Search results for: variable stiffness composite structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8280

Search results for: variable stiffness composite structures

4980 Infrared Spectroscopy Fingerprinting of Herbal Products- Application of the Hypericum perforatum L. Supplements

Authors: Elena Iacob, Marie-Louise Ionescu, Elena Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca

Abstract:

Infrared spectroscopy (FT-IR) is an advanced technique frequently used to authenticate both raw materials and final products using their specific fingerprints and to determine plant extracts biomarkers based on their functional groups. In recent years the market for Hypericum has grown rapidly and also has grown the cases of adultery/replacement, especially for Hypericum perforatum L.specie. Presence/absence of same biomarkers provides preliminary identification of Hypericum species in safe use in the manufacture of food supplements. The main objective of the work was to characterize the main biomarkers of Hypericum perforatum L. (St. John's wort) and identify this species in herbal food supplements after specific FT-IR fingerprint. An experimental program has been designed in order to test: (1) raw material (St. John's wort); (2)intermediate raw materials (St. John's wort dry extract ); (3) the finished products: tablets based on powders, on extracts, on powder and extract, hydroalcoholic solution from herbal mixture based on St. John's wort. The analyze using FTIR infrared spectroscopy were obtained raw materials, intermediates and finished products spectra, respectively absorption bands corresponding and similar with aliphatic and aromatic structures; examination was done individually and through comparison between Hypericum perforatum L. plant species and finished product The tests were done in correlation with phytochemical markers for authenticating the specie Hypericum perforatum L.: hyperoside, rutin, quercetin, isoquercetin, luteolin, apigenin, hypericin, hyperforin, chlorogenic acid. Samples were analyzed using a Shimatzu FTIR spectrometer and the infrared spectrum of each sample was recorded in the MIR region, from 4000 to 1000 cm-1 and then the fingerprint region was selected for data analysis. The following functional groups were identified -stretching vibrations suggests existing groups in the compounds of interest (flavones–rutin, hyperoside, polyphenolcarboxilic acids - chlorogenic acid, naphtodianthrones- hypericin): oxidril groups (OH) free alcohol type: rutin, hyperoside, chlorogenic acid; C = O bond from structures with free carbonyl groups of aldehyde, ketone, carboxylic, ester: hypericin; C = O structure with the free carbonyl of the aldehyde groups, ketone, carboxylic acid, esteric/C = O free bonds present in chlorogenic acid; C = C bonds of the aromatic ring (condensed aromatic hydrocarbons, heterocyclic compounds) present in all compounds of interest; OH phenolic groups: present in all compounds of interest, C-O-C groups from glycoside structures: rutin, hyperoside, chlorogenic acid. The experimental results show that: (I)The six fingerprint region analysis indicated the presence of specific functional groups: (1) 1000 - 1130 cm-1 (C-O–C of glycoside structures); (2) 1200-1380 cm-1 (carbonyl C-O or O-H phenolic); (3) 1400-1450 cm-1 (C=C aromatic); (4) 1600- 1730 cm-1 (C=O carbonyl); (5) 2850 - 2930 cm-1 (–CH3, -CH2-, =CH-); (6) 338-3920 cm-1 (OH free alcohol type); (II)Comparative FT-IR spectral analysis indicate the authenticity of the finished products ( tablets) in terms of Hypericum perforatum L. content; (III)The infrared spectroscopy is an adequate technique for identification and authentication of the medicinal herbs , intermediate raw material and in the food supplements less in the form of solutions where the results are not conclusive.

Keywords: Authentication, FT-IR fingerprint, Herbal supplements, Hypericum perforatum L.

Procedia PDF Downloads 366
4979 Stress Study in Implants Dental

Authors: M. Benlebna, B. Serier, B. Bachir Bouiadjra, S. Khalkhal

Abstract:

This study focuses on the mechanical behavior of a dental prosthesis subjected to dynamic loads chewing. It covers a three-dimensional analysis by the finite element method, the level of distribution of equivalent stresses induced in the bone between the implants (depending on the number of implants). The studied structure, consisting of a braced, implant and mandibular bone is subjected to dynamic loading of variable amplitude in three directions corrono-apical, mesial-distal and bucco-lingual. These efforts simulate those of mastication. We show that compared to the implantation of a single implant, implantology using two implants promotes the weakening of the bones. This weakness is all the more likely that the implants are located in close proximity to one another.

Keywords: stress, bone, dental implant, distribution, stress levels, dynamic, effort, interaction, prosthesis

Procedia PDF Downloads 396
4978 Polypyrrole as Bifunctional Materials for Advanced Li-S Batteries

Authors: Fang Li, Jiazhao Wang, Jianmin Ma

Abstract:

The practical application of Li-S batteries is hampered due to poor cycling stability caused by electrolyte-dissolved lithium polysulfides. Dual functionalities such as strong chemical adsorption stability and high conductivity are highly desired for an ideal host material for a sulfur-based cathode. Polypyrrole (PPy), as a conductive polymer, was widely studied as matrixes for sulfur cathode due to its high conductivity and strong chemical interaction with soluble polysulfides. Thus, a novel cathode structure consisting of a free-standing sulfur-polypyrrole cathode and a polypyrrole coated separator was designed for flexible Li-S batteries. The PPy materials show strong interaction with dissoluble polysulfides, which could suppress the shuttle effect and improve the cycling stability. In addition, the synthesized PPy film with a rough surface acts as a current collector, which improves the adhesion of sulfur materials and restrain the volume expansion, enhancing the structural stability during the cycling process. For further enhancing the cycling stability, a PPy coated separator was also applied, which could make polysulfides into the cathode side to alleviate the shuttle effect. Moreover, the PPy layer coated on commercial separator is much lighter than other reported interlayers. A soft-packaged flexible Li-S battery has been designed and fabricated for testing the practical application of the designed cathode and separator, which could power a device consisting of 24 light-emitting diode (LED) lights. Moreover, the soft-packaged flexible battery can still show relatively stable cycling performance after repeated bending, indicating the potential application in flexible batteries. A novel vapor phase deposition method was also applied to prepare uniform polypyrrole layer coated sulfur/graphene aerogel composite. The polypyrrole layer simultaneously acts as host and adsorbent for efficient suppression of polysulfides dissolution through strong chemical interaction. The density functional theory (DFT) calculations reveal that the polypyrrole could trap lithium polysulfides through stronger bonding energy. In addition, the deflation of sulfur/graphene hydrogel during the vapor phase deposition process enhances the contact of sulfur with matrixes, resulting in high sulfur utilization and good rate capability. As a result, the synthesized polypyrrole coated sulfur/graphene aerogel composite delivers a specific discharge capacity of 1167 mAh g⁻¹ and 409.1 mAh g⁻¹ at 0.2 C and 5 C respectively. The capacity can maintain at 698 mAh g⁻¹ at 0.5 C after 500 cycles, showing an ultra-slow decay rate of 0.03% per cycle.

Keywords: polypyrrole, strong chemical interaction, long-term stability, Li-S batteries

Procedia PDF Downloads 135
4977 On Musical Information Geometry with Applications to Sonified Image Analysis

Authors: Shannon Steinmetz, Ellen Gethner

Abstract:

In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content.

Keywords: sonification, musical information geometry, image, content extraction, automated quantification, audio segmentation, pattern recognition

Procedia PDF Downloads 221
4976 Impact of Water Storage Structures on Groundwater Recharge in Jeloula Basin, Central Tunisia

Authors: I. Farid, K. Zouari

Abstract:

An attempt has been made to examine the effect of water storage structures on groundwater recharge in a semi-arid agroclimatic setting in Jeloula Basin (Central Tunisia). In this area, surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and agricultural purposes. Three pumped storage water power plants (PSWPP) have been built to increase the overall water availability in the basin and support agricultural livelihoods of rural smallholders. The scale and geographical dispersion of these multiple lakes restrict the understanding of these coupled human-water systems and the identification of adequate strategies to support riparian farmers. In the present review, hydrochemistry and isotopic tools were combined to get an insight into the processes controlling mineralization and recharge conditions in the investigated aquifer system. This study showed a slight increase in the groundwater level, especially after the artificial recharge operations and a decline when the water volume moves down during drought periods. Chemical data indicate that the main sources of salinity in the waters are related to water-rock interactions. Data inferred from stable isotopes in groundwater samples indicated recharge with modern rainfall. The investigated surface water samples collected from the PSWPP are affected by a significant evaporation and reveal large seasonal variations, which could be controlled by the water volume changes in the open surface reservoirs and the meteorological conditions during evaporation, condensation, and precipitation. The geochemical information is comparable to the isotopic results and illustrates that the chemical and isotopic signatures of reservoir waters differ clearly from those of groundwaters. These data confirm that the contribution of the artificial recharge operations from the PSWPP is very limited.

Keywords: Jeloula basin, recharge, hydrochemistry, isotopes

Procedia PDF Downloads 144
4975 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala

Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.

Abstract:

During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.

Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture

Procedia PDF Downloads 188
4974 Electrical Investigations of Polyaniline/Graphitic Carbon Nitride Composites Using Broadband Dielectric Spectroscopy

Authors: M. A. Moussa, M. H. Abdel Rehim, G.M. Turky

Abstract:

Polyaniline composites with carbon nitride, to overcome compatibility restriction with graphene, were prepared with the solution method. FTIR and Uv-vis spectra were used for structural conformation. While XRD and XPS confirmed the structures in addition to estimation of nitrogen atom surroundings, the pore sizes and the active surface area were determined from BET adsorption isotherm. The electrical and dielectric parameters were measured and calculated with BDS .

Keywords: carbon nitride, dynamic relaxation, electrical conductivity, polyaniline

Procedia PDF Downloads 135
4973 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam

Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra

Abstract:

Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.

Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity

Procedia PDF Downloads 296
4972 Controllable Modification of Glass-Crystal Composites with Ion-Exchange Technique

Authors: Andrey A. Lipovskii, Alexey V. Redkov, Vyacheslav V. Rusan, Dmitry K. Tagantsev, Valentina V. Zhurikhina

Abstract:

The presented research is related to the development of recently proposed technique of the formation of composite materials, like optical glass-ceramics, with predetermined structure and properties of the crystalline component. The technique is based on the control of the size and concentration of the crystalline grains using the phenomenon of glass-ceramics decrystallization (vitrification) induced by ion-exchange. This phenomenon was discovered and explained in the beginning of the 2000s, while related theoretical description was given in 2016 only. In general, the developed theory enables one to model the process and optimize the conditions of ion-exchange processing of glass-ceramics, which provide given properties of crystalline component, in particular, profile of the average size of the crystalline grains. The optimization is possible if one knows two dimensionless parameters of the theoretical model. One of them (β) is the value which is directly related to the solubility of crystalline component of the glass-ceramics in the glass matrix, and another (γ) is equal to the ratio of characteristic times of ion-exchange diffusion and crystalline grain dissolution. The presented study is dedicated to the development of experimental technique and simulation which allow determining these parameters. It is shown that these parameters can be deduced from the data on the space distributions of diffusant concentrations and average size of crystalline grains in the glass-ceramics samples subjected to ion-exchange treatment. Measurements at least at two temperatures and two processing times at each temperature are necessary. The composite material used was a silica-based glass-ceramics with crystalline grains of Li2OSiO2. Cubical samples of the glass-ceramics (6x6x6 mm3) underwent the ion exchange process in NaNO3 salt melt at 520 oC (for 16 and 48 h), 540 oC (for 8 and 24 h), 560 oC (for 4 and 12 h), and 580 oC (for 2 and 8 h). The ion exchange processing resulted in the glass-ceramics vitrification in the subsurface layers where ion-exchange diffusion took place. Slabs about 1 mm thick were cut from the central part of the samples and their big facets were polished. These slabs were used to find profiles of diffusant concentrations and average size of the crystalline grains. The concentration profiles were determined from refractive index profiles measured with Max-Zender interferometer, and profiles of the average size of the crystalline grains were determined with micro-Raman spectroscopy. Numerical simulation were based on the developed theoretical model of the glass-ceramics decrystallization induced by ion exchange. The simulation of the processes was carried out for different values of β and γ parameters under all above-mentioned ion exchange conditions. As a result, the temperature dependences of the parameters, which provided a reliable coincidence of the simulation and experimental data, were found. This ensured the adequate modeling of the process of the glass-ceramics decrystallization in 520-580 oC temperature interval. Developed approach provides a powerful tool for fine tuning of the glass-ceramics structure, namely, concentration and average size of crystalline grains.

Keywords: diffusion, glass-ceramics, ion exchange, vitrification

Procedia PDF Downloads 266
4971 Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices

Authors: Victor S. Klimin, Alexey A. Rezvan, Maxim S. Solodovnik, Oleg A. Ageev

Abstract:

In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis.

Keywords: nanostructures, GaAs, plasma chemical etching, modification structures

Procedia PDF Downloads 141
4970 Sliding Mode Controlled Quadratic Boost Converter

Authors: Viji Vijayakumar, R. Divya, A. Vivek

Abstract:

This paper deals with a quadratic boost converter which belongs to cascade boost family, controlled by sliding mode controller. In the cascade boost family, quadratic boost converter is the best trade-off when circuit complexity and modulator saturation is considered. Sliding mode control being a nonlinear control results in a robust and stable system when applied to switching converters which are inherently variable structured systems. The stability of this system is analyzed through Lyapunov’s approach. Analysis is done for load regulation, line regulation and step response of the system. Also these results are compared with that of PID controller based system.

Keywords: DC-DC converter, quadratic boost converter, sliding mode control, PID control

Procedia PDF Downloads 983
4969 Thermal Stability and Insulation of a Cement Mixture Using Graphene Oxide Nanosheets

Authors: Nasser A. M. Habib

Abstract:

The impressive physical properties of graphene derivatives, including thermal properties, have made them an attractive addition to advanced construction nanomaterial. In this study, we investigated the impact of incorporating low amounts of graphene oxide (GO) into cement mixture nanocomposites on their heat storage and thermal stability. The composites were analyzed using Fourier transmission infrared, thermo-gravimetric analysis, and field emission scanning electron microscopy. Results showed that GO significantly improved specific heat by 32%, reduced thermal conductivity by 16%, and reduced thermal decomposition to only 3% at a concentration of 1.2 wt%. These findings suggest that the cement mixture can withstand high temperatures and may suit specific applications requiring thermal stability and insulation properties.

Keywords: cement mixture composite, graphene oxide, thermal decomposition, thermal conductivity

Procedia PDF Downloads 59
4968 InfoMiracles in the Qur’an and a Mathematical Proof to the Existence of God

Authors: Mohammad Mahmoud Mandurah

Abstract:

The existence of InfoMiracles in scripture is evidence that the scripture has a divine origin. It is also evidence to the existence of God. An InfoMiracle is an information-based miracle. The basic component of an InfoMiracle is a piece of information that could not be obtained by a human except through a divine channel. The existence of a sufficient number of convincing InfoMiracles in a scripture necessitates the existence of the divine source to these InfoMiracles. A mathematical equation is developed to prove that the Qur’an has a divine origin, and hence, prove the existence of God. The equation depends on a single variable only, which is the number of InfoMiracles in the Qur’an. The Qur’an is rich with InfoMiracles. It is shown that the existence of less than 30 InfoMiracles in the Qur’an is sufficient proof to the existence of God and that the Qur’an is a revelation from God.

Keywords: InfoMiracle, God, mathematical proof, miracle, probability

Procedia PDF Downloads 209
4967 Comparison of Tidalites in Siliciclastics and Mixed Siliciclastic Carbonate Systems: An Outstanding Example from Proterozoic Simla Basin, Western Lesser Himalaya, India

Authors: Tithi Banerjee, Ananya Mukhopadhyay

Abstract:

The comparison of ancient tidalites recorded in both siliciclastics and carbonates has not been well documented due to a lack of suitable outcropping examples. The Proterozoic Simla Basin, Lesser Himalaya serves a unique example in this regard. An attempt has been made in the present work to differentiate sedimentary facies and architectural elements of tidalites in both siliciclastics and carbonates recorded in the Simla Basin. Lithofacies and microfacies analysis led to identification of 11 lithofacies and 4 architectural elements from the siliciclastics, 6 lithofacies and 3 architectural elements from the carbonates. The most diagnostic features for comparison of the two tidalite systems are sedimentary structures, textures, and architectural elements. The physical features such as flaser-lnticular bedding, mud/silt couplets, tidal rhythmites, tidal bundles, cross stratified successions, tidal bars, tidal channels, microbial structures are common to both the environments. The architecture of these tidalites attests to sedimentation in shallow subtidal to intertidal flat facies, affected by intermittent reworking by open marine waves/storms. The seventeen facies attributes were categorized into two major facies belts (FA1 and FA2). FA1 delineated from the lower part of the Chhaosa Formation (middle part of the Simla Basin) represents a prograding muddy pro-delta deposit whereas FA2 delineated from the upper part of the Basantpur Formation (lower part of the Simla Basin) bears the signature of an inner-mid carbonate ramp deposit. Facies distribution indicates development of highstand systems tract (HST) during sea level still stand related to normal regression. The aggradational to progradational bedsets record the history of slow rise in sea level.

Keywords: proterozoic, Simla Basin, tidalites, inner-mid carbonate ramp, prodelta, TST, HST

Procedia PDF Downloads 229
4966 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity

Procedia PDF Downloads 217
4965 Synthesis and Performance of Polyamide Forward Osmosis Membrane for Natural Organic Matter (NOM) Removal

Authors: M. N. Abu Seman, L. M. Kei, M. A. Yusoff

Abstract:

Forward Osmosis (FO) polyamide thin-film composite membranes have been prepared by inter facial polymerization using commercial UF polyethersulfone as membrane support. Different inter facial polymerization times (10s, 30s and 60s) in the organic solution containing trimesoyl chloride (TMC) at constant m-phenylenediamine (MPD) concentration (2% w/v) were studied. The synthesized polyamide membranes then tested for treatment of natural organic matter (NOM) and compared to commercial Cellulose TriAcetate (CTA) membrane. It was found that membrane prepared with higher reaction time (30 s and 60 s) exhibited better membrane performance (flux and humic acid removal) over commercial CTA membrane.

Keywords: cellulose triacetate, forward osmosis, humic acid, polyamide

Procedia PDF Downloads 485
4964 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 513
4963 Dynamic Mechanical Thermal Properties of Arenga pinnata Fibre Reinforced Epoxy Composite: Effects of Alkaline Treatment

Authors: Abdul Hakim Abdullah, Mohamad Syafiq Abdul Khadir

Abstract:

In present investigations, thermal behaviours of Arenga pinnata fibres prior and after alkaline treatment were studied. The alkaline treatments were applied on the Arenga pinnata fibres by immersing in the alkaline solution, 6% sodium hydroxide (NaOH). Using hand lay-out technique, composites were fabricated at 20% and 40% by Arenga pinnata fibres weight contents. The thermal behaviours of both untreated and treated composites were determined by employing Dynamic Mechanical Analysis (DMA). The results show that the TAP owned better results of Storage Modulus (E’), Loss Modulus (E”) and Tan Delta temperatures ranges from 0°C to 60°C.

Keywords: composites, Arenga pinnata fibre, alkaline treatment, dynamic mechanical properties

Procedia PDF Downloads 352
4962 The New Far-Right: The Social Construction of Hatred against the Contemporary Islamic Community in Multicultural Australia

Authors: Angel Adams

Abstract:

In Australia, the contemporary social construction of hatred against the Islamic community was facilitated through the mainstream media. Australian public figures who have depicted Muslims and Islam not only as potential terrorists but also as incompatible with the country’s values and identities have helped to increase the level of fear against the Islamic community, leading sympathetic far-right movements to shift discussions towards anti-Islamic and anti-Muslim rhetoric. Political opportunities combined with a socially constructed narrative of fear of the ‘other’, introduced during the White Australia Policy of 1901, has allowed extreme and radical far-right movements to justify hate against the contemporary Australian Islamic community. This study aims to answer the following question: How does Australia’s founding provide a fertile environment to the spread of hatred against the contemporary Islamic community? The paper demonstrates that a forged social construct of grievances concerning the Islamic community in Australia has led to a surge in supply of far-right activism to combat what has become a perceived ‘national threat’. In essence, Australia’s history of a fear of the ‘other’ brings challenges to a multicultural society, and can potentially lead to a more unstable socio-political environment where abuse and violence are normalized and more likely to develop. Furthermore, the paper aims to bring a more nuanced understanding of what is considered ‘new far-right’ discourses with shared anti-Islam and anti-Muslim agendas in Australia. The political opportunity structures theory was the mechanism used to determine how new forms of far-right groups have become more mainstream in Australia. Previous studies on far-right groups in Australia have relied on qualitative data, but further empirical research in this area is sorely needed. Above all, this paper clarifies how hatred against minorities can have a negative impact on wider communities and allow a global narrative of ‘us’ versus ‘them’ to erupt from the fringes of society in Australia.

Keywords: Australia, Islamophobia, far-right, nationalism, political opportunity structures, political violence, social construction

Procedia PDF Downloads 126
4961 Chromia-Carbon Nanocomposite Materials for Energy Storage Devices

Authors: Muhammad A. Nadeem, Shaheed Ullah

Abstract:

The article reports the synthesis of Cr2O3/C nanocomposites obtained by the direct carbonization of PFA/MIL-101(Cr) bulk composite. The nanocomposites were characterized by various instrumental techniques like powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and the surface characterized were investigated via N2 adsorption/desorption analysis. TEM and SAED analysis shows that turbostatic graphitic carbon was obtained with high crystallinity. The nanocomposites were tested for electrochemical supercapacitor and the faradic and non-Faradic processes were checked through cyclic voltammetry (CV). The maximum specific capacitance calculated for Cr2O3/C 900 sample from CV measurement is 301 F g-1 at 2 mV s-1 due to its maximum charge storing capacity as confirm by frequency response analysis.

Keywords: nanocomposites, transmission electron microscopy, non-faradic process

Procedia PDF Downloads 428
4960 Two Major Methods to Control Thermal Resistance of Focus Ring for Process Uniformity Enhance

Authors: Jin-Uk Park

Abstract:

Recently, the semiconductor industry is rapidly demanding complicated structures and mass production. From the point of view of mass production, the ETCH industry is concentrating on maintaining the ER (Etch rate) of the wafer edge constant regardless of changes over time. In this study, two major thermal factors affecting process were identified and controlled. First, the filler of the thermal pad was studied. Second, the significant difference of handling the thermal pad during PM was studied.

Keywords: etcher, thermal pad, wet cleaning, thermal conductivity

Procedia PDF Downloads 186
4959 Dilemmas of HRM in a Project-Oriented Organisation

Authors: Katarzyna Piwowar-Sulej

Abstract:

The functioning of a project-oriented organisation creates new and different, from the traditional ones, conditions for human resources management. In the analysed case HRM is primarily characterized by a double-track nature – on the one hand within the framework of permanent structures (departments) and, on the other, within the area of particular projects. The purpose of the article is to present the dilemmas associated with the development of selected HRM areas in project-oriented organisations. Theoretical discussion was supplemented by the results of empirical research.

Keywords: human resources management, tracks of HRM, project, project-oriented organisation

Procedia PDF Downloads 267
4958 Modeling Revolution Shell Structures by MATLAB Programming-Axisymmetric and Nonaxisymmetric Shells

Authors: Hamadi Djamal, Labiodh Bachir, Ounis Abdelhafid, Chaalane Mourad

Abstract:

The objective of this work is setting numerically operational finite element CAXI_L for the axisymmetric and nonaxisymmetric shells. This element is based on the Reissner-Mindlin theory and mixed model formulation. The MATLAB language is used for the programming. In order to test the elaborated program, some applications are carried out.

Keywords: axisymmetric shells, nonaxisymmetric behaviour, finite element, MATLAB programming

Procedia PDF Downloads 305
4957 Reliability Analysis of Partial Safety Factor Design Method for Slopes in Granular Soils

Authors: K. E. Daryani, H. Mohamad

Abstract:

Uncertainties in the geo-structure analysis and design have a significant impact on the safety of slopes. Traditionally, uncertainties in the geotechnical design are addressed by incorporating a conservative factor of safety in the analytical model. In this paper, a risk-based approach is adopted to assess the influence of the geotechnical variable uncertainties on the stability of infinite slopes in cohesionless soils using the “partial factor of safety on shear strength” approach as stated in Eurocode 7. Analyses conducted using Monte Carlo simulation show that the same partial factor can have very different levels of risk depending on the degree of uncertainty of the mean values of the soil friction angle and void ratio.

Keywords: Safety, Probability of Failure, Reliability, Infinite Slopes, Sand.

Procedia PDF Downloads 569
4956 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 26
4955 The Effect of Gender and Resources on Entrepreneurial Activity

Authors: Frederick Nyakudya

Abstract:

In this paper, we examine the relationship between human capital, personal wealth and social capital to explain the differential start-up rates between female and male entrepreneurs. Since our dependent variable is dichotomous, we examine the determinants of these using a maximum likelihood logit estimator. We used the Global Entrepreneurship Monitor database covering the period 2006 to 2009 with 421 usable cases drawn from drawn from the Lower Layer Super Output Areas in the East Midlands in the United Kingdom. we found evidence that indicates that a female positively moderate the positive relationships between indicators of human capital, personal wealth and social capital with start-up activity. The findings have implications for programs, policies, and practices to encourage more females to engage in start-up activity.

Keywords: entrepreneurship, star-up, gender, GEM

Procedia PDF Downloads 103
4954 Hydrodynamic Performance of a Moored Barge in Irregular Wave

Authors: Srinivasan Chandrasekaran, Shihas A. Khader

Abstract:

Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discuss the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in future studies. For the current study, 5000 seconds simulation is taken. The results represent wave-induced motion responses, mooring line tensions and identifies critical mooring lines.

Keywords: irregular wave, moored barge, time domain analysis, numerical simulation

Procedia PDF Downloads 248
4953 Effect of Iron Contents on Rheological Properties of Syndiotactic Polypropylene/iron Composites

Authors: Naveed Ahmad, Farooq Ahmad, Abdul Aal

Abstract:

The effect of iron contents on the rheological behavior of sPP/iron composites in the melt phase was investigated using a series of syndiotactic polypropylene/iron (sPP/iron) composite samples. Using the Advanced Rheometric Expansion System, studies with small amplitude oscillatory shear were conducted (ARES). It was discovered that the plateau modulus rose along with the iron loading. Also it was found that both entanglement molecular weight and packing length decrease with increase in iron loading.. This finding demonstrates how iron content in polymer/iron composites affects chain parameters and dimensions, which in turn affects the entire chain dynamics.

Keywords: plateau modulus, packing lenght, polymer/iron composites, rheology, entanglement molecular weight

Procedia PDF Downloads 151
4952 Analysis of Factors Affecting Public Awareness in Paying Zakat

Authors: Roikhan Mochamad Aziz

Abstract:

This study aims to analze the interdependence of several variables simultaneously in order to simplify the form of the relationship between some of the variables studied a number of factors less than the variable studied which means it can also describe the data structure of a research. Based 100 respondents from the public, such as the people of South Tangerang, this study used factor analysis tool. The results of this study indicate that the studied variables being formed into nine factors, namely faith factors, community factors, factors of social care, confidence factor, factor income, educational factors, self-satisfaction factors, factors work, and knowledge factor. Total variance of the 9 factors is 67,30% means that all nine of these factors are factors that can contribute too paying zakat of muzakki consciousness of 67,30% while the remaining 32,70% is supported by other factors outside the 9 factors.

Keywords: zakat, analysis factor, faith, education, knowledge

Procedia PDF Downloads 272
4951 The Role of Gastric Decompression on Postoperative Nausea and Vomiting in Orthognathic Surgery

Authors: Minna Salim, James Brady

Abstract:

Postoperative nausea and pain (PONV) are adverse effects following surgical procedures. It is especially pronounced in patients undergoing orthognathic surgery, as their mouth is closed postoperatively using wires or rubber bands. Postoperative mouth closure increases the discomfort and risk of complications associated with nausea and vomiting. Many surgeons and institutions apply gastric decompression in hopes of aspirating stomach contents and, therefore, decreasing PONV incidence. This review observed that PONV incidence was not affected by gastric decompression overall. However, the effect of gastric decompression on PONV in orthognathic surgery was variable. This paper aims to summarize the findings of gastric decompression on PONV and to determine the need for it in orthognathic surgery.

Keywords: gastric decompression, nasogastric tube, orthognathic surgery, postoperative nausea, vomiting

Procedia PDF Downloads 81