Search results for: machine learning tools and techniques
13628 Class-Size and Instructional Materials as Correlates of Pupils Learning and Academic Achievement in Primary School
Authors: Aanuoluwapo Olusola Adesanya, Adesina Joseph
Abstract:
This paper examined the class-size and instructional materials as correlates of pupils learning and academic achievement in primary school. The population of the study comprised 198 primary school pupils in three selected schools in Ogun State, Nigeria. Data were collected through questionnaire and were analysed with the use of multiple regression and ANOVA to analysed the correlation between class-size, instructional materials (independent variables) and learning achievement (dependent variable). The findings revealed that schools having an average class-size of 30 and below with use of instructional materials obtained better results than schools having more than 30 and above. The main score were higher in the school in schools having 30 and below than schools with 30 and above. It was therefore recommended that government, stakeholders and NGOs should provide more classrooms and supply of adequate instructional materials in all primary schools in the state to cater for small class-size.Keywords: class-size, instructional materials, learning, academic achievement
Procedia PDF Downloads 35013627 Effect of Cooperative Learning Strategy on Mathematics Achievement and Retention of Senior Secondary School Students of Different Ability Levels in Taraba State, Nigeria
Authors: Onesimus Bulus Shiaki
Abstract:
The study investigated the effect of cooperative learning strategy on mathematics achievement and retention among senior secondary school students of different abilities in Taraba State Nigeria. Cooperative learning strategy could hopefully contribute to students’ achievement which will spur the teachers to develop strategies for better learning. The quasi-experimental of pretest, posttest and control group design was adopted in this study. A sample of one hundred and sixty-four (164) Senior Secondary Two (SS2) students were selected from a population of twelve thousand, eight hundred and seventy-three (12,873) SS2 Students in Taraba State. Two schools with equivalent mean scores in the pre-test were randomly assigned to experimental and control groups. The experimental group students were stratified according to ability levels of low, medium and high. The experimental group was guided by the research assistants using the cooperative learning instructional package. After six weeks post-test was administered to the two groups while the retention test was administered two weeks after the post-test. The researcher developed a 50-item Mathematics Achievement Test (MAT) which was validated by experts obtaining the reliability coefficient of 0.87. Mean scores and standard deviations were used to answer the research questions while the Analysis of Co-variance (ANCOVA) was used to test the hypotheses. Major findings from the statistical analysis showed that cooperative learning strategy has a significant effect on the mean achievement of students as well as retention among students of high, medium and low ability in mathematics. However, cooperative learning strategy has no effect on the interaction of ability level and retention. Based on the results obtained, it was therefore recommended that the adoption of the use of cooperative learning strategy in the teaching and learning of mathematics in senior secondary schools be initiated, maintained and sustained for the benefit of senior secondary school students in Taraba State. Periodic Government sponsored in-service training in form of long vacation training programme, workshops, conferences and seminars on the nature, scope, and use of cooperative learning strategy should be organized for senior secondary school mathematics teachers in Taraba state.Keywords: ability level, cooperative learning, mathematics achievement, retention
Procedia PDF Downloads 16113626 Effective Student Engaging Strategies to Enhance Academic Learning in Middle Eastern Classrooms: An Action Research Approach
Authors: Anjum Afrooze
Abstract:
The curriculum at General Sciences department in Prince Sultan University includes ‘Physical science’ for Computer Science, Information Technology and Business courses. Students are apathetic towards Physical Science and question, as to, ‘How this course is related to their majors?’ English is not a native language for the students and also for many instructors. More than sixty percent of the students come from institutions where English is not the medium of instruction, which makes student learning and academic achievement challenging. After observing the less enthusiastic student cohort for two consecutive semesters, the instructor was keen to find effective strategies to enhance learning and further encourage deep learning by engaging students in different tasks to empower them with necessary skills and motivate them. This study is participatory action research, in which instructor designs effective tasks to engage students in their learning. The study is conducted through two semesters with a total of 200 students. The effectiveness of this approach is studied using questionnaire at the end of each semester and teacher observation. Major outcomes of this study were overall improvement in students attitude towards science learning, enhancement of multiple skills like note taking, problem solving, language proficiency and also fortifying confidence. This process transformed instructor into engaging and reflecting practitioner. Also, these strategies were implemented by other instructors teaching the course and proved effective in opening a path to changes in related areas of the course curriculum. However, refinement in the strategies could be done based on student evaluation and instructors observation.Keywords: group activity, language proficiency, reasoning skills, science learning
Procedia PDF Downloads 14513625 Enhancing Sustainability Awareness through Social Learning Experiences on Campuses
Authors: Rashika Sharma
Abstract:
The campuses at tertiary institutes can act as a social environment for peer to peer connections. However, socialization is not the only aspect that campuses provide. The campus can act as a learning environment that has often been termed as the campus curriculum. Many tertiary institutes have taken steps to make their campus a ‘green campus’ whereby initiatives have been taken to reduce their impact on the environment. However, as visible as these initiatives are, it is debatable whether these have any effect on students’ and their understanding of sustainable campus operations. Therefore, research was conducted to evaluate the effectiveness of sustainable campus operations in raising students’ awareness of sustainability. Students at two vocational institutes participated in this interpretive research with data collected through surveys and focus groups. The findings indicated that majority of vocational education students remained oblivious of sustainability initiatives on campuses.Keywords: campus learning, education for sustainability, social learning, vocational education
Procedia PDF Downloads 28313624 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti
Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms
Abstract:
Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing
Procedia PDF Downloads 12513623 Improving Performance and Progression of Novice Programmers: Factors Considerations
Authors: Hala Shaari, Nuredin Ahmed
Abstract:
Teaching computer programming is recognized to be difficult and a real challenge. The biggest problem faced by novice programmers is their lack of understanding of basic programming concepts. A visualized learning tool was developed and used by volunteered first-year students for two semesters. The purposes of this paper are firstly, to emphasize factors which directly affect the performance of our students negatively. Secondly, to examine whether the proposed tool would improve their performance and learning progression. The results of adopting this tool were conducted using a pre-survey and post-survey questionnaire. As a result, students who used the learning tool showed better performance in their programming subject.Keywords: factors, novice, programming, visualization
Procedia PDF Downloads 36313622 A Deep Learning Approach for Optimum Shape Design
Authors: Cahit Perkgöz
Abstract:
Artificial intelligence has brought new approaches to solving problems in almost every research field in recent years. One of these topics is shape design and optimization, which has the possibility of applications in many fields, such as nanotechnology and electronics. A properly constructed cost function can eliminate the need for labeled data required in deep learning and create desired shapes. In this work, the network parameters are optimized differentially, which differs from traditional approaches. The methods are tested for physics-related structures and successful results are obtained. This work is supported by Eskişehir Technical University scientific research project (Project No: 20ADP090)Keywords: deep learning, shape design, optimization, artificial intelligence
Procedia PDF Downloads 15313621 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation
Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong
Abstract:
Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation
Procedia PDF Downloads 19013620 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting
Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi
Abstract:
An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power
Procedia PDF Downloads 41113619 Neighborhood Sustainability Assessment in the New Developments of Tabriz: A Case Study for Roshdieh
Authors: Melisa Yazdan Panahi
Abstract:
Since, today in most countries around the world much attention is paid to planning the smallest unit in the city i.e. the residential neighborhoods to achieve sustainable urban development goals, a variety of assessment tools have been developed to assess and monitor the sustainability of new developments. One of the most reliable and widely used assessment tools is LEED-ND rating system. This paper whit the aim of assessing sustainability level of Roshdieh neighborhood in Tabriz, has introduced this rating system and applied it in the study area. The results indicate that Roshdieh has the potential of achieving the standards of sustainable neighborhoods, but the present situation is far from the ideal point.Keywords: LEED-ND, sustainable neighborhood, new developments, Tabriz
Procedia PDF Downloads 39813618 Effect of Cost Control and Cost Reduction Techniques in Organizational Performance
Authors: Babatunde Akeem Lawal
Abstract:
In any organization, the primary aim is to maximize profit, but the major challenges facing them is the increase in cost of operation because of this there is increase in cost of production that could lead to inevitable cost control and cost reduction scheme which make it difficult for most organizations to operate at the cost efficient frontier. The study aims to critically examine and evaluate the application of cost control and cost reduction in organization performance and also to review budget as an effective tool of cost control and cost reduction. A descriptive survey research was adopted. A total number of 40 respondent retrieved were used for the study. The analysis of data collected was undertaken by applying appropriate statistical tools. Regression analysis was used to test the hypothesis with the use of SPSS. Based on the findings; it was evident that cost control has a positive impact on organizational performance and also the style of management has a positive impact on organizational performance.Keywords: organization, cost reduction, cost control, performance, budget, profit
Procedia PDF Downloads 60313617 The Effect of Artificial Intelligence on Decoration Designs
Authors: Ayed Mouris Gad Elsayed Khalil
Abstract:
This research focuses on historical techniques associated with the Lajevardin and Haft-Rangi production methods in tile production, with particular attention to identifying techniques for applying gold leaf to the surface of these historical glazed tiles. In this context, the history of the production of glazed, gilded and glazed Lajevardin ceramics from the Khwarizmanshahid and Mongol periods (11th to 13th centuries) was first evaluated in order to better understand the context and history of the methods of historical enameling. After a historical overview of glazed ceramic production techniques and the adoption of these techniques by civilizations, we focused on the niche production methods of glazes and Lajevardin glazes, two categories of decoration commonly found on tiles. A general method for classifying the different types of gold tiles was then introduced, applicable to tiles from to the Safavid period (16th-17th centuries). These categories include gold glazed Lajevardina tiles, haft rangi gold tiles, gold glazed monolithic tiles and gold mosaic tiles.Keywords: ethnicity, multi-cultural, jewelry, craft techniquemycenaean, ceramic, provenance, pigmentAmorium, glass bracelets, image, Byzantine empire
Procedia PDF Downloads 5613616 Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity
Authors: Mridul Sharma, Praveen Saroha
Abstract:
In today's world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF).Keywords: brain derived neurotrophic factor, brain plasticity, diet, exercise
Procedia PDF Downloads 14113615 Women Learning in Creative Project Based Learning of Engineering Education
Authors: Jui Hsuan Hung, Jeng Yi Tzeng
Abstract:
Engineering education in the higher education is always male dominated. Therefore, women learning in this environment is an important research topic for feminists, gender researchers and engineering education researchers, especially in the era of gender mainstreaming. The research topics are from the dialectical discussion of feminism and science development history, gender issues of science education, to the subject choice of female students. These researches enrich the field of gender study in engineering education but lack of describing the detailed images of women in engineering education, including their learning, obstacles, needs or feelings. Otherwise, in order to keep up with the industrial trends of emphasizing group collaboration, engineering education turns from traditional lecture to creative group inquiry pedagogy in recent years. Creative project based learning is one of the creative group inquiry pedagogy which the engineering education in higher education adopts often, and it is seen as a gender-inclusive pedagogy in engineering education. Therefore, in order to understand the real situation of women learning in engineering education, this study took place in a course (Introduction to Engineering) offered by the school of engineering of a university in Taiwan. This course is designed for freshman students to establish basic understanding engineering from four departments (Chemical Engineering, Power Mechanical Engineering, Materials Science, Industrial Engineering and Engineering Management). One section of this course is to build a Hydraulic Robot designed by the Department of Power Mechanical Engineering. 321 students in the school of engineering took this course and all had the reflection questionnaire. These students are divided into groups of 5 members to work on this project. The videos of process of discussion of five volunteered groups with different gender composition are analyzed, and six women of these five groups are interviewed. We are still on the process of coding and analyzing videos and the qualitative data, but several tentative findings have already emerged. (1) The activity models of groups of both genders are gender segregation, and not like women; men never be the ‘assistants’. (2) The culture of the group is developed by the major gender, but men always dominate the process of practice in all kinds of gender composition groups. (3) Project based learning is supposed to be a gender-inclusive learning model in creative engineering education, but communication obstacles between men and women make it less women friendly. (4) Gender identity, not professional identity, is adopted by these women while they interact with men in their groups. (5) Gender composition and project-based learning pedagogy are not the key factors for women learning in engineering education, but the gender conscience awareness is.Keywords: engineering education, gender education, creative project based learning, women learning
Procedia PDF Downloads 31313614 Learning Communities and Collaborative Reflection for Teaching Improvement
Authors: Mariana Paz Sajon, Paula Cecilia Primogerio, Mariana Albarracin
Abstract:
This study recovers an experience of teacher training carried out in an Undergraduate Business School from a private university in Buenos Aires, Argentina. The purpose of the project was to provide teachers with an opportunity to reflect on their teaching practices at the university. The aim of the study is to systematize lessons and challenges that emerge from this teacher training experience. A group of teachers who showed a willingness to learn teaching abilities was selected to work. They completed a formative journey working in learning communities starting from the immersion in different aspects of teaching and learning, class observations, and an individual and collaborative reflection exercise in a systematic way among colleagues. In this study, the productions of the eight teachers who are members of the learning communities are analyzed, framed in an e-portfolio that they prepared during the training journey. The analysis shows that after the process of shared reflection, traits related to powerful teaching and meaningful learning have appeared in the classes. For their part, teachers reflect having reached an awareness of their own practices, identifying strengths and opportunities for improvement, and the experience of sharing their own way and knowing the successes and failures of others was valued. It is an educational journey of pedagogical transformation of the teachers, which is infrequent in business education, which could lead to a change in teaching practices for the entire Business School. The present study involves theoretical and pedagogic aspects of education in a business school in Argentina and its flow-on implications for the workplace that may be transferred to other educational contexts.Keywords: Argentina, learning community, meaningful learning, powerful teaching, reflective practice
Procedia PDF Downloads 22413613 Modern Pedagogy Techniques for DC Motor Speed Control
Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal
Abstract:
Based on a survey conducted for second and third year students of the electrical engineering department at Maharishi Markandeshwar University, India, it was found that around 92% of students felt that it would be better to introduce a virtual environment for laboratory experiments. Hence, a need was felt to perform modern pedagogy techniques for students which consist of a virtual environment using MATLAB/Simulink. In this paper, a virtual environment for the speed control of a DC motor is performed using MATLAB/Simulink. The various speed control methods for the DC motor include the field resistance control method and armature voltage control method. The performance analysis of the DC motor is hence analyzed.Keywords: DC Motor, field control, pedagogy techniques, speed control, virtual environment, voltage control
Procedia PDF Downloads 44213612 Universal Design for Learning: Its Impact for Enhanced Performance in General Psychology
Authors: Jose Gay D. Gallego
Abstract:
This study examined the learning performance in General Psychology of 297 freshmen of the CPSU-Main through the Pre and Post Tests. The instructional intervention via Universal Design for Learning (UDL) was applied to 33% (97 out of 297) of these freshmen as the Treatment Group while the 67% (200) belonged to the Control Group for traditional instructions. Statistical inferences utilized one-way Analysis of Variance for mean differences; Pearson R Correlations for bivariate relationships, and; Factor Analysis for significant components that contributed most to the Universal Design for Learning instructions. Findings showed very high levels of students’ acquired UDL skills. Results in the pre test in General Psychology, respectively, were low and average when grouped into low and high achievers. There was no significant mean difference in the acquired nine UDL components when categorized into seven colleges to generalize that between colleges they were on the same very high levels. Significant differences were found in three test areas in General Psychology in eight colleges whose students in College of teacher education taking the lead in the learning performance. Significant differences were also traced in the post test in favor of the students in the treatment group. This proved that UDL really impacted the learning performance of the low achieving students. Significant correlations were revealed between the components of UDL and General Psychology. There were twenty four significant itemized components that contributed most to UDL instructional interventions. Implications were emphasized to maximizing the principles of UDL with the contention of thoughtful planning related to the four curricular pillars of UDL: (a) instructional goals, (b) instructional delivery methods, (c) instructional materials, and (d) student assessments.Keywords: universal design for learning, enhanced performance, teaching innovation, technology in education, social science area
Procedia PDF Downloads 27713611 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction
Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter
Abstract:
Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a real-time simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three Velmex XSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.Keywords: surgical robot, haptic feedback, MATLAB, strain gage, simulink
Procedia PDF Downloads 53413610 Absorbed Dose Measurements for Teletherapy Prediction of Superficial Dose Using Halcyon Linear Accelerator
Authors: Raymond Limen Njinga, Adeneye Samuel Olaolu, Akinyode Ojumoola Ajimo
Abstract:
Introduction: Measurement of entrance dose and dose at different depths is essential to avoid overdose and underdose of patients. The aim of this study is to verify the variation in the absorbed dose using a water-equivalent material. Materials and Methods: The plastic phantom was arranged on the couch of the halcyon linear accelerator by Varian, with the farmer ionization chamber inserted and connected to the electrometer. The image of the setup was taken using the High-Quality Single 1280x1280x16 higher on the service mode to check the alignment with the isocenter. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was done to check the beam quality of the machine at a field size of 10 cm x 10 cm. The calibration was done using SAD type set-up at a depth of 5 cm. This process was repeated for ten consecutive weeks, and the values were recorded. Results: The results of the beam output for the teletherapy machine were satisfactory and accepted in comparison with the commissioned measurement of 0.62. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was reasonable with respect to the beam quality of the machine at a field size of 10 cm x 10 cm. Conclusion: The results of the beam quality and the absorbed dose rate showed a good consistency over the period of ten weeks with the commissioned measurement value.Keywords: linear accelerator, absorbed dose rate, isocenter, phantom, ionization chamber
Procedia PDF Downloads 6213609 Reliability Enhancement by Parameter Design in Ferrite Magnet Process
Abstract:
Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design.Keywords: ferrite magnet, crack, reliability, process optimization, Taguchi method
Procedia PDF Downloads 51713608 Vocational Education: A Synergy for Skills Acquisition and Global Learning in Colleges of Education in Ogun State, Nigeria
Authors: Raimi, Kehinde Olawuyi, Omoare Ayodeji Motunrayo
Abstract:
In the last two decades, there has been rising youth unemployment, restiveness, and social vices in Nigeria. The relevance of Vocational Education for skills acquisition, global learning, and national development to address these problems cannot be underestimated. Thus, the need to economically empower Nigerian youths to be able to develop the nation and meet up in the ever-changing global learning and economy led to the assessment of Vocational Education as Synergy for the Skills Acquisition and Global Learning in Ogun State, Nigeria. One hundred and twenty out of 1,500 students were randomly selected for this study. Data were obtained through a questionnaire and were analyzed with descriptive statistics and Chi-square. The results of the study showed that 59.2% of the respondents were between 20 – 24 years of age, 60.8% were male, and 65.8% had a keen interest in Vocational Education. Also, 90% of the respondents acquired skills in extension/advisory, 78.3% acquired skills in poultry production, and 69.1% acquired skills in fisheries/aquaculture. The major constraints to Vocational Education are inadequate resource personnel (χ² = 10.25, p = 0.02), inadequate training facilities (x̅ = 2.46) and unstable power supply (x̅ = 2.38). Results of Chi-square showed significance association between constraints and Skills Acquisition (χ² = 12.54, p = 0.00) at p < 0.05 level of significance. It was established that Vocational Education significantly contributed to students’ skills acquisition and global learning. This study, therefore, recommends that inadequate personnel should be looked into by the school authority in order not to over-stretch the available staff of the institution while the provision of alternative stable power supply (solar power) is also essential for effective teaching and learning process.Keywords: vocational education, skills acquisition, national development, global learning
Procedia PDF Downloads 12913607 The Role of Communicative Grammar in Cross-Cultural Learning Environment
Authors: Tonoyan Lusine
Abstract:
The Communicative Grammar (CG) of a language deals with semantics and pragmatics in the first place as communication is a process of generating speech. As it is well known people can communicate with the help of limited word expressions and grammatical means. As to non-verbal communication, both vocabulary and grammar are not essential at all. However, the development of the communicative competence lies in verbal, non-verbal, grammatical, socio-cultural and intercultural awareness. There are several important issues and environment management strategies related to effective communication that one might need to consider for a positive learning experience. International students bring a broad range of cultural perspectives to the learning environment, and this diversity has the capacity to improve interaction and to enrich the teaching/learning process. Intercultural setting implies creative and thought-provoking work with different cultural worldviews and international perspectives. It is worth mentioning that the use of Communicative Grammar models creates a profound background for the effective intercultural communication.Keywords: CG, cross-cultural communication, intercultural awareness, non-verbal behavior
Procedia PDF Downloads 39413606 Qualitative Data Summary of Piloted Observation Instrument for Designing Adaptations in Inclusive Settings
Authors: Rebecca Lynn
Abstract:
The successful inclusion of students with disabilities depends upon many factors, including the collaboration between general and special education teachers for meeting student learning goals as outlined in the Individualized Education Plan (IEP). However, Individualized Education Plans do not provide sufficient information on accommodations and modifications for the variety of general education contexts and content areas in which a student may participate. In addition, general and special education teachers lack observation skills and tools for gathering essential information about the strengths and needs of students with disabilities in relation to general education instruction and classrooms. More research and tools are needed for planning adaptations that increase access to content in general education classrooms. This paper will discuss the outcomes of a qualitative field-based study of a structured observation instrument used for gathering information on student strengths and needs in relation to social, academic and regulatory expectations during instruction in general education classrooms. The study explores the following questions: To what extent does the observation structure and instrument increase collaborative planning of adaptations in general education classrooms for students with disabilities? To what extent does the observation structure and instrument change pedagogical practices and collaboration in general education classrooms for fostering successful inclusion? A hypothesis of this study was that use of the instrument in the context of lessons and in collaborative debriefing would increase awareness and use of meaningful adaptations, and lead to universal design in the planning of instruction. A finding of the study is a shift from viewing students with disabilities as passive participants to a more pedagogical inclusion as teachers developed skills in observation and created content/context-specific adaptations for students with disabilities in the general education classroom.Keywords: adaptations, collaboration, inclusion, observations
Procedia PDF Downloads 12713605 The Efficacy of Open Educational Resources in Students’ Performance and Engagement
Authors: Huda Al-Shuaily, E. M. Lacap
Abstract:
Higher Education is one of the most essential fundamentals for the advancement and progress of a country. It demands to be as accessible as possible and as comprehensive as it can be reached. In this paper, we succeeded to expand the accessibility and delivery of higher education using an Open Educational Resources (OER), a freely accessible, openly licensed documents, and media for teaching and learning. This study creates a comparative design of student’s academic performance on the course Introduction to Database and student engagement to the virtual learning environment (VLE). The study was done in two successive semesters - one without using the OER and the other is using OER. In the study, we established that there is a significant increase in student’s engagement in VLE in the latter semester compared to the former. By using the latter semester’s data, we manage to show that the student’s engagement has a positive impact on students’ academic performance. Moreso, after clustering their academic performance, the impact is seen higher for students who are low performing. The results show that these engagements can be used to potentially predict the learning styles of the student with a high degree of precision.Keywords: EDM, learning analytics, moodle, OER, student-engagement
Procedia PDF Downloads 33913604 Using Integrative Assessment in Distance Learning: The Case of Department of Education - Navotas City
Authors: Meduranda Marco
Abstract:
This paper aimed to discuss the Integrative Assessment (IA) initiative of the Schools Division Office - Navotas City. The introduction provided a brief landscape analysis of the current state of education, the context of SDO Navotas, and the rationale for the administration of Integrative Assessment (IA) in schools. The IA methodology, procedure, and implementation activities were also shared. Feedback and reports on IA showed positive results as all schools in the Division were able to operationalize IA and consequently foster academic ease for learners and parents. Challenges met after compliance were also documented and strategies to continuously improve the Integrative Assessment process were proposed.Keywords: distance learning assessment, integrative assessment, academic ease, learning outcomes evaluation
Procedia PDF Downloads 14213603 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm
Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani
Abstract:
This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis
Procedia PDF Downloads 33613602 AI-Driven Strategies for Sustainable Electronics Repair: A Case Study in Energy Efficiency
Authors: Badiy Elmabrouk, Abdelhamid Boujarif, Zhiguo Zeng, Stephane Borrel, Robert Heidsieck
Abstract:
In an era where sustainability is paramount, this paper introduces a machine learning-driven testing protocol to accurately predict diode failures, merging reliability engineering with failure physics to enhance repair operations efficiency. Our approach refines the burn-in process, significantly curtailing its duration, which not only conserves energy but also elevates productivity and mitigates component wear. A case study from GE HealthCare’s repair center vividly demonstrates the method’s effectiveness, recording a high prediction of diode failures and a substantial decrease in energy consumption that translates to an annual reduction of 6.5 Tons of CO2 emissions. This advancement sets a benchmark for environmentally conscious practices in the electronics repair sector.Keywords: maintenance, burn-in, failure physics, reliability testing
Procedia PDF Downloads 6813601 Application of Lean Manufacturing in Brake Shoe Manufacturing Plant: A Case Study
Authors: Anees K. Ahamed, Aakash Kumar R. G., Raj M. Mohan
Abstract:
The main objective is to apply lean tools to identify and eliminate waste in and among the work stations so as to improve the process speed and quality. From the top seven wastes in the lean concept, we consider the movement of materials, defects, and inventory for the improvement since these cause the major impact on the performance measures. The layout was improved to reduce the movement of materials. It also quantifies the reduction in movement among the work stations. Value stream mapping has been used for identification of waste. Cause and effect diagram and 5W analysis are used to identify the reasons for defects and to provide the counter measures. Some cycle time reduction techniques also proposed to improve the productivity. Lean Audit check sheet was also used to identify the current position of the industry and to identify the gap to make the industry Lean.Keywords: cause and effect diagram, cycle time reduction, defects, lean, waste reduction
Procedia PDF Downloads 38513600 A New Approach to the Digital Implementation of Analog Controllers for a Power System Control
Authors: G. Shabib, Esam H. Abd-Elhameed, G. Magdy
Abstract:
In this paper, a comparison of discrete time PID, PSS controllers is presented through small signal stability of power system comprising of one machine connected to infinite bus system. This comparison achieved by using a new approach of discretization which converts the S-domain model of analog controllers to a Z-domain model to enhance the damping of a single machine power system. The new method utilizes the Plant Input Mapping (PIM) algorithm. The proposed algorithm is stable for any sampling rate, as well as it takes the closed loop characteristic into consideration. On the other hand, the traditional discretization methods such as Tustin’s method is produce satisfactory results only; when the sampling period is sufficiently low.Keywords: PSS, power system stabilizer PID, proportional-integral-derivative PIM, plant input mapping
Procedia PDF Downloads 50513599 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System
Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou
Abstract:
The paper discusses the main aspects involved in the development of a supply chain management system using the newly developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.Keywords: demand forecasting, machine learning, risk management, supply chain design
Procedia PDF Downloads 97