Search results for: biologically inspired algorithm
943 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation
Procedia PDF Downloads 532942 Evaluation of Cyclic Thermo-Mechanical Responses of an Industrial Gas Turbine Rotor
Authors: Y. Rae, A. Benaarbia, J. Hughes, Wei Sun
Abstract:
This paper describes an elasto-visco-plastic computational modelling method which can be used to assess the cyclic plasticity responses of high temperature structures operating under thermo-mechanical loadings. The material constitutive equation used is an improved unified multi-axial Chaboche-Lemaitre model, which takes into account non-linear kinematic and isotropic hardening. The computational methodology is a three-dimensional framework following an implicit formulation and based on a radial return mapping algorithm. The associated user material (UMAT) code is developed and calibrated across isothermal hold-time low cycle fatigue tests for a typical turbine rotor steel for use in finite element (FE) implementation. The model is applied to a realistic industrial gas turbine rotor, where the study focuses its attention on the deformation heterogeneities and critical high stress areas within the rotor structure. The potential improvements of such FE visco-plastic approach are discussed. An integrated life assessment procedure based on R5 and visco-plasticity modelling, is also briefly addressed.Keywords: unified visco-plasticity, thermo-mechanical, turbine rotor, finite element modelling
Procedia PDF Downloads 130941 Optimal Scheduling of Load and Operational Strategy of a Load Aggregator to Maximize Profit with PEVs
Authors: Md. Shafiullah, Ali T. Al-Awami
Abstract:
This project proposes optimal scheduling of imported power of a load aggregator with the utilization of EVs to maximize its profit. As with the increase of renewable energy resources, electricity price in competitive market becomes more uncertain and, on the other hand, with the penetration of renewable distributed generators in the distribution network the predicted load of a load aggregator also becomes uncertain in real time. Though there is uncertainties in both load and price, the use of EVs storage capacity can make the operation of load aggregator flexible. LA submits its offer to day-ahead market based on predicted loads and optimized use of its EVs to maximize its profit, as well as in real time operation it uses its energy storage capacity in such a way that it can maximize its profit. In this project, load aggregators profit maximization algorithm is formulated and the optimization problem is solved with the help of CVX. As in real time operation the forecasted loads differ from actual load, the mismatches are settled in real time balancing market. Simulation results compare the profit of a load aggregator with a hypothetical group of 1000 EVs and without EVs.Keywords: CVX, electricity market, load aggregator, load and price uncertainties, profit maximization, real time balancing operation
Procedia PDF Downloads 416940 Introduction to Various Innovative Techniques Suggested for Seismic Hazard Assessment
Authors: Deepshikha Shukla, C. H. Solanki, Mayank K. Desai
Abstract:
Amongst all the natural hazards, earthquakes have the potential for causing the greatest damages. Since the earthquake forces are random in nature and unpredictable, the quantification of the hazards becomes important in order to assess the hazards. The time and place of a future earthquake are both uncertain. Since earthquakes can neither be prevented nor be predicted, engineers have to design and construct in such a way, that the damage to life and property are minimized. Seismic hazard analysis plays an important role in earthquake design structures by providing a rational value of input parameter. In this paper, both mathematical, as well as computational methods adopted by researchers globally in the past five years, will be discussed. Some mathematical approaches involving the concepts of Poisson’s ratio, Convex Set Theory, Empirical Green’s Function, Bayesian probability estimation applied for seismic hazard and FOSM (first-order second-moment) algorithm methods will be discussed. Computational approaches and numerical model SSIFiBo developed in MATLAB to study dynamic soil-structure interaction problem is discussed in this paper. The GIS-based tool will also be discussed which is predominantly used in the assessment of seismic hazards.Keywords: computational methods, MATLAB, seismic hazard, seismic measurements
Procedia PDF Downloads 340939 Quantum Decision Making with Small Sample for Network Monitoring and Control
Authors: Tatsuya Otoshi, Masayuki Murata
Abstract:
With the development and diversification of applications on the Internet, applications that require high responsiveness, such as video streaming, are becoming mainstream. Application responsiveness is not only a matter of communication delay but also a matter of time required to grasp changes in network conditions. The tradeoff between accuracy and measurement time is a challenge in network control. We people make countless decisions all the time, and our decisions seem to resolve tradeoffs between time and accuracy. When making decisions, people are known to make appropriate choices based on relatively small samples. Although there have been various studies on models of human decision-making, a model that integrates various cognitive biases, called ”quantum decision-making,” has recently attracted much attention. However, the modeling of small samples has not been examined much so far. In this paper, we extend the model of quantum decision-making to model decision-making with a small sample. In the proposed model, the state is updated by value-based probability amplitude amplification. By analytically obtaining a lower bound on the number of samples required for decision-making, we show that decision-making with a small number of samples is feasible.Keywords: quantum decision making, small sample, MPEG-DASH, Grover's algorithm
Procedia PDF Downloads 79938 Adaptive Anchor Weighting for Improved Localization with Levenberg-Marquardt Optimization
Authors: Basak Can
Abstract:
This paper introduces an iterative and weighted localization method that utilizes a unique cost function formulation to significantly enhance the performance of positioning systems. The system employs locators, such as Gateways (GWs), to estimate and track the position of an End Node (EN). Performance is evaluated relative to the number of locators, with known locations determined through calibration. Performance evaluation is presented utilizing low cost single-antenna Bluetooth Low Energy (BLE) devices. The proposed approach can be applied to alternative Internet of Things (IoT) modulation schemes, as well as Ultra WideBand (UWB) or millimeter-wave (mmWave) based devices. In non-line-of-sight (NLOS) scenarios, using four or eight locators yields a 95th percentile localization performance of 2.2 meters and 1.5 meters, respectively, in a 4,305 square feet indoor area with BLE 5.1 devices. This method outperforms conventional RSSI-based techniques, achieving a 51% improvement with four locators and a 52 % improvement with eight locators. Future work involves modeling interference impact and implementing data curation across multiple channels to mitigate such effects.Keywords: lateration, least squares, Levenberg-Marquardt algorithm, localization, path-loss, RMS error, RSSI, sensors, shadow fading, weighted localization
Procedia PDF Downloads 25937 Minimizing Students' Learning Difficulties in Mathematics
Authors: Hari Sharan Pandit
Abstract:
Mathematics teaching in Nepal has been centralized and guided by the notion of transfer of knowledge and skills from teachers to students. The overemphasis on the ‘algorithm-centric’ approach to mathematics teaching and the focus on ‘role–learning’ as the ultimate way of solving mathematical problems since the early years of schooling have been creating severe problems in school-level mathematics in Nepal. In this context, the author argues that students should learn real-world mathematical problems through various interesting, creative and collaborative, as well as artistic and alternative ways of knowing. The collaboration-incorporated pedagogy is a distinct pedagogical approach that offers a better alternative as an integrated and interdisciplinary approach to learning that encourages students to think more broadly and critically about real-world problems. The paper, as a summarized report of action research designed, developed and implemented by the author, focuses on the needs and usefulness of collaboration-incorporated pedagogy in the Nepali context to make mathematics teaching more meaningful for producing creative and critical citizens. This paper is useful for mathematics teachers, teacher educators and researchers who argue on arts integration in mathematics teaching.Keywords: peer teaching, metacognitive approach, mitigating, action research
Procedia PDF Downloads 26936 Analyzing Medical Workflows Using Market Basket Analysis
Authors: Mohit Kumar, Mayur Betharia
Abstract:
Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well.Keywords: data mining, market basket analysis, healthcare applications, knowledge discovery in healthcare databases, customer relationship management, healthcare systems
Procedia PDF Downloads 172935 Algorithmic Generation of Carbon Nanochimneys
Authors: Sorin Muraru
Abstract:
Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures
Procedia PDF Downloads 170934 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation
Procedia PDF Downloads 132933 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus
Authors: Ehsan Mehryaar, Reza Bushehri
Abstract:
One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response
Procedia PDF Downloads 201932 Skills Needed Amongst Secondary School Students for Artificial Intelligence Development in Southeast Nigeria
Authors: Chukwuma Mgboji
Abstract:
Since the advent of Artificial Intelligence, robots have become a major stay in developing societies. Robots are deployed in Education, Health, Food and in other spheres of life. Nigeria a country in West Africa has a very low profile in the advancement of Artificial Intelligence especially in the grass roots. The benefits of Artificial intelligence are not fully maximised and harnessed. Advances in artificial intelligence are perceived as impossible or observed as irrelevant. This study seeks to ascertain the needed skills for the development of artificialintelligence amongst secondary schools in Nigeria. The study focused on South East Nigeria with Five states namely Imo, Abia, Ebonyi, Anambra and Enugu. The sample size is 1000 students drawn from Five Government owned Universities offering Computer Science, Computer Education, Electronics Engineering across the Five South East states. Survey method was used to solicit responses from respondents. The findings from the study identified mathematical skills, analytical skills, problem solving skills, computing skills, programming skills, algorithm skills amongst others. The result of this study to the best of the author’s knowledge will be highly beneficial to all stakeholders involved in the advancements and development of artificial intelligence.Keywords: artificial intelligence, secondary school, robotics, skills
Procedia PDF Downloads 155931 Modelling and Simulation of a Commercial Thermophilic Biogas Plant
Authors: Jeremiah L. Chukwuneke, Obiora E. Anisiji, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: energy and mass conservation, specific growth rate, thermophilic bacteria, temperature, rate of bio gas production
Procedia PDF Downloads 442930 Application of Machine Learning Models to Predict Couchsurfers on Free Homestay Platform Couchsurfing
Authors: Yuanxiang Miao
Abstract:
Couchsurfing is a free homestay and social networking service accessible via the website and mobile app. Couchsurfers can directly request free accommodations from others and receive offers from each other. However, it is typically difficult for people to make a decision that accepts or declines a request when they receive it from Couchsurfers because they do not know each other at all. People are expected to meet up with some Couchsurfers who are kind, generous, and interesting while it is unavoidable to meet up with someone unfriendly. This paper utilized classification algorithms of Machine Learning to help people to find out the Good Couchsurfers and Not Good Couchsurfers on the Couchsurfing website. By knowing the prior experience, like Couchsurfer’s profiles, the latest references, and other factors, it became possible to recognize what kind of the Couchsurfers, and furthermore, it helps people to make a decision that whether to host the Couchsurfers or not. The value of this research lies in a case study in Kyoto, Japan in where the author has hosted 54 Couchsurfers, and the author collected relevant data from the 54 Couchsurfers, finally build a model based on classification algorithms for people to predict Couchsurfers. Lastly, the author offered some feasible suggestions for future research.Keywords: Couchsurfing, Couchsurfers prediction, classification algorithm, hospitality tourism platform, hospitality sciences, machine learning
Procedia PDF Downloads 131929 Machine Learning Assisted Performance Optimization in Memory Tiering
Authors: Derssie Mebratu
Abstract:
As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline.Keywords: machine learning, bayesian optimization, memory tiering, CXL, DRAM
Procedia PDF Downloads 96928 Use of DNA Barcoding and UPLC-MS to Authenticate Agathosma spp. in South African Herbal Products
Authors: E. Pretorius, A. M. Viljoen, M. van der Bank
Abstract:
Introduction: The phytochemistry of Agathosma crenulata and A. betulina has been studied extensively, while their molecular analysis through DNA barcoding remains virtually unexplored. This technique can confirm the identity of plant species included in a herbal product, thereby ensuring the efficacy of the herbal product and the accuracy of its label. Materials and methods: Authentic Agathosma reference material of A. betulina (n=16) and A. crenulata (n=10) were obtained. Thirteen commercial products were purchased from various health shops around Johannesburg, South Africa, using the search term “Agathosma” or “Buchu.” The plastid regions matK and ycf1 were used to barcode the Buchu products, and BRONX analysis confirmed the taxonomic identity of the samples. UPLC-MS analyses were also performed. Results: Only (30/60) 60% of the traded samples tested from 13 suppliers contained A. betulina in their herbal products. Similar results were also obtained for the UPLC-MS analysis. Conclusion: In this study, we demonstrate the application of DNA barcoding in combination with phytochemical analysis to authenticate herbal products claiming to contain Agathosma plants as an ingredient in their products. This supports manufacturing efforts to ensure that herbal products that are safe for the consumer.Keywords: Buchu, substitution, barcoding, BRONX algorithm, matK, ycf1, UPLC-MS
Procedia PDF Downloads 129927 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm
Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene
Abstract:
Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest
Procedia PDF Downloads 118926 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia PDF Downloads 199925 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction
Authors: Omer Cahana, Ofer Levi, Maya Herman
Abstract:
Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning
Procedia PDF Downloads 91924 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing
Procedia PDF Downloads 224923 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studiesKeywords: crop yield, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 409922 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure
Authors: Nosakhare Enoma, Alphose Zingoni
Abstract:
The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis
Procedia PDF Downloads 320921 Regulating Information Asymmetries at Online Platforms for Short-Term Vacation Rental in European Union– Legal Conondrum Continues
Authors: Vesna Lukovic
Abstract:
Online platforms as new business models play an important role in today’s economy and the functioning of the EU’s internal market. In the travel industry, algorithms used by online platforms for short-stay accommodation provide suggestions and price information to travelers. Those suggestions and recommendations are displayed in search results via recommendation (ranking) systems. There has been a growing consensus that the current legal framework was not sufficient to resolve problems arising from platform practices. In order to enhance the potential of the EU’s Single Market, smaller businesses should be protected, and their rights strengthened vis-à-vis large online platforms. The Regulation (EU) 2019/1150 of the European Parliament and of the Council on promoting fairness and transparency for business users of online intermediation services aims to level the playing field in that respect. This research looks at Airbnb through the lenses of this regulation. The research explores key determinants and finds that although regulation is an important step in the right direction, it is not enough. It does not entail sufficient clarity obligations that would make online platforms an intermediary service which both accommodation providers and travelers could use with ease.Keywords: algorithm, online platforms, ranking, consumers, EU regulation
Procedia PDF Downloads 130920 Digital Material Characterization Using the Quantum Fourier Transform
Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel
Abstract:
The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises
Procedia PDF Downloads 78919 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College
Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa
Abstract:
This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling
Procedia PDF Downloads 231918 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 73917 Detecting Manipulated Media Using Deep Capsule Network
Authors: Joseph Uzuazomaro Oju
Abstract:
The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media
Procedia PDF Downloads 133916 An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic
Authors: M. Iruleswari, A. Jeyapaul Murugan
Abstract:
Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.Keywords: finite impulse response, distributed arithmetic, field programmable gate array, look-up table
Procedia PDF Downloads 457915 Regenerative Agriculture Standing at the Intersection of Design, Mycology, and Soil Fertility
Authors: Andrew Gennett
Abstract:
Designing for fungal development means embracing the symbiotic relationship between the living system and built environment. The potential of mycelium post-colonization is explored for the fabrication of advanced pure mycelium products, going beyond the conventional methods of aggregating materials. Fruiting induction imparts desired material properties such as enhanced environmental resistance. Production approach allows for simultaneous generation of multiple products while scaling up raw materials supply suitable for architectural applications. The following work explores the integration of fungal environmental perception with computational design of built fruiting chambers. Polyporales, are classified by their porous reproductive tissues supported by a wood-like context tissue covered by a hard waterproofing coat of hydrobpobins. Persisting for years in the wild, these species represent material properties that would be highly desired in moving beyond flat sheets of arial mycelium as with leather or bacon applications. Understanding the inherent environmental perception of fungi has become the basis for working with and inducing desired hyphal differentiation. Working within the native signal interpretation of a mycelium mass during fruiting induction provides the means to apply textures and color to the final finishing coat. A delicate interplay between meeting human-centered goals while designing around natural processes of living systems represents a blend of art and science. Architecturally, physical simulations inform model design for simple modular fruiting chambers that change as fungal growth progresses, while biological life science principles describe the internal computations occurring within the fungal hyphae. First, a form filling phase of growth is controlled by growth chamber environment. Second, an initiation phase of growth forms the final exterior finishing texture. Hyphal densification induces cellular cascades, in turn producing the classical hardened cuticle, UV protective molecule production, as well, as waterproofing finish. Upon fruiting process completion, the fully colonized spent substrate holds considerable value and is not considered waste. Instead, it becomes a valuable resource in the next cycle of production scale-up. However, the acquisition of new substrate resources poses a critical question, particularly as these resources become increasingly scarce. Pursuing a regenerative design paradigm from the environmental perspective, the usage of “agricultural waste” for architectural materials would prove a continuation of the destructive practices established by the previous industrial regime. For these residues from fields and forests serve a vital ecological role protecting the soil surface in combating erosion while reducing evaporation and fostering a biologically diverse food web. Instead, urban centers have been identified as abundant sources of new substrate material. Diverting the waste from secondary locations such as food processing centers, papers mills, and recycling facilities not only reduces landfill burden but leverages the latent value of these waste steams as precious resources for mycelium cultivation. In conclusion, working with living systems through innovative built environments for fungal development, provides the needed gain of function and resilience of mycelium products. The next generation of sustainable fungal products will go beyond the current binding process, with a focus upon reducing landfill burden from urban centers. In final considerations, biophilic material builds to an ecologically regenerative recycling production cycle.Keywords: regenerative agriculture, mycelium fabrication, growth chamber design, sustainable resource acquisition, fungal morphogenesis, soil fertility
Procedia PDF Downloads 66914 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer
Authors: Elvin P. Chizenga, Heidi Abrahamse
Abstract:
Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy
Procedia PDF Downloads 125