Search results for: boundary layer noise denoising
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4629

Search results for: boundary layer noise denoising

1359 Rice Bran Material Enrichment of Granulated Cane Brown Sugar to Increase Policosanol Contents

Authors: Monthana Weerawatanakorn, Hajime Tamaki, Yonathan Asikin, Koji Wada, Makoto Takahashi, Chi-Tang Ho, Min-Hsiung Pan

Abstract:

Rice bran and sugarcane are significant sources of wax containing policosanol (PC), the cholesterol-lowering nutraceutical available in the market. The processing of rice bran oil causes the loss of PC content into various waste products. Therefore, we hypothesise that defatted rice bran (DRB) as agricultural waste product and rice bran oil (RBO) retain a varying but significant amount of PC wax. Non-centrifugal cane sugar (NCS) or cane brown sugar has been consumed worldwide and possesses various health benefits. Since PC wax is mainly in the outer layer rinds of cane, PC contents of the granulated sugar are reduced due to the peeling step. The study aimed to increase PC contents of the granular brown sugar by adding wax extracted from DRB and RBO and to investigate the toxicity of the developed products. The results showed that the total PC contents including long chain aldehyde of products were increased to the maximum level of 147.97 mg/100 g and 40.14 mg/100 g for extracted wax and rice bran oil addition, respectively. PC content of RBO was found to be 96.93 mg/100 g. DRB is promising source of policosanol (6,044.7 mg/100 g). The 28-day toxicity evaluations of the developed sugar revealed no adverse effects on the liver, spleen or kidney.

Keywords: enrichment, sugarcane, policosanol, defatted rice bran, wax

Procedia PDF Downloads 372
1358 Paraffin/Expanded Perlite Composite as a Novel Form-Stable Phase Change Material for Latent Heat Energy Storage

Authors: Awni Alkhazaleh

Abstract:

Latent heat storage using Phase Change Materials (PCMs) has attracted growing attention recently in the renewable energy utilization and building energy efficiency. Paraffin (PA) of low melting temperature, which is close to human comfort temperature in the range of 24-28 °C has been considered to be used in building applications. A form-stable composite Paraffin/Expanded perlite (PA-EP) has been prepared by retaining PA into porous particles of EP. DSC (Differential scanning calorimeter) is used to measure the thermal properties of PA in the form-stable composite with/without building materials. TGA (Thermal gravimetric analysis) shows that the composite is thermally stable. SEM (Scanning electron microscope) demonstrates that the layer structure of the EP particles is uniformly absorbed by PA. The mechanical properties in flexural mode have been discussed. The thermal energy storage performance has been evaluated using a small test room (100 mm ×100 mm ×100 mm) with thickness 10 mm. The flammability test of modified sample has been discussed using a cone calorimeter. The results confirm that the form-stable composite PA has the function of reducing building energy consumption.

Keywords: flammability, latent heat storage, paraffin, plasterboard

Procedia PDF Downloads 219
1357 The Study of the Socio-Economic and Environmental Impact on the Semi-Arid Environments Using GIS in the Eastern Aurès, Algeria

Authors: Benmessaoud Hassen

Abstract:

We propose in this study to address the impact of socio-economic and environmental impact on the physical environment, especially their spatiotemporal dynamics in semi-arid and arid eastern Aurès. Including 11 municipalities, the study area spreads out over a relatively large surface area of about 60.000 ha. The hindsight is quite important and is determined by 03 days of analysis of environmental variation spread over thirty years (between 1987 and 2007). The multi-source data acquired in this context are integrated into a geographic information system (GIS).This allows, among other indices to calculate areas and classes for each thematic layer of the 4 layers previously defined by a method inspired MEDALUS (Mediterranean Desertification and Land Use).The database created is composed of four layers of information (population, livestock, farming and land use). His analysis in space and time has been supplemented by a validation of the ground truth. Once the database has corrected it used to develop the comprehensive map with the calculation of the index of socio-economic and environmental (ISCE). The map supports and the resulting information does not consist only of figures on the present situation but could be used to forecast future trends.

Keywords: impact of socio-economic and environmental, spatiotemporal dynamics, semi-arid environments, GIS, Eastern Aurès

Procedia PDF Downloads 325
1356 Evaluating the Potential of Microwave Treatment as a Rock Pre-Conditioning Method in Achieving a More Sustainable Mining

Authors: Adel Ahmadi Hosseini, Fatemeh Tavanaei, Alessandro Navarra, Ferri Hassani

Abstract:

Mining engineering, as a part of geoscience, must address modern concerns. Traditional mining methods incorporate drill and blast technologies, which are followed by different issues, including excessive noise, vibration, air pollution, and safety hazards. Over the past two decades, mining engineers have sought alternative solutions to move from drill and blast to continuous methods to prevent such issues and improve sustainability in mining. Among the suggested methods, microwave treatment has shown promising results by creating micro/macro cracks in the rock structure prior to the operations. This research utilizes an energy-based analysis methodology to evaluate the efficiency of the microwave treatment in improving mining operations. The data analysis shows that increasing the input microwave energy dosage intensifies the rock damage. However, this approach can decrease the energy efficiency of the method by more than 50% in some cases. In this study, rock samples were treated with three power levels (3 kW, 7 kW, and 12 kW) and two energy dosages (20 kWh/t and 50 kWh/t), resulting in six conditions. To evaluate the impact of microwave treatment on the geomechanical behavior of the rocks, Unconfined Compressive Strength (UCS) tests were conducted on the microwave-treated samples, yielding stress-strain curves. Using the stress-strain curves, the effect of the different powers and energy dosages of microwaves are discussed. This research shows the potential of using microwave treatment to lead the industry to more sustainable mining.

Keywords: microwave treatment, microwave energy dosage, sustainable mining, rock fragmentation

Procedia PDF Downloads 39
1355 Effects of Pressure and Temperature on the Extraction of Benzyl Isothiocyanate by Supercritical Fluids from Tropaeolum majus L. Leaves

Authors: Espinoza S. Clara, Gamarra Q. Flor, Marianela F. Ramos Quispe S. Miguel, Flores R. Omar

Abstract:

Tropaeolum majus L. is a native plant to South and Central America, used since ancient times by our ancestors to combat different diseases. Glucotropaeolonin is one of its main components, which when hydrolyzed, forms benzyl isothiocyanate (BIT) that promotes cellular apoptosis (programmed cell death in cancer cells). Therefore, the present research aims to evaluate the effect of the pressure and temperature of BIT extraction by supercritical CO2 from Tropaeolum majus L. The extraction was carried out in a supercritical fluid extractor equipment Speed SFE BASIC Brand: Poly science, the leaves of Tropaeolum majus L. were ground for one hour and lyophilized until obtaining a humidity of 6%. The extraction with supercritical CO2 was carried out with pressures of 200 bar and 300 bar, temperatures of 50°C, 60°C and 70°C, obtained by the conjugation of these six treatments. BIT was identified by thin layer chromatography using 98% BIT as the standard, and as the mobile phase hexane: dichloromethane (4:2). Subsequently, BIT quantification was performed by high performance liquid chromatography (HPLC). The highest yield of oleoresin by supercritical CO2 extraction was obtained pressure 300 bar and temperature at 60°C; and the higher content of BIT at pressure 200 bar and 70°C for 30 minutes to obtain 113.615 ± 0.03 mg BIT/100 g dry matter was obtained.

Keywords: solvent extraction, Tropaeolum majus L., supercritical fluids, benzyl isothiocyanate

Procedia PDF Downloads 438
1354 Examination of the Influence of the Near-Surface Geology on the Initial Infrastructural Development Using High-Resolution Seismic Method

Authors: Collins Chiemeke, Stephen Ibe, Godwin Onyedim

Abstract:

This research work on high-resolution seismic tomography method was carried out with the aim of investigating how near-surface geology influences the initial distribution of infrastructural development in an area like Otuoke and its environs. To achieve this objective, seismic tomography method was employed. The result revealed that the overburden (highly-weathered layer) thickness ranges from 27 m to 50 m within the survey area, with an average value of 37 m. The 3D surface analysis for the overburden thickness distribution within the survey area showed that the thickness of the overburden is more in regions with less infrastructural development, and least in built-up areas. The range of velocity distribution from the surface to within a depth of 5 m is about 660 m/s to 1160 m/s, with an average value of 946 m/s. The 3D surface analysis of the velocity distribution also revealed that the areas with large infrastructural development are characterized with large velocity values compared with the undeveloped regions that has average low-velocity values. Hence, one can conclusively say that the initial settlement of Otuoke and its environs and the subsequent infrastructural development was influenced by the underlying near surface geology (rigid earth), among other factors.

Keywords: geology, seismic, infrastructural, near-surface

Procedia PDF Downloads 308
1353 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification

Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel

Abstract:

Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.

Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable

Procedia PDF Downloads 107
1352 Shoring System Selection for Deep Excavation

Authors: Faouzi Ahtchi-Ali, Marcus Vitiello

Abstract:

A study was conducted in the east region of the Middle East to assess the constructability of a shoring system for a 12-meter deep excavation. Several shoring systems were considered in this study including secant concrete piling, contiguous concrete piling, and sheet-piling. The excavation was carried out in a very dense sand with the groundwater level located at 3 meters below ground surface. The study included conducting a pilot test for each shoring system listed above. The secant concrete piling included overlapping concrete piles to a depth of 16 meters. Drilling method with full steel casing was utilized to install the concrete piles. The verticality of the piles was a concern for the overlap. The contiguous concrete piling required the installation of micro-piles to seal the gap between the concrete piles. This method revealed that the gap between the piles was not fully sealed as observed by the groundwater penetration to the excavation. The sheet-piling method required pre-drilling due to the high blow count of the penetrated layer of saturated sand. This study concluded that the sheet-piling method with pre-drilling was the most cost effective and recommended a method for the shoring system.

Keywords: excavation, shoring system, middle east, Drilling method

Procedia PDF Downloads 468
1351 The Study of X- Bracing on Limit State Behaviour of Buckling Restrained Brace (BRB) in Steel Frames Using Pushover Analysis

Authors: Peyman Shadman Heidari, Hamid Bastani, Pouya Shadman Heidari

Abstract:

Nowadays, using energy dampers in structures is highly considered for the dissipation and absorption of earthquake energy. The main advantage of using energy damper is absorbing the earthquake energy in some sections apart from the structure frame. Among different types of dampers, hysteresis dampers are of special place because of low cost, high reliability and the lack of mechanical parts. In this paper, a special kind of hysteresis damper is considered under the name of buckling brace, which is provided with the aim of the study and investigation of cross braces in boundary behaviour of steel frames using nonlinear static analysis. In this paper, ninety three models of steel frames with cross braces of buckling type are processed with different bays and heights and their plasticity index, behaviour coefficient, distribution type and the number of plastic hinges formed were calculated. Finally, the mean behaviour coefficient was compared with standard behaviour coefficient of 2800 and the suitable mode of braces placing in improving nonlinear behaviour and suitable distribution of plastic hinges were presented. In addition, it was determined that for some placing mode of braces the behaviour coefficient will increase to 15 times of recommended 2800 standard coefficient and in some placing modes, the braced bays will show considerable difference with suggested 2800 standard behaviour coefficient relative to each other.

Keywords: buckling restrained brace, plasticity index, behaviour coefficient, resistance coefficient, plastic joints

Procedia PDF Downloads 513
1350 Identification of Paleogeomorphology at Kedulan Temple, Sleman, Yogyakarta

Authors: Virgina Claudia Latengke, Muhaammad Nur Arifin, Vanny Septia Sundari

Abstract:

Kedulan Temple is located in Dusun Kedulan, Sleman, Yogyakarta, Indonesia at coordinates S 07o 44’ 57’, E 110o 28’ 17’. Kedulan Temple is a trace of the relics of life in the 3 century AD. The Kedulan Temple including exhumed landforms, which the primordial landform is first surface topography, then buried under cover mass and exposed or re-inscribed. Recognized by the existence of ancient soil (paleosoil) and ancient objects. Seen from the type of soil that closes the temple, there are 13 layers of lava type, so it is estimated that the lava that buried the temple came from 13 times the eruption of Mount Merapi. The material that buries the base of this temple is the pyroclastic surge deposits in 3 layers, each of which is limited by a thin layer of paleosol, the sediments are 1445+/-50 yBP, 1175+/-50 yBP, and 1060+/-40 yBP. This temple is buried and dug again at 940+/-100 yBP. Furthermore, the temple affected by earthquake, so the floor and foundation becomes bumpy and most of the temple stone are thrown. The temple is left alone, until exposed to hot clouds at 1285 M (740+/-50yBP). Next, repeatedly buried lava in 4 periods, in 1587 M (360+/-50 yBP, 240+/-50 yBP, 200+/-50 yBP and unknown date). From studying this temple, can be known paleogeomorphology process that occurred in Yogyakarta, especially related to the volcanic activity of Mount Merapi. Until now, the water is still flowing around the temple so there is a fluvial process that began to take a role in the temple.

Keywords: Kedulan temple, paleogeomorphology, buried, mount Merapi, Yogyakarta

Procedia PDF Downloads 175
1349 Study of Self-Assembled Photocatalyst by Metal-Terpyridine Interactions in Polymer Network

Authors: Dong-Cheol Jeong, Jookyung Lee, Yu Hyeon Ro, Changsik Song

Abstract:

The design and synthesis of photo-active polymeric systems are important in regard to solar energy harvesting and utilization. In this study, we synthesized photo-active polymer, thin films, and polymer gel via iterative self-assembly using reversible metal-terpyridine (M-tpy) interactions. The photocurrent generated in the polymeric thin films with Zn(II) was much higher than those of other films. Apparent diffusion rate constant (kapp) was measured for the electron hopping process via potential-step chronoamperometry. As a result, the kapp for the polymeric thin films with Zn(II) was almost two times larger than those with other metal ions. We found that the anodic photocurrents increased with the inclusion of the multi-walled carbon nanotube (MWNT) layer. Inclusion of MWNTs can provide efficient electron transfer pathways. In addition, polymer gel based on interactions between terpyridine and metal ions was shown the photocatalytic activity. Interestingly, in the Mg-terpyridine gel, the reaction rate of benzylamine to imine photo-oxidative coupling was faster than Fe-terpyridine gel because the Mg-terpyridine gel has two steps electron transfer pathway but Fe-terpyridine gel has three steps electron transfer pathway.

Keywords: terpyridine, photocatalyst, self-assebly, metal-ligand

Procedia PDF Downloads 308
1348 Vibration Analysis of Stepped Nanoarches with Defects

Authors: Jaan Lellep, Shahid Mubasshar

Abstract:

A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.

Keywords: crack, nanoarches, natural frequency, step

Procedia PDF Downloads 128
1347 Digitalization of Functional Safety - Increasing Productivity while Reducing Risks

Authors: Michael Scott, Phil Jarrell

Abstract:

Digitalization seems to be everywhere these days. So if one was to digitalize Functional Safety, what would that require: • Ability to directly use data from intelligent P&IDs / process design in a PHA / LOPA • Ability to directly use data from intelligent P&IDs in the SIS Design to support SIL Verification Calculations, SRS, C&Es, Functional Test Plans • Ability to create Unit Operation / SIF Libraries to radically reduce engineering manhours while ensuring consistency and improving quality of SIS designs • Ability to link data directly from a PHA / LOPA to SIS Designs • Ability to leverage reliability models and SRS details from SIS Designs to automatically program the Safety PLC • Ability to leverage SIS Test Plans to automatically create Safety PLC application logic Test Plans for a virtual FAT • Ability to tie real-time data from Process Historians / CMMS to assumptions in the PHA / LOPA and SIS Designs to generate leading indicators on protection layer health • Ability to flag SIS bad actors for proactive corrective actions prior to a near miss or loss of containment event What if I told you all of this was available today? This paper will highlight how the digital revolution has revolutionized the way Safety Instrumented Systems are designed, configured, operated and maintained.

Keywords: IEC 61511, safety instrumented systems, functional safety, digitalization, IIoT

Procedia PDF Downloads 181
1346 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures

Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy

Abstract:

The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.

Keywords: pulse heating, zirconium carbide, high temperatures, melting

Procedia PDF Downloads 323
1345 Diffusive Transport of VOCs Through Composite Liners

Authors: Christina Jery, R. K. Anjana, D. N. Arnepalli, R. Sobha

Abstract:

Modern landfills employ a composite liner consisting of a geomembrane overlying a compacted clay liner (CCL) or a geosynthetic clay liner (GCL) as a barrier system. The primary function of a barrier system is to control the contaminant transport from the leachate (dissolved phase) and landfill gas (vapour phase) out of the landfill thereby minimizing the environmental impact. This study is undertaken to investigate the diffusive migration of VOCs through composite liners. VOCs are known hazardous air pollutants were often existing in both the vapour phase and dissolved phase. These compounds are known to diffuse readily through the polymeric geomembranes. The objective of the research is to develop a comprehensive data set of diffusive parameters involved in the diffusion of VOCs in the composite liner (1.5 mm HDPE geomembrane overlying a 30mm compacted clay layer). For this purpose, the study aims to develop a new experimental setup for determining the diffusion characteristics. The key parameters of diffusion (partitioning, diffusion and permeation coefficients) are examined. The diffusion tests are carried out both in aqueous and vapor phase. Finally, an attempt is also made to study the effect of low temperature on the diffusion characteristics.

Keywords: diffusion, sorption, organic compounds, composite liners, geomembrane

Procedia PDF Downloads 366
1344 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations

Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik

Abstract:

The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.

Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor

Procedia PDF Downloads 174
1343 Hot-Dip Galvanizing as a Corrosion Protection System for Steel Hydraulic Structures

Authors: Farrokh Taherkhani, Thomas Pinger, Max Gündel

Abstract:

Corrosion and suitable corrosion protection systems are a significant factor in the consideration of life cycle costs for steel hydraulic structures. In addition to classic coating systems (for example, epoxy resin or polyurethane), zinc and its alloys offer effective and very durable corrosion protection for steels. As a protective layer, hot-dip galvanizing prevents the corrosive media from penetrating into the steel matrix and acts as a sacrificial anode, which corrodes in preference to steel. However, hot-dip galvanizing as a corrosion protection system has not yet been approved by the relevant authority, the Federal Waterways Engineering and Research Institute (BAW) in Germany. In order to make hot-dip galvanizing usable as a corrosion protection system for steel hydraulic structures in the future, different factors must be considered. These factors are (i) corrosion protection type, (ii) resistance to mechanical stress (i.e., abrasion resistance), (iii) combinability with cathodic corrosion protection, (iv) environmental effects, and (v) the crack formation and propagation during hot-dip galvanizing. In this work, hot-dip galvanizing as a corrosion protection system for steel hydraulic steel structures, as well as open questions, are discussed. This paper is based on initial long-term exposure tests with corrosion protection systems consisting of hot-dip galvanizing and duplex systems.

Keywords: steel hydraulic structure, hot-dip galvanizing, corrosion resistance, zinc coating, organic coating and duplex systems

Procedia PDF Downloads 44
1342 Microgravity, Hydrological and Metrological Monitoring of Shallow Ground Water Aquifer in Al-Ain, UAE

Authors: Serin Darwish, Hakim Saibi, Amir Gabr

Abstract:

The United Arab Emirates (UAE) is situated within an arid zone where the climate is arid and the recharge of the groundwater is very low. Groundwater is the primary source of water in the United Arab Emirates. However, rapid expansion, population growth, agriculture, and industrial activities have negatively affected these limited water resources. The shortage of water resources has become a serious concern due to the over-pumping of groundwater to meet demand. In addition to the deficit of groundwater, the UAE has one of the highest per capita water consumption rates in the world. In this study, a combination of time-lapse measurements of microgravity and depth to groundwater level in selected wells in Al Ain city was used to estimate the variations in groundwater storage. Al-Ain is the second largest city in Abu Dhabi Emirates and the third largest city in the UAE. The groundwater in this region has been overexploited. Relative gravity measurements were acquired using the Scintrex CG-6 Autograv. This latest generation gravimeter from Scintrex Ltd provides fast, precise gravity measurements and automated corrections for temperature, tide, instrument tilt and rejection of data noise. The CG-6 gravimeter has a resolution of 0.1μGal. The purpose of this study is to measure the groundwater storage changes in the shallow aquifers based on the application of microgravity method. The gravity method is a nondestructive technique that allows collection of data at almost any location over the aquifer. Preliminary results indicate a possible relationship between microgravity and water levels, but more work needs to be done to confirm this. The results will help to develop the relationship between monthly microgravity changes with hydrological and hydrogeological changes of shallow phreatic. The study will be useful in water management considerations and additional future investigations.

Keywords: Al-Ain, arid region, groundwater, microgravity

Procedia PDF Downloads 152
1341 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 180
1340 The Emergence of Smart Growth in Developed and Developing Countries and Its Possible Application in Kabul City, Afghanistan

Authors: Bashir Ahmad Amiri, Nsenda Lukumwena

Abstract:

The global trend indicates that more and more people live and will continue to live in urban areas. Today cities are expanding both in physical size and number due to the rapid population growth along with sprawl development, which caused the cities to expand beyond the growth boundary and exerting intense pressure on environmental resources specially farmlands to accommodate new housing and urban facilities. Also noticeable is the increase in urban decay along with the increase of slum dwellers present another challenge that most cities in developed and developing countries have to deal with. Today urban practitioners, researchers, planners, and decision-makers are seeking for alternative development and growth management policies to house the rising urban population and also cure the urban decay and slum issues turn to Smart Growth to achieve their goals. Many cities across the globe have adopted smart growth as an alternative growth management tool to deal with patterns and forms of development and to cure the rising urban and environmental problems. The method used in this study is a literature analysis method through reviewing various resources to highlight the potential benefits of Smart Growth in both developed and developing countries and analyze, to what extent it can be a strategic alternative for Afghanistan’s cities, especially the capital city. Hence a comparative analysis is carried on three countries, namely the USA, China, and India to identify the potential benefits of smart growth likely to serve as an achievable broad base for recommendations in different urban contexts.

Keywords: growth management, housing, Kabul city, smart growth, urban-expansion

Procedia PDF Downloads 231
1339 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies

Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey

Abstract:

Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. According to the sixth Intergovernmental Panel on Climate Change (IPCC) Technical Paper on Climate Change and water, changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although many previous research carried on effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.

Keywords: climate change, downscaling, GCM, RCM

Procedia PDF Downloads 406
1338 Response of Pavement under Temperature and Vehicle Coupled Loading

Authors: Yang Zhong, Mei-Jie Xu

Abstract:

To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in the single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is an obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. Therefore, the dynamic change of parameter in asphalt mixture should be taken into consideration when the theoretical analysis is taken out.

Keywords: asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress

Procedia PDF Downloads 502
1337 Breaking Stress Criterion that Changes Everything We Know About Materials Failure

Authors: Ali Nour El Hajj

Abstract:

Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials.

Keywords: failure criteria, strength theory, failure mechanics, materials mechanics, rock mechanics, concrete strength, finite-element analysis, mechanical engineering, aeronautical engineering, civil engineering

Procedia PDF Downloads 78
1336 Investigation on Remote Sense Surface Latent Heat Temperature Associated with Pre-Seismic Activities in Indian Region

Authors: Vijay S. Katta, Vinod Kushwah, Rudraksh Tiwari, Mulayam Singh Gaur, Priti Dimri, Ashok Kumar Sharma

Abstract:

The formation process of seismic activities because of abrupt slip on faults, tectonic plate moments due to accumulated stress in the Earth’s crust. The prediction of seismic activity is a very challenging task. We have studied the changes in surface latent heat temperatures which are observed prior to significant earthquakes have been investigated and could be considered for short term earthquake prediction. We analyzed the surface latent heat temperature (SLHT) variation for inland earthquakes occurred in Chamba, Himachal Pradesh (32.5 N, 76.1E, M-4.5, depth-5km) nearby the main boundary fault region, the data of SLHT have been taken from National Center for Environmental Prediction (NCEP). In this analysis, we have calculated daily variations with surface latent heat temperature (0C) in the range area 1⁰x1⁰ (~120/KM²) with the pixel covering epicenter of earthquake at the center for a three months period prior to and after the seismic activities. The mean value during that period has been considered in order to take account of the seasonal effect. The monthly mean has been subtracted from daily value to study anomalous behavior (∆SLHT) of SLHT during the earthquakes. The results found that the SLHTs adjacent the epicenters all are anomalous high value 3-5 days before the seismic activities. The abundant surface water and groundwater in the epicenter and its adjacent region can provide the necessary condition for the change of SLHT. To further confirm the reliability of SLHT anomaly, it is necessary to explore its physical mechanism in depth by more earthquakes cases.

Keywords: surface latent heat temperature, satellite data, earthquake, magnetic storm

Procedia PDF Downloads 134
1335 Porphyry Cu-Mo-(Au) Mineralization at Paraga Area, Nakhchivan District, Azerbaijan: Evidence from Mineral Paragenesis, Hyrothermal Alteration and Geochemical Studies

Authors: M. Kumral, A. Abdelnasser, M. Budakoglu, M. Karaman, D. K. Yildirim, Z. Doner, A. Bostanci

Abstract:

The Paraga area is located at the extreme eastern part of Nakhchivan district at the boundary with Armenia. The field study is situated at Ordubad region placed in 9 km from Paraga village and stays at 2300-2800 m height over sea level. It lies within a region of low-grade metamorphic porphyritic volcanic and plutonic rocks. The detailed field studies revealed that this area composed mainly of metagabbro-diorite intrusive rocks with porphyritic character emplaced into meta-andesitic rocks. This complex is later intruded by unmapped olivine gabbroic rocks. The Cu-Mo-(Au) mineralization at Paraga deposit is vein-type mineralization that is essentially related to quartz veins stockwork which cut the dioritic rocks and concentrated at the eastern and northeastern parts of the area with different directions N80W, N25W, N70E and N45E. Also, this mineralization is associated with two shearing zones directed N75W and N15E. The host porphyritic rocks were affected by intense sulfidation, carbonatization, sericitization and silicification with pervasive hematitic alterations accompanied with mineralized quartz veins and quartz-carbonate veins. Sulfide minerals which are chalcopyrite, pyrite, arsenopyrite and sphalerite occurred in two cases either inside these mineralized quartz veins or disseminated in the highly altered rocks as well as molybdenite and also at the peripheries between the altered host rock and veins. Gold found as inclusion disseminated in arsenopyrite and pyrite as well as in their cracks.

Keywords: porphyry Cu-Mo-(Au), Paraga area, Nakhchivan, Azerbaijan, paragenesis, hyrothermal alteration

Procedia PDF Downloads 408
1334 The Application of Robotic Surgical Approaches in the Management of Midgut Neuroendocrine Tumours: A Systematic Review

Authors: Jatin Sridhar Naidu, Aryan Arora, Zainab Shafiq, Reza Mirnezami

Abstract:

Background: Robotic-assisted surgery (RAS) promises good outcomes in midgut adenocarcinoma surgery. However, its effectiveness in midgut neuroendocrine tumours (MNETs) is unknown. This study aimed to assess the current use, user interface, and any emerging developments of RAS in MNET treatment using the literature available. Methods: This review was carried out using PRISMA guidelines. MEDLINE, EMBASE, and Web of Science were searched on 22nd October 2022. All studies reporting primary data on robotic surgery in midgut neuroendocrine tumours or carcinoid tumours were included. The midgut was defined to be from the duodenojejunal flexure to the splenic flexure. Methodological quality was assessed using the Joanna Briggs critical appraisal tool. Results: According to our systematic review protocol, nineteen studies were selected. A total of twenty-six patients were identified. RAS was used for right colectomies, right hemicolectomies, ileal resections, caecal resections, intracorporeal anastomoses, and complete mesocolic excisions. It offered an optimal user-interface with enhanced visuals, fine dexterity, and ergonomic work position. Innovative developments in tumour-healthy tissue boundary and vasculature visualisation were reported. Conclusion: RAS for MNETs is safe and feasible, although the evidence base is limited. We recommend large prospective-randomised controlled trials comparing it with laparoscopy and open surgery. Developments in intraoperative contrast dyes and tumour-specific probes are very promising.

Keywords: robotic surgery, colorectal surgery, neuroendocrine neoplasms, midgut neoplasms

Procedia PDF Downloads 88
1333 Design of Reconfigurable and Non-reciprocal Metasurface with Independent Controls of Transmission Gain, Attenuation and Phase

Authors: Shi Yu Wang, Qian Wei Zhang, He Li, Hao Han He, Yun Bo Li

Abstract:

The spatial controls of electromagnetic (EM) waves have always been a research hot spot in recent years. And the rapid development of metasurface-based technologies has provided more freedoms for manipulating the EM waves. Here we propose the design of reconfigurable and non-reciprocal metasurface with independent controls of transmission gain, attenuation and phase. The proposed meta-atom mainly consists of the cascaded textures including the receiving antenna, the middle layer in which the power amplifiers (PAs), programmable attenuator and phase shifter locate, and the transmitting antenna. The programmable attenuator and phase shifter can realize the dynamic controls of transmission amplitude and phase independently, and the PA devices in the meta-atom can actualize the performance of non-reciprocal transmission. The proposed meta-atom is analyzed applying field-circuit co-simulation and a sample of the meta-atom is fabricated and measured under using two standard waveguides. The measured results verify the ability of the independent manipulation for transmission amplitude and phase of the proposed the meta-atom and the design method has been verified very well correspondingly.

Keywords: active circuits, independent controls of multiple electromagnetic features, non-reciprocal electromagnetic transmission, reconfigurable and programmable

Procedia PDF Downloads 79
1332 Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition

Authors: Jing Li, Li Jin, Fulin Wang, Jie Dong, Wenjiang Ding

Abstract:

Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic slip in the former one, while basal slip, prismatic slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy.

Keywords: Mg-Li-Gd dual-phase alloy, phase boundary, HDI stress, dislocation slip activity, mechanical properties

Procedia PDF Downloads 203
1331 Numerical Study for Improving Performance of Air Cooled Proton Exchange Membrane Fuel Cell on the Cathode Channel

Authors: Mohamed Hassan Gundu, Jaeseung Lee, Muhammad Faizan Chinannai, Hyunchul Ju

Abstract:

In this study, we present the effects of bipolar plate design to control the temperature of the cell and ensure effective water management under an excessive amount of air flow and low humidification conditions in the proton exchange membrane fuel cell (PEMFC). The PEMFC model developed and applied to consider a three type of bipolar plate that is defined by ratio of inlet channel width to outlet channel width. Simulation results show that the design which has narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width) make the relative humidity and water concentration increase in the channel and the catalyst layer. Therefore, this study clearly demonstrates that the dehydration phenomenon can be decreased by using design of bipolar plate with narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width).

Keywords: PEMFC, air-cooling, relative humidity, water management, water concentration, oxygen concentration

Procedia PDF Downloads 294
1330 Quantification of Leachate Potential of the Quezon City Controlled Dumping Facility Using Help Model

Authors: Paul Kenneth D. Luzon, Maria Antonia N. Tanchuling

Abstract:

The Quezon City Controlled Dumping facility also known as Payatas produces leachate which can contaminate soil and water environment in the area. The goal of this study is to quantify the leachate produced by the QCCDF using the Hydrologic Evaluation of Landfill Performance (HELP) model. Results could be used as input for groundwater contaminant transport studies. The HELP model is based on a simple water budget and is an essential “model requirement” used by the US Environmental Protection Agency (EPA). Annual waste profile of the QCCDF was calculated. Based on topographical maps and estimation of settlement due to overburden pressure and degradation, a total of 10M m^3 of waste is contained in the landfill. The input necessary for the HELP model are weather data, soil properties, and landfill design. Results showed that from 1988 to 2011, an average of 50% of the total precipitation percolates through the bottom layer. Validation of the results is still needed due to the assumptions made in the study. The decrease in porosity of the top soil cover showed the best mitigation for minimizing percolation rate. This study concludes that there is a need for better leachate management system in the QCCDF.

Keywords: help model, landfill, payatas trash slide, quezon city controlled dumping facility

Procedia PDF Downloads 291