Search results for: corporate investment behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8301

Search results for: corporate investment behavior

4971 Effects of Crisis-Induced Emotions on in-Crisis Protective Behavior and Post-Crisis Perception: An Analysis of Survey Data for the 2015 Middle East Respiratory Syndrome in South Korea

Authors: Myoungsoon You, Heejung Son

Abstract:

Background: In the current study, we investigated the effects of emotions induced by an infectious disease outbreak on the various protective behaviors taken during the crisis and on the perception after the crisis. The investigation was based on two psychological theories of appraisal tendency and action tendency. Methods: A total of 900 participants in South Korea who experienced the 2015 Middle East Respiratory Syndrome outbreak were sampled by a professional survey agency. To assess the influence of the emotions fear and anger, a regression approach was used. The effect of emotions on various protective behaviors and perceptions was observed using a hierarchical regression method. Results: Fear and anger induced by the infectious disease outbreak were both associated with increased protective behaviors during the crisis. However, the differences between the emotions were observed. While protective behaviors with avoidance tendency (adherence to recommendations, self-mitigation), were raised by both fear and anger, protective behaviors with approach tendency (information-seeking) were increased by anger, but not fear. Regarding the effect of emotion on the risk perception after the crisis, only fear was associated with a higher level of risk perception. Conclusions: This study confirmed the role of emotions in crisis protective behaviors and post-crisis perceptions regarding an infectious disease outbreak. These findings could enhance understanding of the public’s protective behaviors during infectious disease outbreaks and afterward risk perception corresponding to emotions. The results also suggested strategies for communicating with the public that takes into account emotions that are prominently induced by crises associated with disease outbreaks.

Keywords: crisis communication, emotion, infectious disease outbreak, protective behavior, risk perception

Procedia PDF Downloads 267
4970 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 145
4969 Using Biopolymer Materials to Enhance Sandy Soil Behavior

Authors: Mohamed Ayeldeen, Abdelazim Negm

Abstract:

Nowadays, strength characteristics of soils have more importance due to increasing building loads. In some projects, geotechnical properties of the soils are be improved using man-made materials varying from cement-based to chemical-based. These materials have proven successful in improving the engineering properties of the soil such as shear strength, compressibility, permeability, bearing capacity etc.. However, the use of these artificial injection formulas often modifies the pH level of soil, contaminates soil and groundwater. This is attributed to their toxic and hazardous characteristics. Recently, an environmentally friendly soil treatment method or Biological Treatment Method (BTM) was to bond particles of loose sandy soils. This research paper presents the preliminary results of using biopolymers for strengthening cohesionless soil. Xanthan gum was identified for further study over a range of concentrations varying from 0.25% to 2.00%. Xanthan gum is a polysaccharide secreted by the bacterium Xanthomonas campestris, used as a food additive and it is a nontoxic material. A series of direct shear, unconfined compressive strength, and permeability tests were carried out to investigate the behavior of sandy soil treated with Xanthan gum with different concentration ratios and at different curing times. Laser microscopy imaging was also conducted to study the microstructure of the treated sand. Experimental results demonstrated the compatibility of Xanthan gum to improve the geotechnical properties of sandy soil. Depending on the biopolymer concentration, it was observed that the biopolymers effectively increased the cohesion intercept and stiffness of the treated sand and reduced the permeability of sand. The microscopy imaging indicates that the cross-links of the biopolymers through and over the soil particles increase with the increase of the biopolymer concentration.

Keywords: biopolymer, direct shear, permeability, sand, shear strength, Xanthan gum

Procedia PDF Downloads 272
4968 Bring Your Own Device Security Model in a Financial Institution of South Africa

Authors: Michael Nthabiseng Moeti, Makhulu Relebogile Langa, Joey Jansen van Vuuren

Abstract:

This paper examines the utilization of personal electronic devices like laptops, tablets, and smartphones for professional duties within a financial organization. This phenomenon is known as bring your own device (BYOD). BYOD accords employees the freedom to use their personal devices to access corporate resources from anywhere in the world with Internet access. BYOD arrangements introduce significant security risks for both organizations and users. These setups change the threat landscape for enterprises and demand unique security strategies, as conventional tools tailored for safeguarding managed devices fall short in adequately protecting enterprise assets without active user cooperation. This paper applies protection motivation theory (PMT) to highlight behavioral risks from BYOD users that may impact the security of financial institutions. Thematic analysis was applied to gain a comprehensive understanding of how users perceive this phenomenon. These findings demonstrates that the existence of a security policy does not ensure that all employees will take measures to protect their personal devices. Active promotion of BYOD security policies is crucial for financial institution employees and management. This paper developed a BYOD security model which is useful for understanding compliant behaviors. Given that BYOD security is becoming a major concern across financial sector, it is important. The paper recommends that future research could expand the number of universities from which data is collected.

Keywords: BYOD, information security, protection motivation theory, security risks, thematic analysis

Procedia PDF Downloads 24
4967 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks

Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed

Abstract:

This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.

Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)

Procedia PDF Downloads 68
4966 The Relationship Between The Two-spatial World And The Decrease In The Area Of Commercial Properties

Authors: Syedhossein Vakili

Abstract:

According to the opinion of some experts, the world's two-spatialization means the establishment of a new virtual space and placing this new space next to the physical space. This dualization of space has left various effects, one of which is reducing the need for buildings and making the area of business premises economical through the use of virtual space instead of a part of physical space. In such a way that before the virtual space was known, a commercial or educational institution had to block a large part of its capital to acquire physical spaces and buildings in order to provide physical space and places needed for daily activities, but today, Thanks to the addition of the virtual space to the physical space, it has been possible to carry out its activities more widely in a limited environment with a minimum of physical space and drastically reduce costs. In order to understand the impact of virtual space on the reduction of physical space, the researcher used the official reports of the countries regarding the average area mentioned in the permits for the construction of commercial and educational units in the period from 2014 to 2023 and compared the average capital required for the absolute physical period with The period of two-spatialization of the world in the mentioned ten-year period, while using the analytical and comparative method, has proven that virtual space has greatly reduced the amount of investment of business owners to provide the required place for their activities by reducing the need for physical space. And economically, it has made commercial activities more profitable.

Keywords: two spatialization, building area, cyberspace, physical space, virtual place

Procedia PDF Downloads 53
4965 Providing a Road Pricing and Toll Allocation Method for Toll Roads

Authors: Ali Babaei

Abstract:

There is a worldwide growing tendency toward construction of infrastructures with the possibility of private sector participation instead of free exploitation of public infrastructures. The construction and development of roads through private sector participation is performed by different countries because of appropriate results and benefits such as compensation of public budget deficit in road construction and maintenance and responding to traffic growth (demand). Toll is the most definite form of budget provision in road development. There are two issues in the toll rate assignment: A. costing of transport, B. Cost allocation and distribution of cost between different types of vehicles as each vehicle pay its own share. There can be different goals in toll collection and its extent is variable according to the strategy of toll collection. Costing principles in different countries are based on inclusion of the whole transport and not peculiar to the toll roads. For example, fuel tax policy functions where the road network users pay transportation cost (not just users of toll road). Whereas transportation infrastructures in Iran are free, these methods are not applicable. In Iran, different toll freeways have built by public investment and government provides participation in the road construction through encouragement of financial institutions. In this paper, the existing policies about the toll roads are studied and then the appropriate method of costing and cost allocation to different vehicles is introduced.

Keywords: toll allocation, road pricing, transportation, financial and industrial systems

Procedia PDF Downloads 358
4964 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments

Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora

Abstract:

Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.

Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver

Procedia PDF Downloads 310
4963 US-China Competition in South China Sea and International Law

Authors: Mubashra Shaheen

Abstract:

The conflict over the South China Sea (SCS) is a complex imbroglio spanning over several territorial and maritime claims involving two major island groups, the Paracels and the Spratlys. It has become a major source of geopolitical competition between the United States and China. The study's overall objective is to understand China's land reclamations and assertive behavior in the South China Sea, which lies between both the Western Pacific and the Indian Ocean. Over half of global commerce passes through these waterways, which host a great amount of marine life and hydrocarbon deposits. China's sand-filling and island-building strategy in the South China Sea is motivated by its goal of privatizing all these riches as well as the routes. It would raise China to the pinnacle of world power status as well as allow it to threaten the dominance of the U.S. The study will examine China's assertive behavior and modernization plans as well as the United States' quest for supremacy through the lens of realists. While using a qualitative method of analysis, the study will examine China's nine-dash line claims and Exclusive Economic Zones (EEZs), UNCLOS, and U.S.-China divergence over international law considerations to pacify the tensions in the South China Sea. This paper is intended to explore the possible answers to the following questions: (1) Why does China’s rise necessitate the US's efforts to contain and encircle it through the lending of a hand to strategic partners and allies in the South China Sea? (2) Why South China Sea dispute is so complex imbroglio? (3) What are US-China international law considerations regarding the South China Sea? The study will further follow the bellow research procedure: 1: Comparative Legal Method: This method simply chalk-outs the follow of few steps that discarnate the positive and negative effects of the great power competitions. 2: Conceptualization: The conceptualization of the policies of containment defines and differentiates two different problems behind the persuasive means of hegemony and dominance in the strategic milieu.

Keywords: us, china, south china sea, unclos

Procedia PDF Downloads 87
4962 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls

Authors: Berna Istegun, Erkan Celebi

Abstract:

The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.

Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests

Procedia PDF Downloads 201
4961 Study on Comparison Between Acoustic Emission Behavior and Strain on Concrete Surface During Rebar Corrosion in Reinforced Concrete

Authors: Ejazulhaq Rahimi

Abstract:

The development of techniques evaluating deterioration on concrete structures is vital for structural health monitoring (SHM). One of the main reasons for reinforced concrete structure's deterioration is the corroding of embedded rebars. It is a natural process that begins when the rebar starts to rust. It occurs when the protective layer on the rebar is destroyed. The rebar in concrete is usually protected against corrosion by the high pH of the surrounding cement paste. However, there are chemicals that can destroy the protective layer, making it susceptible to corrosion. It is very destructive for the lifespan and durability of the concrete structure. Corrosion products which are 3 to 6 times voluminous than the rebar stress its surrounding concrete and lead to fracture as cracks even peeling off the cover concrete over the rebar. As is clear that concrete shows limit elastic behavior in its stress strain property, so corrosion product stresses can be detected as strains from the concrete surface. It means that surface strains have a relation with the situation and amount of corrosion products and related concrete fractures inside reinforced concrete. In this paper, a comparative study of surface strains due to corrosion products detected by strain gauges and acoustic emission (AE) testing under periodic accelerated corrosion in the salty environment with 3% NaCl is reported. From the results, three different stages of strains were clearly observed based on the type and rate of strains in each corrosion situation and related fracture types. AE parameters which mostly are related to fracture and their shapes, describe the same phases. It is confirmed that there is a great agreement to the result of each other and describes three phases as generation and expansion of corrosion products and initiation and propagation of corrosion-induced cracks, and surface cracks. In addition, the strain on the concrete surface was rapidly increased before the cracks arrived at the surface of the concrete.

Keywords: acoustic emission, monitoring, rebar corrosion, reinforced concrete, strain

Procedia PDF Downloads 177
4960 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis

Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate

Abstract:

This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.

Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull

Procedia PDF Downloads 66
4959 The General Trend of FDI and the Effects of These Investments for Countries: 2000-2013

Authors: Esra Cebeci

Abstract:

As a result of acceleration of globalization in the 21st century economic boundaries are removed. With liberalization of capital and foreign trade, not only developed countries but also developing countries get into rapid growth efforts. In developing countries, one of the most important problem is insufficient capital accumulation. For reduce this deficit, one of the general approaches that is offered increasing amount of foreign direct investments. Also, in developing countries saving rates are low. So, foreign direct investments make possible an increase for domestic savings. In this regard, the multinational corporations are capable of these investments have importance. By providing micro-macro effects for countries, demand for these firms are many. These effects in general positive, some negative effects may able to come into being especially for developing countries. Foreign direct investments are performed buying an existing corporation, merging or greenfield investments. In recent, foreign direct investments are performed as a green field investments for developing countries. The study aims to analysis foreign direct investment trends for 2000-2013 years. In the first part of this study, the importance of foreign direct investments and their determinants are explained. In the second part, the article also shows that comparative analysis of the inward and outward investments for developing and developed countries. In conclusion, while developed countries can stand competition against other countries with these investments, developing countries can provide a sustainable growth with capital inflows.

Keywords: foreign direct investments, multinational corporations, determinants of FDI, FDI trend

Procedia PDF Downloads 398
4958 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media

Authors: Naila Nasreen, Dianchen Lu

Abstract:

This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.

Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena

Procedia PDF Downloads 93
4957 Complementary Child-Care by Grandparents: Comparisons of Zambia and the Netherlands

Authors: Francis Sichimba

Abstract:

Literature has increasingly acknowledged the important role that grandparents play in child care with evidence highlighting differences in grand-parental investment between countries and cultures. However, there are very few systematic cross cultural studies on grandparents’ participation in child care. Thus, we decided to conduct this study in Zambia and the Netherlands because the two countries differ rather drastically socially and culturally. The objective of this study was to investigate grand-parental involvement in child care in Zambia and the Netherlands. In line with the general objective, four hypotheses were formulated using nationality, family size, social economic status (SES), attachment security as independent variables. The study sample consisted of 411 undergraduate students from the University of Zambia and the University of Leiden. A questionnaire was used to measure grand-parental involvement in child care. Results indicated that grandparent involvement in child care was prevalent in both Zambia and Netherlands. However, as predicted it was found that Zambian grandparents (M = 9.69, SD=2.40) provided more care for their grandchildren compared to their Dutch counterparts (M = 7.80, SD=3.31) even after controlling for parents being alive. Using hierarchical logistic regression analysis the study revealed that nationality and attachment-related avoidance were significant predictors of grand-parental involvement in child care. It was concluded that grand-parental care is a great resource in offering complementary care in both countries.

Keywords: attachment, care, grand-parenting involvement, social economic status

Procedia PDF Downloads 716
4956 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI

Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K Rao, S. Ganesh Kamath

Abstract:

The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and haemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially-coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The haemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveals that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the haemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.

Keywords: fluid-structure interaction, arterial stenosis, wall shear stress, carotid artery bifurcation

Procedia PDF Downloads 569
4955 Factors Influencing the Use of Psychoactive Substance among Senior Secondary Students in Ibadan South-West Local Government, Oyo State, Nigeria

Authors: Olajumoke Temilola Fatimat, Fasasi Fausat Kikelomo, Ishola Ganiyat Folasayo, Omayeka Mary

Abstract:

Psychoactive substances are chemical substances that affect the normal functioning of the brain and cause changes in behavior, mood, and consciousness. Psychoactive substance abuse constitutes one of the most important risk–taking behavior among adolescents and young adults in secondary schools. The study, therefore, assessed the factors influencing the use of psychoactive substances among senior secondary students in Ibadan South–West Local Government Area, Oyo State. A descriptive non-experimental design was adopted; purposive and simple random sampling techniques were used to select 330 respondents, while questionnaires were used for data collection. The descriptive statistics of frequency count, percentages, inferential statistics of chi-square, and analysis of variance were used for the analysis. The results revealed that the majority of the respondents had heard of the term substance abuse before 226 (75.3%); it was also revealed that the majority of the respondents had good knowledge of psychoactive substances, 67.8%. There was no significant relationship between age and knowledge of psychoactive substances among senior secondary students, with a p-value of 0.199. The outcome of this study indicates that drug abuse is increasing day by day among secondary school students and may have greatly contributed to poor performance in examinations as well as undermining academic ability and performance among students. It was recommended that efforts should be made by the school authorities of the secondary schools in Ibadan South–West Local Government Area, Oyo State, and in Oyo State generally in collaboration with health personnel to educate adolescents on psychoactive substance abuse. This is to ensure that adolescents are adequately educated and updated on knowledge of psychoactive substance abuse.

Keywords: factors, influence, psychoactive substance, secondary school

Procedia PDF Downloads 64
4954 The Display of Environmental Information to Promote Energy Saving Practices: Evidence from a Massive Behavioral Platform

Authors: T. Lazzarini, M. Imbiki, P. E. Sutter, G. Borragan

Abstract:

While several strategies, such as the development of more efficient appliances, the financing of insulation programs or the rolling out of smart meters represent promising tools to reduce future energy consumption, their implementation relies on people’s decisions-actions. Likewise, engaging with consumers to reshape their behavior has shown to be another important way to reduce energy usage. For these reasons, integrating the human factor in the energy transition has become a major objective for researchers and policymakers. Digital education programs based on tangible and gamified user interfaces have become a new tool with potential effects to reduce energy consumption4. The B2020 program, developed by the firm “Économie d’Énergie SAS”, proposes a digital platform to encourage pro-environmental behavior change among employees and citizens. The platform integrates 160 eco-behaviors to help saving energy and water and reducing waste and CO2 emissions. A total of 13,146 citizens have used the tool so far to declare the range of eco-behaviors they adopt in their daily lives. The present work seeks to build on this database to identify the potential impact of adopted energy-saving behaviors (n=62) to reduce the use of energy in buildings. To this end, behaviors were classified into three categories regarding the nature of its implementation (Eco-habits: e.g., turning-off the light, Eco-actions: e.g., installing low carbon technology such as led light-bulbs and Home-Refurbishments: e.g., such as wall-insulation or double-glazed energy efficient windows). General Linear Models (GLM) disclosed the existence of a significantly higher frequency of Eco-habits when compared to the number of home-refurbishments realized by the platform users. While this might be explained in part by the high financial costs that are associated with home renovation works, it also contrasts with the up to three times larger energy-savings that can be accomplished by these means. Furthermore, multiple regression models failed to disclose the expected relationship between energy-savings and frequency of adopted eco behaviors, suggesting that energy-related practices are not necessarily driven by the correspondent energy-savings. Finally, our results also suggested that people adopting more Eco-habits and Eco-actions were more likely to engage in Home-Refurbishments. Altogether, these results fit well with a growing body of scientific research, showing that energy-related practices do not necessarily maximize utility, as postulated by traditional economic models, and suggest that other variables might be triggering them. Promoting home refurbishments could benefit from the adoption of complementary energy-saving habits and actions.

Keywords: energy-saving behavior, human performance, behavioral change, energy efficiency

Procedia PDF Downloads 191
4953 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water

Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang

Abstract:

Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.

Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature

Procedia PDF Downloads 128
4952 Viscoelastic Properties of Sn-15%Pb Measured in an Oscillation Test

Authors: Gerardo Sanjuan Sanjuan, Ángel Enrique Chavéz Castellanos

Abstract:

The knowledge of the rheological behavior of partially solidified metal alloy is an important issue when modeling and simulation of die filling in semisolid processes. Many experiments for like steady state, the step change in shear rate tests, shear stress ramps have been carried out leading that semi-solid alloys exhibit shear thinning, thixotropic behavior and yield stress. More advanced investigation gives evidence some viscoelastic features can be observed. The viscoelastic properties of materials are determinate by transient or dynamic methods; unfortunately, sparse information exists about oscillation experiments. The aim of this present work is to use small amplitude oscillatory tests for knowledge properties such as G´ and G´´. These properties allow providing information about materials structure. For this purpose, we investigated tin-lead alloy (Sn-15%Pb) which exhibits a similar microstructure to aluminum alloys and is the classic alloy for semisolid thixotropic studies. The experiments were performed with parallel plates rheometer AR-G2. Initially, the liquid alloy is cooled down to the semisolid range, a specific temperature to guarantee a constant fraction solid. Oscillation was performed within the linear viscoelastic regime with a strain sweep. So, the loss modulus G´´, the storage modulus G´ and the loss angle (δ) was monitored. In addition a frequency sweep at a strain below the critical strain for characterized its structure. This provides more information about the interactions among solid particles on a liquid matrix. After testing, the sample was removed then cooled, sectioned and examined metallographically. These experiments demonstrate that the viscoelasticity is sensitive to the solid fraction, and is strongly influenced by the shape and size of particles solid.

Keywords: rheology, semisolid alloys, thixotropic, viscoelasticity

Procedia PDF Downloads 370
4951 Effect of Information and Communication Intervention on Stable Economic Growth in Ethiopia

Authors: Medhin Haftom Hailu

Abstract:

The advancement of information technology has significantly impacted Ethiopia's economy, driving innovation, productivity, job creation, and global connectivity. This research examined the impact of contemporary information and communication technologies on Ethiopian economic progress. The study examined eight variables, including mobile, internet, and fixed-line penetration rates, and five macroeconomic control variables. The results showed a positive and strong effect of ICT on economic growth in Ethiopia, with 1% increase in mobile, internet, and fixed line services penetration indexes resulting in an 8.03, 10.05, and 30.06% increase in real GDP. The Granger causality test showed that all ICT variables Granger caused economic growth, but economic growth Granger caused mobile penetration rate only. The study suggests that coordinated ICT infrastructure development, increased telecom service accessibility, and increased competition in the telecom market are crucial for Ethiopia's economic growth. Ethiopia is attempting to establish a digital economy through massive investment in ensuring ICT quality and accessibility. Thus, the research could enhance in understanding of the economic impact of ICT expansion for successful ICT policy interventions for future research.

Keywords: economic growth, cointegration and error correction, ICT expansion, granger causality, penetration

Procedia PDF Downloads 73
4950 Adsorption Behavior and Mechanism of Illite Surface under the Action of Different Surfactants

Authors: Xiuxia Sun, Yan Jin, Zilong Liu, Shiming Wei

Abstract:

As a critical mineral component of shale, illite is essential in oil exploration and development due to its surface hydration characteristics and action mechanism. This paper, starting from the perspective of the molecular structure of organic matter, uses molecular dynamics simulation technology to deeply explore the interaction mechanism between organic molecules and the illite surface. In the study, we thoroughly considered the forces such as van der Waals force, electrostatic force, and steric hindrance and constructed an illite crystal model covering C8-C18 modifiers. Subsequently, we systematically analyzed surfactants' adsorption behavior and hydration characteristics with different alkyl chain numbers, lengths, and concentrations on the illite surface. The simulation results show that surfactant molecules with shorter alkyl chains present a lateral monolayer or inclined double-layer arrangement on the illite surface, and these two arrangements may coexist under different concentration conditions. In addition, with the increase in the number of alkyl chains, the interlayer spacing of illite increases significantly. In contrast, the change in alkyl chain length has a limited effect on surface properties. It is worth noting that the change in functional group structure has a particularly significant effect on the wettability of the illite surface, and its influence even exceeds the change in the alkyl chain structure. This discovery gives us a new perspective on understanding and regulating the wetting properties. The results obtained are consistent with the XRD analysis and wettability experimental data in this paper, further confirming the reliability of the research conclusions. This study deepened our understanding of illite's hydration characteristics and mechanism. We provided new ideas and directions for the molecular design and application development of oilfield chemicals.

Keywords: illite, surfactant, hydration, wettability, adsorption

Procedia PDF Downloads 37
4949 Utilizing Fiber-Based Modeling to Explore the Presence of a Soft Storey in Masonry-Infilled Reinforced Concrete Structures

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Recent seismic events have underscored the significant influence of masonry infill walls on the resilience of structures. The irregular positioning of these walls exacerbates their adverse effects, resulting in substantial material and human losses. Research and post-earthquake evaluations emphasize the necessity of considering infill walls in both the design and assessment phases. This study delves into the presence of soft stories in reinforced concrete structures with infill walls. Employing an approximate method relying on pushover analysis results, fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings shed light on the presence of soft first stories, revealing a notable 240% enhancement in resistance for weak column—strong beam-designed frames due to infill walls. Conversely, the effect is more moderate at 38% for strong column—weak beam-designed frames. Interestingly, the uniform distribution of infill walls throughout the structure's height does not influence soft-story emergence in the same seismic zone, irrespective of column-beam strength. In regions with low seismic intensity, infill walls dissipate energy, resulting in consistent seismic behavior regardless of column configuration. Despite column strength, structures with open-ground stories remain vulnerable to soft first-story emergence, underscoring the crucial role of infill walls in reinforced concrete structural design.

Keywords: masonry infill walls, soft Storey, pushover analysis, fiber section, macro-modeling

Procedia PDF Downloads 61
4948 Green Initiative and Marketing Approach: Developing a Better Marketing Approach of Green Initiatives by an Apparel Brand

Authors: Vaishali Joshi, Pallav Joshi

Abstract:

Environment concern has become an important topic and continues to acquire more popularity in the coming scenario. We all are exposed to messages daily, which encourage us to involve in green behavior. Factors such as Global Warming, Climate change are creating a big buzz amongst the people. Realizing this, many firms/companies are adopting the bright way of making profit along with creating a brand image, by going green. These firms/companies persuade consumers to use purchase eco-friendly products for the benefit of the environment and the society. In such scenario, it becomes very essential for such firms/companies to approach the customers in a better way. In other words, we can say that marketing approach plays a crucial role for such firm/companies. Hence in this research study, we have tried to create a marketing approach for the firms/companies for selling the eco-friendly apparels. We have studied the hypothetical apparel brand who has taken a green initiative of making their products eco-friendly. We have named this hypothetical brand as “Go-Green”. By taking this hypothetical brand we have studied about how this brand can achieve better marketing approach. In particular, we have studied the four types of print advertisements of this brand as follows :(i) print advertisement showing only eco-friendly apparel (ii) print advertisement showing eco-friendly apparel labeled with eco-label (iii) print advertisement showing eco-friendly apparel along with information about the benefit of the featured apparel and (iv) print advertisement showing eco-friendly apparel with both eco-label and information about the benefit of the featured apparel. The conclusion of this research suggest that respondents more positively evaluate the print advertisement of eco-friendly apparel labeled with eco-labels and information about the benefit of the featured apparel, compared by other three print advertisement. Moreover, in this research study, we have studied environment knowledge, as the moderating factor affecting the consumer green purchase behavior.

Keywords: eco-friendly apparel, print advertisement, eco-label, environment knowledge

Procedia PDF Downloads 283
4947 Simulation of Bird Strike on Airplane Wings by Using SPH Methodology

Authors: Tuğçe Kiper Elibol, İbrahim Uslan, Mehmet Ali Guler, Murat Buyuk, Uğur Yolum

Abstract:

According to the FAA report, 142603 bird strikes were reported for a period of 24 years, between 1990 – 2013. Bird strike with aerospace structures not only threaten the flight security but also cause financial loss and puts life in danger. The statistics show that most of the bird strikes are happening with the nose and the leading edge of the wings. Also, a substantial amount of bird strikes is absorbed by the jet engines and causes damage on blades and engine body. Crash proof designs are required to overcome the possibility of catastrophic failure of the airplane. Using computational methods for bird strike analysis during the product development phase has considerable importance in terms of cost saving. Clearly, using simulation techniques to reduce the number of reference tests can dramatically affect the total cost of an aircraft, where for bird strike often full-scale tests are considered. Therefore, development of validated numerical models is required that can replace preliminary tests and accelerate the design cycle. In this study, to verify the simulation parameters for a bird strike analysis, several different numerical options are studied for an impact case against a primitive structure. Then, a representative bird mode is generated with the verified parameters and collided against the leading edge of a training aircraft wing, where each structural member of the wing was explicitly modeled. A nonlinear explicit dynamics finite element code, LS-DYNA was used for the bird impact simulations. SPH methodology was used to model the behavior of the bird. Dynamic behavior of the wing superstructure was observed and will be used for further design optimization purposes.

Keywords: bird impact, bird strike, finite element modeling, smoothed particle hydrodynamics

Procedia PDF Downloads 322
4946 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation

Authors: Chih-Wei Chao, Jiashing Yu

Abstract:

Microfluidic devices have recently emerged as promising tools for the fabrication of scaffolds for cell culture. To mimic the natural circumstances of organism for cells to grow, here we present three-dimensional (3D) scaffolds fabricated by microfluidics for cells cultivation. This work aims at investigating the behavior in terms of the viability and the proliferation capability of rat H9c2 cardiomyocytes in the gelatin 3D scaffolds by fluorescent images.

Keywords: microfluidic device, H9c2, tissue engineering, 3D scaffolds

Procedia PDF Downloads 419
4945 Investigating a Deterrence Function for Work Trips for Perth Metropolitan Area

Authors: Ali Raouli, Amin Chegenizadeh, Hamid Nikraz

Abstract:

The Perth metropolitan area and its surrounding regions have been expanding rapidly in recent decades and it is expected that this growth will continue in the years to come. With this rapid growth and the resulting increase in population, consideration should be given to strategic planning and modelling for the future expansion of Perth. The accurate estimation of projected traffic volumes has always been a major concern for the transport modelers and planners. Development of a reliable strategic transport model depends significantly on the inputs data into the model and the calibrated parameters of the model to reflect the existing situation. Trip distribution is the second step in four-step modelling (FSM) which is complex due to its behavioral nature. Gravity model is the most common method for trip distribution. The spatial separation between the Origin and Destination (OD) zones will be reflected in gravity model by applying deterrence functions which provide an opportunity to include people’s behavior in choosing their destinations based on distance, time and cost of their journeys. Deterrence functions play an important role for distribution of the trips within a study area and would simulate the trip distances and therefore should be calibrated for any particular strategic transport model to correctly reflect the trip behavior within the modelling area. This paper aims to review the most common deterrence functions and propose a calibrated deterrence function for work trips within the Perth Metropolitan Area based on the information obtained from the latest available Household data and Perth and Region Travel Survey (PARTS) data. As part of this study, a four-step transport model using EMME software has been developed for Perth Metropolitan Area to assist with the analysis and findings.

Keywords: deterrence function, four-step modelling, origin destination, transport model

Procedia PDF Downloads 163
4944 Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water

Authors: Rehan Deshmukh, Sunil Bhand, Utpal Roy

Abstract:

We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well.

Keywords: capacitance, DNA sensor, Escherichia coli O157:H7, open reading frame marker

Procedia PDF Downloads 141
4943 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers

Authors: Linda Boussaid, Farid Brahim Belaribi

Abstract:

The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixtures

Keywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers

Procedia PDF Downloads 86
4942 Embodiment Design of an Azimuth-Altitude Solar Tracker

Authors: M. Culman, O. Lengerke

Abstract:

To provide an efficient solar generation system, the embodiment design of a two axis solar tracker for an array of photovoltaic (PV) panels destiny to supply the power demand on off-the-grid areas was developed. Photovoltaic cells have high costs in relation to t low efficiency; and while a lot of research and investment has been made to increases its efficiency a few points, there is a profitable solution that increases by 30-40% the annual power production: two axis solar trackers. A solar tracker is a device that supports a load in a perpendicular position toward the sun during daylight. Mounted on solar trackers, the solar panels remain perpendicular to the incoming sunlight at day and seasons so the maximum amount of energy is outputted. Through a preview research done it was justified why the generation of solar energy through photovoltaic panels mounted on dual axis structures is an attractive solution to bring electricity to remote off-the-grid areas. The work results are the embodiment design of an azimuth-altitude solar tracker to guide an array of photovoltaic panels based on a specific design methodology. The designed solar tracker is mounted on a pedestal that uses two slewing drives‚ with a nominal torque of 1950 Nm‚ to move a solar array that provides 3720 W from 12 PV panels.

Keywords: azimuth-altitude sun tracker, dual-axis solar tracker, photovoltaic system, solar energy, stand-alone power system

Procedia PDF Downloads 253