using suspended forms of ZnO and TiO2. The results improve that the treatment was affected by many factors such as flow-rate of solution, initial pollutant concentration and catalyst concentration. The rate equation for the tylosin degradation followed first order kinetics and the rate-constants were determined. The reaction rate fitted well with Langmuir–Hinshelwood model and the removed ratio of tylosin was 97 % in less than 60 minutes. To determine the optimum catalyst loading, a series of experiments were carried out by varying the amount of catalyst from 0.05 to 0.5 g/L. The results demonstrate that the rate of photodegradation is optimum with catalyst loading of 0.1 g/L, reaction flow rate of 3.79 mL/s and solution natural pH. The rate was found to increase with the decrease in tylosin concentration from 30 to 5 mg/L. Therefore, this simple photoreactor design for the removal of organic pollutants has the potential to be used in wastewater treatment.Keywords: advanced oxidation, photocatalysis, TiO2, ZnO, UV light, pharmaceuticals pollutants, Spiramycin, tylosin, wastewater treatment
Procedia PDF Downloads 4319159 Feasibility of Building Structure Due to Decreased Concrete Quality of School Building in Banda Aceh City 19 Years after Tsunami
Authors: Rifqi Irvansyah, Abdullah Abdullah, Yunita Idris, Bunga Raihanda
Abstract:
Banda Aceh is particularly susceptible to heightened vulnerability during natural disasters due to its concentrated exposure to multi-hazard risks. Despite urgent priorities during the aftermath of natural disasters, such as the 2004 Indian Ocean earthquake and tsunami, several public facilities, including school buildings, sustained damage yet continued operations without adequate repairs, even though they were submerged by the tsunami. This research aims to evaluate the consequences of column damage induced by tsunami inundation on the structural integrity of buildings. The investigation employs interaction diagrams for columns to assess their capacity, taking into account factors such as rebar deterioration and corrosion. The analysis result shows that one-fourth of the K1 columns on the first floor fall outside of the column interaction diagram, indicating that the column structure cannot handle the load above it, as evidenced by the presence of Pu and Mu, which are greater than the column's design strength. This suggests that the five columns of K1 should be cause for concern, as the column's capacity is decreasing. These results indicate that the structure of the building cannot sustain the applied load because the column cross-section has deteriorated. In contrast, all K2 columns meet the design strength, indicating that the column structure can withstand the structural loads.Keywords: tsunami inundation, column damage, column interaction diagram, mitigation effort
Procedia PDF Downloads 679158 Door Fan Test in New CED at Portopalo Test Site
Authors: F. Noto, M. Castro, R. Garraffo, An. Mirabella, A. Rizzo, G. Cuttone
Abstract:
The door fan test is a verification procedure on the tightness of a room, necessary following the installation of saturation extinguishing systems and made mandatory according to the UNI 15004-1: 2019 standard whenever a gas extinguishing system is designed and installed. The door fan test was carried out at the Portopalo di Capo Passero headquarters of the Southern National Laboratories and highlighted how the Data Processing Center is perfectly up to standard, passing the door fan test in an excellent way. The Southern National Laboratories constitute a solid research reality, well established in the international scientific panorama. The CED in the Portopalo site has been expanded, so the extinguishing system has been expanded according to a detailed design. After checking the correctness of the design to verify the absence of air leaks, we carried out the door fan test. The activities of the LNS are mainly aimed at basic research in the field of Nuclear Physics, Nuclear and Particle Astrophysics. The Portopalo site will host some of the largest submarine wired scientific research infrastructures built in Europe and in the world, such as KM3NeT and EMSO ERIC; in particular, the site research laboratory in Portopalo will host the power supply and data acquisition systems of the underwater infrastructures, and a technological backbone will be created, unique in the Mediterranean, capable of allowing the connection, at abyssal depths, of dozens of real-time surveying and research structures of the marine environment deep.Keywords: KM3Net, fire protection, door fan test, CED
Procedia PDF Downloads 999157 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle
Authors: Mostafa Mjahed
Abstract:
Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV
Procedia PDF Downloads 1209156 Characteristics of Business Models of Industrial-Internet-of-Things Platforms
Authors: Peter Kress, Alexander Pflaum, Ulrich Loewen
Abstract:
The number of Internet-of-Things (IoT) platforms is steadily increasing across various industries, especially for smart factories, smart homes and smart mobility. Also in the manufacturing industry, the number of Industrial-IoT platforms is growing. Both IT players, start-ups and increasingly also established industry players and small-and-medium-enterprises introduce offerings for the connection of industrial equipment on platforms, enabled by advanced information and communication technology. Beside the offered functionalities, the established ecosystem of partners around a platform is one of the key differentiators to generate a competitive advantage. The key question is how platform operators design the business model around their platform to attract a high number of customers and partners to co-create value for the entire ecosystem. The present research tries to answer this question by determining the key characteristics of business models of successful platforms in the manufacturing industry. To achieve that, the authors selected an explorative qualitative research approach and created an inductive comparative case study. The authors generated valuable descriptive insights of the business model elements (e.g., value proposition, pricing model or partnering model) of various established platforms. Furthermore, patterns across the various cases were identified to derive propositions for the successful design of business models of platforms in the manufacturing industry.Keywords: industrial-internet-of-things, business models, platforms, ecosystems, case study
Procedia PDF Downloads 2439155 A Numerical Investigation of Total Temperature Probes Measurement Performance
Authors: Erdem Meriç
Abstract:
Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes
Procedia PDF Downloads 1349154 Dense and Quality Urban Living: A Comparative Study on Architectural Solutions in the European City
Authors: Flavia Magliacani
Abstract:
The urbanization of the last decades and its resulting urban growth entail problems both for environmental and economic sustainability. From this perspective, sustainable settlement development requires a horizontal decrease in the existing urban structure in order to enhance its greater concentration. Hence, new stratifications of the city fabric and architectural strategies ensuring high-density settlement models are possible solutions. However, although increasing housing density is necessary, it is not sufficient. Guaranteeing the quality of living is, indeed, equally essential. In order to meet this objective, many other factors come to light, namely the relationship between private and public spaces, the proximity to services, the accessibility of public transport, the local lifestyle habits, and the social needs. Therefore, how to safeguard both quality and density in human habitats? The present paper attempts to answer the previous main research question by addressing several sub-questions: Which architectural types meet the dual need for urban density and housing quality? Which project criteria should be taken into consideration by good design practices? What principles are desirable for future planning? The research will analyse different architectural responses adopted in four European cities: Paris, Lion, Rotterdam, and Amsterdam. In particular, it will develop a qualitative and comparative study of two specific architectural solutions which integrate housing density and quality living. On the one hand, the so-called 'self-contained city' model, on the other hand, the French 'Habitat Dense Individualisé' one. The structure of the paper will be as follows: the first part will develop a qualitative evaluation of some case studies, emblematic examples of the two above said architectural models. The second part will focus on the comparison among the chosen case studies. Finally, some conclusions will be drawn. The methodological approach, therefore, combines qualitative and comparative research. Parameters will be defined in order to highlight potential and criticality of each model in light of an interdisciplinary view. In conclusion, the present paper aims at shading light on design approaches which ensure a right balance between density and quality of the urban living in contemporary European cities.Keywords: density, future design, housing quality, human habitat
Procedia PDF Downloads 1069153 Structural Monitoring of Externally Confined RC Columns with Inadequate Lap-Splices, Using Fibre-Bragg-Grating Sensors
Authors: Petros M. Chronopoulos, Evangelos Z. Astreinidis
Abstract:
A major issue of the structural assessment and rehabilitation of existing RC structures is the inadequate lap-splicing of the longitudinal reinforcement. Although prohibited by modern Design Codes, the practice of arranging lap-splices inside the critical regions of RC elements was commonly applied in the past. Today this practice is still the rule, at least for conventional new buildings. Therefore, a lot of relevant research is ongoing in many earthquake prone countries. The rehabilitation of deficient lap-splices of RC elements by means of external confinement is widely accepted as the most efficient technique. If correctly applied, this versatile technique offers a limited increase of flexural capacity and a considerable increase of local ductility and of axial and shear capacities. Moreover, this intervention does not affect the stiffness of the elements and does not affect the dynamic characteristics of the structure. This technique has been extensively discussed and researched contributing to vast accumulation of technical and scientific knowledge that has been reported in relevant books, reports and papers, and included in recent Design Codes and Guides. These references are mostly dealing with modeling and redesign, covering both the enhanced (axial and) shear capacity (due to the additional external closed hoops or jackets) and the increased ductility (due to the confining action, preventing the unzipping of lap-splices and the buckling of continuous reinforcement). An analytical and experimental program devoted to RC members with lap-splices is completed in the Lab. of RC/NTU of Athens/GR. This program aims at the proposal of a rational and safe theoretical model and the calibration of the relevant Design Codes’ provisions. Tests, on forty two (42) full scale specimens, covering mostly beams and columns (not walls), strengthened or not, with adequate or inadequate lap-splices, have been already performed and evaluated. In this paper, the results of twelve (12) specimens under fully reversed cyclic actions are presented and discussed. In eight (8) specimens the lap-splices were inadequate (splicing length of 20 or 30 bar diameters) and they were retrofitted before testing by means of additional external confinement. The two (2) most commonly applied confining materials were used in this study, namely steel and FRPs. More specifically, jackets made of CFRP wraps or light cages made of mild steel were applied. The main parameters of these tests were (i) the degree of confinement (internal and external), and (ii) the length of lap-splices, equal to 20, 30 or 45 bar diameters. These tests were thoroughly instrumented and monitored, by means of conventional (LVDTs, strain gages, etc.) and innovative (optic fibre-Bragg-grating) sensors. This allowed for a thorough investigation of the most influencing design parameter, namely the hoop-stress developed in the confining material. Based on these test results and on comparisons with the provisions of modern Design Codes, it could be argued that shorter (than the normative) lap-splices, commonly found in old structures, could still be effective and safe (at least for lengths more than an absolute minimum), depending on the required ductility, if a properly arranged and adequately detailed external confinement is applied.Keywords: concrete, fibre-Bragg-grating sensors, lap-splices, retrofitting / rehabilitation
Procedia PDF Downloads 2509152 Development and Validation of Thermal Stability in Complex System ABDM has two ASIC by NISA and COMSOL Tools
Authors: A. Oukaira, A. Lakhssassi, O. Ettahri
Abstract:
To make a good thermal management in an ABDM (Adapter Board Detector Module) card, we must first control temperature and its gradient from the first step in the design of integrated circuits ASIC of our complex system. In this paper, our main goal is to develop and validate the thermal stability in order to get an idea of the flow of heat around the ASIC in transient and thus address the thermal issues for integrated circuits at the ABDM card. However, we need heat sources simulations for ABDM card to establish its thermal mapping. This led us to perform simulations at each ASIC that will allow us to understand the thermal ABDM map and find real solutions for each one of our complex system that contains 36 ABDM map, taking into account the different layers around ASIC. To do a transient simulation under NISA, we had to build a function of power modulation in time TIMEAMP. The maximum power generated in the ASIC is 0.6 W. We divided the power uniformly in the volume of the ASIC. This power was applied for 5 seconds to visualize the evolution and distribution of heat around the ASIC. The DBC (Dirichlet Boundary conditions) method was applied around the ABDM at 25°C and just after these simulations in NISA tool we will validate them by COMSOL tool, wich is a numerical calculation software for a modular finite element for modeling a wide variety of physical phenomena characterizing a real problem. It will also be a design tool with its ability to handle 3D geometries for complex systems.Keywords: ABDM, APD, thermal mapping, complex system
Procedia PDF Downloads 2649151 Field Trips inside Digital Game Environments
Authors: Amani Alsaqqaf, Frederick W. B. Li
Abstract:
Field trips are essential methods of learning in different subjects, and in recent times, there has been a reduction in the number of field trips (FTs) across all learning levels around the world. Virtual field trips (VFTs) in game environments provide FT experience based on the experiential learning theory (ELT). A conceptual framework for designing virtual field trip games (VFTGs) is developed with an aim to support game designers and educators to produce an effective FT experience where technology would enhance education. The conceptual framework quantifies ELT as an internal economy to link learning elements to game mechanics such as feedback loops which leads to facilitating VFTGs design and implementation. This study assesses the conceptual framework for designing VFTGs by investigating the possibility of applying immersive VFTGs in a secondary classroom and compare them with traditional learning that uses video clips and PowerPoint slides from the viewpoint of students’ perceived motivation, presence, and learning. The assessment is achieved by evaluating the learning performance and learner experience of a prototype VFT game, Island of Volcanoes. A quasi-experiment was conducted with 60 secondary school students. The findings of this study are that the VFTG enhanced learning performance to a better level than did the traditional way of learning, and in addition, it provided motivation and a general feeling of presence in the VFTG environment.Keywords: conceptual framework, game-based learning, game design, virtual field trip game
Procedia PDF Downloads 2359150 Experimental Investigation for the Overtopping Wave Force of the Vertical Breakwater
Authors: Jin Song Gui, Han Li, Rui Jin Zhang, Heng Jiang Cai
Abstract:
There is a large deviation between the measured wave power at the vertical breast wall and the calculated one according to current specification in the case of overtopping. In order to investigate the reasons for the deviation, the wave forces of vertical breast wall under overtopping conditions have been measured through physical model experiment and compared with the calculated results. The effect of water depth, period and the wave height on the wave forces of the vertical breast wall have been also investigated. The distribution of wave pressure under different wave actions was tested based on the force sensor which is installed in the vertical breakwater. By comparing and analyzing the measured values and norms calculated values, the applicability of the existing norms recommended method were discussed and a reference for the design of vertical breakwater was provided. Experiment results show that with the decrease of the water depth, the gap is growing between the actual wave forces and the specification values, and there are no obvious regulations between these two values with the variation of period while wave force greatly reduces with the overtopping reducing. The amount of water depth and wave overtopping has a significant impact on the wave force of overtopping section while the period has no obvious influence on the wave force. Finally, some favorable recommendations for the overtopping wave force design of the vertical breakwater according to the model experiment results are provided.Keywords: overtopping wave, physical model experiment, vertical breakwater, wave forces
Procedia PDF Downloads 3039149 A Comparative Analysis of Carbon Footprints of Households in Different Housing Types and Seasons
Authors: Taehyun Kim
Abstract:
As a result of rapid urbanization, energy demands for lighting, heating and cooling of households have been concentrated in metropolitan areas. The energy resources for housing in urban areas are dominantly fossil fuel whose uses contribute to increase cost of living and carbon dioxide (CO2) emission. To achieve environmentally and economically sustainable residential development, it is important to know how energy use and cost of living can be reduced by planning and design. The purpose of this study is to examine which type of building requires less energy for housing. To do so, carbon footprint (CF) quiz survey was employed which estimates the amount of carbon dioxide required to support households’ consumption of energy uses for housing. The housing carbon footprints (HCF) of 500 households of Seoul, Korea in summer and winter were estimated and compared in three major types of housing: single-family (detached), row-house and apartment. In addition, its differences of HCF were estimated between tower and flat type of apartment. The results of T-test and analysis of variance (ANOVA) provide statistical evidence that housing type is related to housing energy use. Average HCF of detached house was higher than other housing types. Between two types of apartment, tower type shows higher HCF than flat type in winter. These findings may provide new perspectives on CF application in sustainable architecture and urban design.Keywords: analysis of variance, carbon footprint, energy use, housing type
Procedia PDF Downloads 5059148 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.Keywords: energy, system, building, cooling, electrical
Procedia PDF Downloads 5739147 Analyzing Façade Scenarios and Daylight Levels in the Reid Building: A Reflective Case Study on the Designed Daylight under Overcast Sky
Authors: Eman Mayah, Raid Hanna
Abstract:
This study presents the use of daylight in the case study of the Reid building at the Glasgow School of Art in the city of Glasgow, UK. In Nordic countries, daylight is one of the main considerations within building design, especially in the face of long, lightless winters. A shortage of daylight, contributing to dark and gloomy conditions, necessitates that designs incorporate strong daylight performance. As such, the building in question is designed to capture natural light for varying needs, where studios are located on the North and South façades. The study’s approach presents an analysis of different façade scenarios, where daylight from the North is observed, analyzed and compared with the daylight from the South façade for various design studios in the building. The findings then are correlated with the results of daylight levels from the daylight simulation program (Autodesk Ecotect Analysis) for the investigated studios. The study finds there to be a dramatic difference in daylight nature and levels between the North and South façades, where orientation, obstructions and designed façade fenestrations have major effects on the findings. The study concludes that some of the studios positioned on the North façade do not have a desirable quality of diffused northern light, due to the outside building’s obstructions, area and volume of the studio and the shadow effect of the designed mezzanine floor in the studios.Keywords: daylight levels, educational building, Façade fenestration, overcast weather
Procedia PDF Downloads 4059146 Automation of AAA Game Development using AI and Procedural Generation
Authors: Paul Toprac, Branden Heng, Harsheni Siddharthan, Allison Tseng, Sarah Abraham, Etienne Vouga
Abstract:
The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high budget, high profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 13 AI tools for game development. During this process, the following tools were found to be the most productive: (1) ChatGPT 4.0 for both game and narrative concepting and documentation; (2) Dall-E 3 and OpenArt for concept art; (3) Beatoven for music drafting; (4) Epic PCG for level design; and (5) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are at best tools to enhance developer productivity rather than as a system to replace developers.Keywords: AAA games, AI, automation tools, game development
Procedia PDF Downloads 269145 Trend Analysis for Extreme Rainfall Events in New South Wales, Australia
Authors: Evan Hajani, Ataur Rahman, Khaled Haddad
Abstract:
Climate change will affect the hydrological cycle in many different ways such as increase in evaporation and rainfalls. There have been growing interests among researchers to identify the nature of trends in historical rainfall data in many different parts of the world. This paper examines the trends in annual maximum rainfall data from 30 stations in New South Wales, Australia by using two non-parametric tests, Mann-Kendall (MK) and Spearman’s Rho (SR). Rainfall data were analyzed for fifteen different durations ranging from 6 min to 3 days. It is found that the sub-hourly durations (6, 12, 18, 24, 30, and 48 minutes) show statistically significant positive (upward) trends whereas longer duration (sub-daily and daily) events generally show a statistically significant negative (downward) trend. It is also found that the MK test and SR test provide notably different results for some rainfall event durations considered in this study. Since shorter duration sub-hourly rainfall events show positive trends at many stations, the design rainfall data based on stationary frequency analysis for these durations need to be adjusted to account for the impact of climate change. These shorter durations are more relevant to many urban development projects based on smaller catchments having a much shorter response time.Keywords: climate change, Mann-Kendall test, Spearman’s Rho test, trends, design rainfall
Procedia PDF Downloads 2719144 Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System
Authors: A. Ras, I. Nait Zerrad, N. Benmouna, N. Boumechra
Abstract:
Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.Keywords: energy dissipation, friction-pendulum system, nonlinear analysis, steel structure
Procedia PDF Downloads 2029143 Review Architectural Standards in Design and Development Children's Educational Centers
Authors: Ahmad Torkaman, Suogol Shomtob, Hadi Akbari Seddigh
Abstract:
In this paper it has been attempted to investigate the lack of attention to how specific spatial characteristics of the children except existing places such as nurseries. In order to achieve the standard center to faster children understanding their mentality is the first issue that must be studied. Exploring the spiritual characteristics and complexities of children cannot be possible except in accordance with the different aspects and background of their growth in various age periods. In order to achieving the standard center for fostering children, the first issue that must be studied understands their mentality. Exploring the spiritual qualities and complexities of children are not provided except in accordance with the characteristics and their different growth backgrounds in different age periods. According to previous researches game or playing is the most important activity that helps children to communicate and educate and sometimes therapy in specific fields. Investigating game as a proper way to train, the variety of games, the various kind of play environment and how to treat some abnormalities thereby are the issues discussed in recent research. Another consideration concerns the importance of artistic activities among children which is very evident in studying identification of their abnormalities. At the end of this study after investigating how to understand child and communicate with him/her, aiming to recognize Specific spatial characteristics for better training children, the physical and physiological criteria and characteristics is Reviewed and ends up to a list of required spaces and dimensional characteristic of spaces and needed children's equipment.Keywords: children, space, interior design, development, growth
Procedia PDF Downloads 3339142 Effects of Practical Activities on Performance among Biology Students in Zaria Education Zone, Kaduna State Nigeria
Authors: Abdullahi Garba
Abstract:
The study investigated the effects of practical activities on performance among biology students in Zaria education zone, Kaduna State, Nigeria. The population consists of 18 public schools in the Zaria Education Zone with a total number of 4,763 students. A random sample of 115 students was selected from the population in the study area. The study design was quasi-experimental, which adopted the pre-test, post-test experimental, and control group design. The experimental group was exposed to practical activities, while the control group was taught with the lecture method. A validated instrument, a biology performance test (BPT) with a reliability coefficient of 0.82, was used to gather data which were analyzed using a t-test and paired sample t-test. Two research questions and hypotheses guided the study. The hypotheses were tested at p≤0.05 level of significance. Findings revealed that: there was a significant difference in the academic performance of students exposed to practical activities compared to their counterparts; there was no significant difference in performance between male and female Biology students exposed to practical activities. The recommendation given was that practical activities should be encouraged in the teaching and learning of Biology for better understanding. The Federal and State Ministry of Education should sponsor biology teachers for training and retraining of teachers to improve the academic performance of students in the subject.Keywords: biology, practical, activity, performance
Procedia PDF Downloads 809141 Effects of Aircraft Wing Configuration on Aerodynamic Efficiency
Authors: Aderet Pantierer, Shmuel Pantierer, Atif Saeed, Amir Elzawawy
Abstract:
In recent years, air travel has seen volatile growth. Due to this growth, the maximization of efficiency and space utilization has been a major issue for aircraft manufacturers. Elongation of the wingspan of aircraft has resulted in increased lift; and, thereby, efficiency. However, increasing the wingspan of aircraft has been detrimental to the manufacturing process and has led to airport congestion and required airport reconfiguration to accommodate the extended wingspans of aircraft. This project outlines differing wing configurations of a commercial aircraft and the effects on the aerodynamic loads produced. Multiple wing configurations are analyzed using Finite Element Models. These models are then validated by testing one wing configuration in a wind tunnel under laminar flow and turbulent flow conditions. The wing configurations to be tested include high and low wing aircraft, as well as various combinations of the two, including a unique model hereon referred to as an infinity wing. The infinity wing configuration consists of both a high and low wing, with the two wings connected by a vertical airfoil. This project seeks to determine if a wing configuration consisting of multiple airfoils produces more lift than the standard wing configurations and is able to provide a solution to manufacturing limitations as well as airport congestion. If the analysis confirms the hypothesis, a trade study will be performed to determine if and when an arrangement of multiple wings would be cost-effective.Keywords: aerodynamics, aircraft design, aircraft efficiency, wing configuration, wing design
Procedia PDF Downloads 264