Search results for: distributed sensor system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19798

Search results for: distributed sensor system

16498 Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems

Authors: Shahrokh Barati

Abstract:

In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly.

Keywords: polynomial fuzzy, AIDS, nonlinear AIDS model, fuzzy control systems

Procedia PDF Downloads 468
16497 Comparative Study of Conventional and Satellite Based Agriculture Information System

Authors: Rafia Hassan, Ali Rizwan, Sadaf Farhan, Bushra Sabir

Abstract:

The purpose of this study is to compare the conventional crop monitoring system with the satellite based crop monitoring system in Pakistan. This study is conducted for SUPARCO (Space and Upper Atmosphere Research Commission). The study focused on the wheat crop, as it is the main cash crop of Pakistan and province of Punjab. This study will answer the following: Which system is better in terms of cost, time and man power? The man power calculated for Punjab CRS is: 1,418 personnel and for SUPARCO: 26 personnel. The total cost calculated for SUPARCO is almost 13.35 million and CRS is 47.705 million. The man hours calculated for CRS (Crop Reporting Service) are 1,543,200 hrs (136 days) and man hours for SUPARCO are 8, 320hrs (40 days). It means that SUPARCO workers finish their work 96 days earlier than CRS workers. The results show that the satellite based crop monitoring system is efficient in terms of manpower, cost and time as compared to the conventional system, and also generates early crop forecasts and estimations. The research instruments used included: Interviews, physical visits, group discussions, questionnaires, study of reports and work flows. A total of 93 employees were selected using Yamane’s formula for data collection, which is done with the help questionnaires and interviews. Comparative graphing is used for the analysis of data to formulate the results of the research. The research findings also demonstrate that although conventional methods have a strong impact still in Pakistan (for crop monitoring) but it is the time to bring a change through technology, so that our agriculture will also be developed along modern lines.

Keywords: area frame, crop reporting service, CRS, sample frame, SRS/GIS, satellite remote sensing/ geographic information system

Procedia PDF Downloads 291
16496 The Integration of Geographical Information Systems and Capacitated Vehicle Routing Problem with Simulated Demand for Humanitarian Logistics in Tsunami-Prone Area: A Case Study of Phuket, Thailand

Authors: Kiatkulchai Jitt-Aer, Graham Wall, Dylan Jones

Abstract:

As a result of the Indian Ocean tsunami in 2004, logistics applied to disaster relief operations has received great attention in the humanitarian sector. As learned from such disaster, preparing and responding to the aspect of delivering essential items from distribution centres to affected locations are of the importance for relief operations as the nature of disasters is uncertain especially in suffering figures, which are normally proportional to quantity of supplies. Thus, this study proposes a spatial decision support system (SDSS) for humanitarian logistics by integrating Geographical Information Systems (GIS) and the capacitated vehicle routing problem (CVRP). The GIS is utilised for acquiring demands simulated from the tsunami flooding model of the affected area in the first stage, and visualising the simulation solutions in the last stage. While CVRP in this study encompasses designing the relief routes of a set of homogeneous vehicles from a relief centre to a set of geographically distributed evacuation points in which their demands are estimated by using both simulation and randomisation techniques. The CVRP is modeled as a multi-objective optimization problem where both total travelling distance and total transport resources used are minimized, while demand-cost efficiency of each route is maximized in order to determine route priority. As the model is a NP-hard combinatorial optimization problem, the Clarke and Wright Saving heuristics is proposed to solve the problem for the near-optimal solutions. The real-case instances in the coastal area of Phuket, Thailand are studied to perform the SDSS that allows a decision maker to visually analyse the simulation scenarios through different decision factors.

Keywords: demand simulation, humanitarian logistics, geographical information systems, relief operations, capacitated vehicle routing problem

Procedia PDF Downloads 248
16495 Study of Transport Phenomena in Photonic Crystals with Correlated Disorder

Authors: Samira Cherid, Samir Bentata, Feyza Zahira Meghoufel, Yamina Sefir, Sabria Terkhi, Fatima Bendahma, Bouabdellah Bouadjemi, Ali Zitouni

Abstract:

Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in random dimer model (RDM) on transmission properties of light in one dimension photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers appears in pairs. It is shown that the one-dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.

Keywords: photonic crystals, disorder, correlation, transmission

Procedia PDF Downloads 477
16494 Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids

Authors: Sameh Frikha, Mohamed Salah Abid

Abstract:

We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture.

Keywords: coefficient of performance, environment friendly zeotropic mixture, integrated cascade, ultra low temperature, vapor compression refrigeration cycles

Procedia PDF Downloads 261
16493 Development and Evaluation of Simvastatin Based Self Nanoemulsifying Drug Delivery System (SNEDDS) for Treatment of Alzheimer's Disease

Authors: Hardeep

Abstract:

The aim of this research work to improve the solubility and bioavailability of Simvastatin using a self nanoemulsifying drug delivery system (SNEDDS). Self emulsifying property of various oils including essential oils was evaluated with suitable surfactants and co-surfactants. Validation of a method for accuracy, repeatability, Interday and intraday precision, ruggedness, and robustness were within acceptable limits. The liquid SNEDDS was prepared and optimized using a ternary phase diagram, thermodynamic, centrifugation and cloud point studies. The globule size of optimized formulations was less than 200 nm which could be an acceptable nanoemulsion size range. The mean droplet size, drug loading, PDI and zeta potential were found to be 141.0 nm, 92.22%, 0.23 and -10.13 mV and 153.5nm, 93.89 % ,0.41 and -11.7 mV and 164.26 nm, 95.26% , 0.41 and -10.66mV respectively.

Keywords: simvastatin, self nanoemulsifying drug delivery system, solubility, bioavailability

Procedia PDF Downloads 201
16492 A Workable Mechanism to Support Students Who Are at Risk

Authors: Mohamed Chabi

Abstract:

The project of helping students at risk started at the Math department in the new foundation program at Qatar University in the fall 2012 semester. The purpose was to find ways to help students who were struggling with their math courses Elementary algebra or Precalculus course due to many factors. Department had formed the Committee “students at Risk” at the start of 12-13 to assist struggling students in our math courses to get their studies on track. A mechanism was developed to support students who are at risk using a developed E-Monitoring system. E-Monitoring system was developed to manage automatically all transactions relevant to the students’ attendance, Students ‘‘warning Students’’ grading, etc. E-Monitoring System produce various statistics such as, Overall course statistics, Performance, Students at Risk… to help department to develop a higher quality of education in the Foundation Program at Math department. The mechanism was studies and evaluated. Whatever the cause, the sooner we identify students who are not performing well academically, the sooner we can provide, or direct them to the resources that are available to them. In this paper, we outline the mechanism and its effect on students’ performance. The collected data from various exams shows that students had benefited from the mechanism.

Keywords: students at risk, e-monitoring system, warning students, performance

Procedia PDF Downloads 488
16491 The Adaptive Properties of the Strategic Assurance System of the National Economy Sustainability to the Economic Security Threats

Authors: Badri Gechbaia

Abstract:

Adaptive management as a fundamental element of the concept of the assurance of economy`s sustainability to the economic security of the system-synergetic type has been considered. It has been proved that the adaptive sustainable development is a transitional phase from the extensive one and later on from the rapid growth to the sustainable development. It has been determined that the adaptive system of the strategic assurance of the sustainability of the economy to the economic security threats is formed on the principles of the domination in its complex of the subsystems with weightier adaptive characteristics that negate the destructive influence of external and internal environmental factors on the sustainability of the national economy.

Keywords: adaptive management, adaptive properties, economic security, strategic assurance

Procedia PDF Downloads 507
16490 Optimal Peer-to-Peer On-Orbit Refueling Mission Planning with Complex Constraints

Authors: Jing Yu, Hongyang Liu, Dong Hao

Abstract:

On-Orbit Refueling is of great significance in extending space crafts' lifetime. The problem of minimum-fuel, time-fixed, Peer-to-Peer On-Orbit Refueling mission planning is addressed here with the particular aim of assigning fuel-insufficient satellites to the fuel-sufficient satellites and optimizing each rendezvous trajectory. Constraints including perturbation, communication link, sun illumination, hold points for different rendezvous phases, and sensor switching are considered. A planning model has established as well as a two-level solution method. The upper level deals with target assignment based on fuel equilibrium criterion, while the lower level solves constrained trajectory optimization using special maneuver strategies. Simulations show that the developed method could effectively resolve the Peer-to-Peer On-Orbit Refueling mission planning problem and deal with complex constraints.

Keywords: mission planning, orbital rendezvous, on-orbit refueling, space mission

Procedia PDF Downloads 226
16489 Route Planning for Optimization Approach PSO_GA Sharing System (Scooter Sharing-Public Transportation) with Hybrid Optimization Approach PSO_GA

Authors: Mohammad Ali Farrokhpour

Abstract:

In the current decade and sustainable transportation systems, scooter sharing has attracted widespread attention as an environmentally-friendly means of public transportation which can help develop public transportation. The combination of scooters and subway in the area of sustainable transportation systems can provide a great many opportunities for developing access to public transportation. Of the challenges which have arisen and initiated discussions of interest about the implementation of a scooter-subway system to replace personal vehicles is the issue of routing in the aforementioned system. This has been chosen as the main subject of the present paper. Thus, the present paper provides an account for routing in this system. Because the issue of routing includes multiple factors such as time, costs, traffic, green spaces, etc., the above-mentioned problem is considered to be a multi-objective NP-hard optimization problem. For this purpose, the hybrid optimization approach of PSO-GA has been put forward in the present paper for the provided answers to be of higher accuracy and validity than those of normal optimization methods. The results obtained from modeling and problem solving for the case study in the MATLAB software are indicative of the efficiency and desirability of the model and the proposed approach for solving the model

Keywords: route planning, scooter sharing, public transportation, sharing system

Procedia PDF Downloads 84
16488 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan

Abstract:

The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Keywords: optical soliton, soliton interaction, soliton switching, WDM

Procedia PDF Downloads 505
16487 Using Groundwater Modeling System to Create a 3-D Groundwater Flow and Solute Transport Model for a Semiarid Region: A Case Study of the Nadhour Saouaf Sisseb El Alem Aquifer, Central Tunisia

Authors: Emna Bahri Hammami, Zammouri Mounira, Tarhouni Jamila

Abstract:

The Nadhour Saouaf Sisseb El Alem (NSSA) system comprises some of the most intensively exploited aquifers in central Tunisia. Since the 1970s, the growth in economic productivity linked to intensive agriculture in this semiarid region has been sustained by increasing pumping rates of the system’s groundwater. Exploitation of these aquifers has increased rapidly, ultimately causing their depletion. With the aim to better understand the behavior of the aquifer system and to predict its evolution, the paper presents a finite difference model of the groundwater flow and solute transport. The model is based on the Groundwater Modeling System (GMS) and was calibrated using data from 1970 to 2010. Groundwater levels observed in 1970 were used for the steady-state calibration. Groundwater levels observed from 1971 to 2010 served to calibrate the transient state. The impact of pumping discharge on the evolution of groundwater levels was studied through three hypothetical pumping scenarios. The first two scenarios replicated the approximate drawdown in the aquifer heads (about 17 m in scenario 1 and 23 m in scenario 2 in the center of NSSA) following an increase in pumping rates by 30% and 50% from their current values, respectively. In addition, pumping was stopped in the third scenario, which could increase groundwater reserves by about 7 Mm3/year. NSSA groundwater reserves could be improved considerably if the pumping rules were taken seriously.

Keywords: pumping, depletion, groundwater modeling system GMS, Nadhour Saouaf

Procedia PDF Downloads 222
16486 A Development of Holonomic Mobile Robot Using Fuzzy Multi-Layered Controller

Authors: Seungwoo Kim, Yeongcheol Cho

Abstract:

In this paper, a holonomic mobile robot is designed in omnidirectional wheels and an adaptive fuzzy controller is presented for its precise trajectories. A kind of adaptive controller based on fuzzy multi-layered algorithm is used to solve the big parametric uncertainty of motor-controlled dynamic system of 3-wheels omnidirectional mobile robot. The system parameters such as a tracking force are so time-varying due to the kinematic structure of omnidirectional wheels. The fuzzy adaptive control method is able to solve the problems of classical adaptive controller and conventional fuzzy adaptive controllers. The basic idea of new adaptive control scheme is that an adaptive controller can be constructed with parallel combination of robust controllers. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good performance of a holonomic mobile robot is confirmed through live tests of the tracking control task.

Keywords: fuzzy adaptive control, fuzzy multi-layered controller, holonomic mobile robot, omnidirectional wheels, robustness and stability.

Procedia PDF Downloads 359
16485 Value Engineering and Its Impact on Drainage Design Optimization for Penang International Airport Expansion

Authors: R.M. Asyraf, A. Norazah, S.M. Khairuddin, B. Noraziah

Abstract:

Designing a system at present requires a vital, challenging task; to ensure the design philosophy is maintained in economical ways. This paper perceived the value engineering (VE) approach applied in infrastructure works, namely stormwater drainage. This method is adopted in line as consultants have completed the detailed design. Function Analysis System Technique (FAST) diagram and VE job plan, information, function analysis, creative judgement, development, and recommendation phase are used to scrutinize the initial design of stormwater drainage. An estimated cost reduction using the VE approach of 2% over the initial proposal was obtained. This cost reduction is obtained from the design optimization of the drainage foundation and structural system, where the pile design and drainage base structure are optimized. Likewise, the design of the on-site detention tank (OSD) pump was revised and contribute to the cost reduction obtained. This case study shows that the VE approach can be an important tool in optimizing the design to reduce costs.

Keywords: value engineering, function analysis system technique, stormwater drainage, cost reduction

Procedia PDF Downloads 145
16484 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract:

This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.

Keywords: cascade control, multi-Loop control systems, multiobjective optimization, optimal control

Procedia PDF Downloads 153
16483 Designing Inventory System with Constrained by Reducing Ordering Cost, Lead Time and Lost Sale Rate and Considering Random Disturbance in Ordering Quantity

Authors: Arezoo Heidary, Abolfazl Mirzazadeh, Aref Gholami-Qadikolaei

Abstract:

In the business environment it is very common that a lot received may not be equal to quantity ordered. in this work, a random disturbance in a received quantity is considered. It is assumed a maximum allowable limit for storage space and inventory investment.The impact of lead time and ordering cost reductions once they act dependently is also investigated. Further, considering a mixture of back order and lost sales for allowable shortage system, the effect of investment on reducing lost sale rate is analyzed. For the proposed control system, a Lagrangian method is applied in order to solve the problem and an algorithmic procedure is utilized to achieve optimal solution with the global minimum expected cost. Finally, proves on concavity and convexity of the model in the decision variables are shown.

Keywords: stochastic inventory system, lead time, ordering cost, lost sale rate, inventory constraints, random disturbance

Procedia PDF Downloads 419
16482 Implementation of Model Reference Adaptive Control in Tuning of Controller Gains for Following-Vehicle System with Fixed Time Headway

Authors: Fatemeh Behbahani, Rubiyah Yusof

Abstract:

To avoid collision between following vehicles and vehicles in front, it is vital to keep appropriate, safe spacing between both vehicles over all speeds. Therefore, the following vehicle needs to have exact information regarding the speed and spacing between vehicles. This project is conducted to simulate the tuning of controller gain for a vehicle-following system through the selected control strategy, spacing control policy and fixed-time headway policy. In addition, the paper simulates and designs an adaptive gain controller for a road-vehicle-following system which uses information on the spacing, velocity and also acceleration of a preceding vehicle in the proposed one-vehicle look-ahead strategy. The mathematical model is implemented using Kirchhoff and Newton’s Laws, and stability simulated. The trial-error method was used to obtain a suitable value of controller gain. However, the adaptive-based controller system was able to optimize the gain value automatically. Model Reference Adaptive Control (MRAC) is designed and utilized and based on firstly the Gradient and secondly the Lyapunov approach. The Lyapunov approach considers stability. The Gradient approach was found to improve the best value of gain in the controller system with fixed-time headway.

Keywords: one-vehicle look-ahead, model reference adaptive, stability, tuning gain controller, MRAC

Procedia PDF Downloads 238
16481 The Need for Innovation Management in the Context of Integrated Management Systems

Authors: Adela Mariana Vadastreanu, Adrian Bot, Andreea Maier, Dorin Maier

Abstract:

This paper approaches the need for innovation management in the context of an existing integrated management system implemented in an organization. The road to success for companies in today’s economic environment is more demanding than ever and the capacity of adapting to the rapid changes is compensatory in order to resist on the market. The managers struggle, daily, with increasingly complex problems, caused by fierce competition in the market but also from the rising demands of customers. Innovation seems to be the solution for these problems. During the last decade almost all companies have been certificated according to various management systems, like quality management system, environmental management system, health and safety management system and others; furthermore many companies have implemented an integrated management system, by integrating two or more management systems. The problem rising today is how to integrate innovation in this integrated management systems. The challenge of the problem is that the development of an innovation management system is in the early phase. In this paper we have studied the possibility of integrating some of the innovation request in an existing management system, we have identify the innovation performance request and we proposed some recommendations regarding innovation management and its implementation as a part of an integrated management system. This paper lies down the bases for developing an model of integration management systems that include innovation as a main part of it. Organizations are becoming more aware of the importance of Integrated Management Systems (IMS). Integrating two or more management systems into an integrated management system can have much advantages.This paper examines various models of management systems integration in accordance with professional references ISO 9001, ISO 18001 and OHSAS 18001, highlighting strengths and weaknesses, creating a basis for future development of integrated management systems, and their involvement in various other processes within the organization, such as innovation management. The more and more demanding economic context emphasizes the awareness of the importance of innovation for organizations. This paper highlights the importance of the innovation for an organization and also gives some practical solution in order to improve the overall success of the business through a better approach of innovation. Various standards have been developed in order to certificate organizations that they respect the requirements. Applying an integrated standards model is shown to be a more effective way then applying the standards independently. The problem that arises is that in order to adopt the integrated version of standards there have to be made some changes at the organizational level. Every change that needs to be done has an effect on its activity, and in this sense the paper tries to deal with the changes needed for adopting an integrated management system and if those changes have an influence over the performance. After the analysis of the results, we can conclude that in order to improve the performance a necessary step is the implementation of innovation in the existing integrated management system.

Keywords: innovation, integrated management systems, innovation management, quality

Procedia PDF Downloads 315
16480 Optimal Design and Simulation of a Grid-Connected Photovoltaic (PV) Power System for an Electrical Department in University of Tripoli, Libya

Authors: Mustafa Al-Refai

Abstract:

This paper presents the optimal design and simulation of a grid-connected Photovoltaic (PV) system to supply electric power to meet the energy demand by Electrical Department in University of Tripoli Libya. Solar radiation is the key factor determining electricity produced by photovoltaic (PV) systems. This paper is designed to develop a novel method to calculate the solar photovoltaic generation capacity on the basis of Mean Global Solar Radiation data available for Tripoli Libya and finally develop a system design of possible plant capacity for the available roof area. MatLab/Simulink Programming tools and monthly average solar radiation data are used for this design and simulation. The specifications of equipments are provided based on the availability of the components in the market. Simulation results and analyses are presented to validate the proposed system configuration.

Keywords: photovoltaic (PV), grid, Simulink, solar energy, power plant, solar irradiation

Procedia PDF Downloads 301
16479 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm

Authors: Abdullah A. AlShaher

Abstract:

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.

Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm

Procedia PDF Downloads 145
16478 Application of Biomimetic Approach in Optimizing Buildings Heat Regulating System Using Parametric Design Tools to Achieve Thermal Comfort in Indoor Spaces in Hot Arid Regions

Authors: Aya M. H. Eissa, Ayman H. A. Mahmoud

Abstract:

When it comes to energy efficient thermal regulation system, natural systems do not only offer an inspirational source of innovative strategies but also sustainable and even regenerative ones. Using biomimetic design an energy efficient thermal regulation system can be developed. Although, conventional design process methods achieved fairly efficient systems, they still had limitations which can be overcome by using parametric design software. Accordingly, the main objective of this study is to apply and assess the efficiency of heat regulation strategies inspired from termite mounds in residential buildings’ thermal regulation system. Parametric design software is used to pave the way for further and more complex biomimetic design studies and implementations. A hot arid region is selected due to the deficiency of research in this climatic region. First, the analysis phase in which the stimuli, affecting, and the parameters, to be optimized, are set mimicking the natural system. Then, based on climatic data and using parametric design software Grasshopper, building form and openings height and areas are altered till settling on an optimized solution. Finally, an assessment of the efficiency of the optimized system, in comparison with a conventional system, is determined by firstly, indoors airflow and indoors temperature, by Ansys Fluent (CFD) simulation. Secondly by and total solar radiation falling on the building envelope, which was calculated using Ladybug, Grasshopper plugin. The results show an increase in the average indoor airflow speed from 0.5m/s to 1.5 m/s. Also, a slight decrease in temperature was noticed. And finally, the total radiation was decreased by 4%. In conclusion, despite the fact that applying a single bio-inspired heat regulation strategy might not be enough to achieve an optimum system, the concluded system is more energy efficient than the conventional ones as it aids achieving indoors comfort through passive techniques. Thus demonstrating the potential of parametric design software in biomimetic design.

Keywords: biomimicry, heat regulation systems, hot arid regions, parametric design, thermal comfort

Procedia PDF Downloads 294
16477 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 154
16476 Developing a Knowledge-Based Lean Six Sigma Model to Improve Healthcare Leadership Performance

Authors: Yousuf N. Al Khamisi, Eduardo M. Hernandez, Khurshid M. Khan

Abstract:

Purpose: This paper presents a model of a Knowledge-Based (KB) using Lean Six Sigma (L6σ) principles to enhance the performance of healthcare leadership. Design/methodology/approach: Using L6σ principles to enhance healthcare leaders’ performance needs a pre-assessment of the healthcare organisation’s capabilities. The model will be developed using a rule-based approach of KB system. Thus, KB system embeds Gauging Absence of Pre-requisite (GAP) for benchmarking and Analytical Hierarchy Process (AHP) for prioritization. A comprehensive literature review will be covered for the main contents of the model with a typical output of GAP analysis and AHP. Findings: The proposed KB system benchmarks the current position of healthcare leadership with the ideal benchmark one (resulting from extensive evaluation by the KB/GAP/AHP system of international leadership concepts in healthcare environments). Research limitations/implications: Future work includes validating the implementation model in healthcare environments around the world. Originality/value: This paper presents a novel application of a hybrid KB combines of GAP and AHP methodology. It implements L6σ principles to enhance healthcare performance. This approach assists healthcare leaders’ decision making to reach performance improvement against a best practice benchmark.

Keywords: Lean Six Sigma (L6σ), Knowledge-Based System (KBS), healthcare leadership, Gauge Absence Prerequisites (GAP), Analytical Hierarchy Process (AHP)

Procedia PDF Downloads 166
16475 Can Demyelinative Lesion Cause To Behaviora Change?

Authors: Arezou Hajhashemi, Karim Asgari, Masoud Etemadifar, Maryam Keyvani, Ali Hekmatnia

Abstract:

Multiple Sclerosis (MS) is one of the most prevalent demyelinating diseases in CNS. As in other chronic cerebral diseases, impairment in cognitive functioning and in memory is popular. Because of the inflammatory and demyelinating nature of the disease, the localization of plaques in different parts of the Prefrontal and Limbic System, may lead to memorial symptoms. This investigation was intended to study relationship between frequency of plaques and memorial symptoms arising from dysfunction limbic system and prefrontal of patients with MS. The sample was selected randomly from patients with MS with memory problem, who have been referred to Isfahan Multiple Sclerosis Society. Brain System Test and Memory Test was administered to the sample, and their MRI's were analyzed by specialist in order to indentify two different parts of plaques. The data was analyzed by SPSS. The results showed that there were significant relationship between MS plaques and prefrontal's dysfunction and memorial symptom related to prefrontal area; however, there were no significant relationship between MS plaques and limbic system's dysfunction and memorial symptoms related to limbic system area. The results of this study suggest that memorial symptoms due to injury regions of the brain have the most significant relationship to prefrontal. Better judgment about these results needs more studies in future.

Keywords: multiple sclerosis, magnetic image, brain injury, behavior disorder

Procedia PDF Downloads 514
16474 Digital Transformation: Actionable Insights to Optimize the Building Performance

Authors: Jovian Cheung, Thomas Kwok, Victor Wong

Abstract:

Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.

Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance

Procedia PDF Downloads 157
16473 American Sign Language Recognition System

Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba

Abstract:

The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.

Keywords: sign language, computer vision, vision transformer, VGG16, CNN

Procedia PDF Downloads 43
16472 Shock Isolation Performance of a Pre-Compressed Large Deformation Shock Isolator with Quasi-Zero-Stiffness Characteristic

Authors: Ji Chen, Chunhui Zhang, Fanming Zeng, Lei Zhang, Ying Li, Wei Zhang

Abstract:

Based on the synthetic principle of force, a pre-compressed nonlinear isolator with quasi-zero-stiffness (QZS) is developed for shock isolation of ship equipment. The proposed isolator consists of a vertical spring with positive stiffness and several lateral springs with negative stiffness. An analytical expression of vertical stiffness of the nonlinear isolator is derived and numerical simulation on the effect of the geometric design parameters is carried out. Besides, a pre-compressed QZS shock isolation system model is established. The stiffness characteristic of the system is studied and the effects of excitation amplitude and friction damping on shock isolation performance are discussed respectively. The research results show that in comparison with linear shock isolation system, the pre-compressed QZS shock isolation system could realize constant-force or approximately constant-force function and perform better anti-impact performance.

Keywords: quasi-zero-stiffness, constant-force, pre-compressed, large deformation, shock isolation, friction damping

Procedia PDF Downloads 697
16471 Design and Analysis of Semi-Active Isolation System in Low Frequency Excitation Region for Vehicle Seat to Reduce Discomfort

Authors: Andrea Tonoli, Nicola Amati, Maria Cavatorta, Reza Mirsanei, Behzad Mozaffari, Hamed Ahani, Akbar Karamihafshejani, Mohammad Ghazivakili, Mohammad Abuabiah

Abstract:

The vibrations transmitted to the drivers and passengers through vehicle seat seriously effect on the level of their attention, fatigue and physical health and reduce the comfort and efficiency of the occupants. Recently, some researchers have focused on vibrations at low excitation frequency(0.5-5 Hz) which are considered to be the main risk factors for lumbar part of the backbone but they were not applicable to A and B-segment cars regarding to the size and weight. A semi-active system with two symmetric negative stiffness structures (NSS) in parallel to a positive stiffness structure and actuators has been proposed to attenuate low frequency excitation and makes system flexible regarding to different weight of passengers which is applicable for A and B-Segment cars. Here, the 3 degree of freedom system is considered, dynamic equation clearly is presented, then simulated in MATLAB in order to analysis of performance of the system. The design procedure is derived so that the resonance peak of frequency–response curve shift to the left, the isolating range is increased and especially, the peak of the frequency–response curve is minimized. According to ISO standard different class of road profile as an input is applied to the system to evaluate the performance of the system. To evaluate comfort issues, we extract the RMS value of the vertical acceleration acting on the passenger's body. Then apply the band-pass filter, which takes into account the human sensitivity to acceleration. According to ISO, this weighted acceleration is lower than 0.315 m/s^2, so the ride is considered as comfortable.

Keywords: low frequency excitation, negative stiffness, seat vehicle, vibration isolation

Procedia PDF Downloads 436
16470 Cross Coupling Sliding Mode Synchronization Control of Dual-Driving Feed System

Authors: Hong Lu, Wei Fan, Yongquan Zhang, Junbo Zhang

Abstract:

A cross coupling sliding synchronization control strategy is proposed for the dual-driving feed system. This technology will minimize the position error oscillation and achieve the precise synchronization performance in the high speed and high precision drive system, especially some high speed and high precision machine. Moreover, a cross coupling compensation matrix is provided to offset the mismatched disturbance and the disturbance observer is established to eliminate the chattering phenomenon. Performance comparisons of proposed dual-driving cross coupling sliding mode control (CCSMC), normal cross coupling control (CCC) strategy with PID control, and electronic virtual main shaft control (EVMSC) strategy with SMC control are investigated by simulation and a dual-driving control system; the results show the effectiveness of the proposed control scheme.

Keywords: cross coupling matrix, dual motors, synchronization control, sliding mode control

Procedia PDF Downloads 365
16469 Dynamics of a Reaction-Diffusion Problems Modeling Two Predators Competing for a Prey

Authors: Owolabi Kolade Matthew

Abstract:

In this work, we investigate both the analytical and numerical studies of the dynamical model comprising of three species system. We analyze the linear stability of stationary solutions in the one-dimensional multi-system modeling the interactions of two predators and one prey species. The stability analysis has a lot of implications for understanding the various spatiotemporal and chaotic behaviors of the species in the spatial domain. The analysis results presented have established the possibility of the three interacting species to coexist harmoniously, this feat is achieved by combining the local and global analyzes to determine the global dynamics of the system. In the presence of diffusion, a viable exponential time differencing method is applied to multi-species nonlinear time-dependent partial differential equation to address the points and queries that may naturally arise. The scheme is described in detail, and justified by a number of computational experiments.

Keywords: asymptotically stable, coexistence, exponential time differencing method, global and local stability, predator-prey model, nonlinear, reaction-diffusion system

Procedia PDF Downloads 412