Search results for: performance coefficients
13222 Two-Dimensional Symmetric Half-Plane Recursive Doubly Complementary Digital Lattice Filters
Authors: Ju-Hong Lee, Chong-Jia Ciou, Yuan-Hau Yang
Abstract:
This paper deals with the problem of two-dimensional (2-D) recursive doubly complementary (DC) digital filter design. We present a structure of 2-D recursive DC filters by using 2-D symmetric half-plane (SHP) recursive digital all-pass lattice filters (DALFs). The novelty of using 2-D SHP recursive DALFs to construct a 2-D recursive DC digital lattice filter is that the resulting 2-D SHP recursive DC digital lattice filter provides better performance than the existing 2-D SHP recursive DC digital filter. Moreover, the proposed structure possesses a favorable 2-D DC half-band (DC-HB) property that allows about half of the 2-D SHP recursive DALF’s coefficients to be zero. This leads to considerable savings in computational burden for implementation. To ensure the stability of a designed 2-D SHP recursive DC digital lattice filter, some necessary constraints on the phase of the 2-D SHP recursive DALF during the design process are presented. Design of a 2-D diamond-shape decimation/interpolation filter is presented for illustration and comparison.Keywords: all-pass digital filter, doubly complementary, lattice structure, symmetric half-plane digital filter, sampling rate conversion
Procedia PDF Downloads 43513221 Increasing Performance of Autopilot Guided Small Unmanned Helicopter
Authors: Tugrul Oktay, Mehmet Konar, Mustafa Soylak, Firat Sal, Murat Onay, Orhan Kizilkaya
Abstract:
In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained.Keywords: small helicopters, hierarchical control, stochastic optimization, autonomous performance maximization, autopilots
Procedia PDF Downloads 58113220 Assessment of Work-Related Stress and Its Predictors in Ethiopian Federal Bureau of Investigation in Addis Ababa
Authors: Zelalem Markos Borko
Abstract:
Work-related stress is a reaction that occurs when the work weight progress toward becoming excessive. Therefore, unless properly managed, stress leads to high employee turnover, decreased performance, illness and absenteeism. Yet, little has been addressed regarding work-related stress and its predictors in the study area. Therefore, the objective of this study was to assess stress prevalence and its predictors in the study area. To that effect, a cross-sectional study design was conducted on 281 employees from the Ethiopian Federal Bureau of Investigation by using stratified random sampling techniques. Survey questionnaire scales were employed to collect data. Data were analyzed by percentage, Pearson correlation coefficients, simple linear regression, multiple linear regressions, independent t-test and one-way ANOVA statistical techniques. In the present study13.9% of participants faced high stress, whereas 13.5% of participants faced low stress and the rest 72.6% of officers experienced moderate stress. There is no significant group difference among workers due to age, gender, marital status, educational level, years of service and police rank. This study concludes that factors such as role conflict, performance over-utilization, role ambiguity, and qualitative and quantitative role overload together predict 39.6% of work-related stress. This indicates that 60.4% of the variation in stress is explained by other factors, so other additional research should be done to identify additional factors predicting stress. To prevent occupational stress among police, the Ethiopian Federal Bureau of Investigation should develop strategies based on factors that will help to develop stress reduction management.Keywords: work-related stress, Ethiopian federal bureau of investigation, predictors, Addis Ababa
Procedia PDF Downloads 6913219 Wind Turbine Control Performance Evaluation Based on Minimum-Variance Principles
Authors: Zheming Cao
Abstract:
Control loops are the most important components in the wind turbine system. Product quality, operation safety, and the economic performance are directly or indirectly connected to the performance of control systems. This paper proposed a performance evaluation method based on minimum-variance for wind turbine control system. This method can be applied on PID controller for pitch control system in the wind turbine. The good performance result demonstrated in the paper was achieved by retuning and optimizing the controller settings based on the evaluation result. The concepts presented in this paper are illustrated with the actual data of the industrial wind farm.Keywords: control performance, evaluation, minimum-variance, wind turbine
Procedia PDF Downloads 36913218 Potential of Mineral Composition Reconstruction for Monitoring the Performance of an Iron Ore Concentration Plant
Authors: Maryam Sadeghi, Claude Bazin, Daniel Hodouin, Laura Perez Barnuevo
Abstract:
The performance of a separation process is usually evaluated using performance indices calculated from elemental assays readily available from the chemical analysis laboratory. However, the separation process performance is essentially related to the properties of the minerals that carry the elements and not those of the elements. Since elements or metals can be carried by valuable and gangue minerals in the ore and that each mineral responds differently to a mineral processing method, the use of only elemental assays could lead to erroneous or uncertain conclusions on the process performance. This paper discusses the advantages of using performance indices calculated from minerals content, such as minerals recovery, for process performance assessments. A method is presented that uses elemental assays to estimate the minerals content of the solids in various process streams. The method combines the stoichiometric composition of the minerals and constraints of mass conservation for the minerals through the concentration process to estimate the minerals content from elemental assays. The advantage of assessing a concentration process using mineral based performance indices is illustrated for an iron ore concentration circuit.Keywords: data reconciliation, iron ore concentration, mineral composition, process performance assessment
Procedia PDF Downloads 21613217 High Performance Computing and Big Data Analytics
Authors: Branci Sarra, Branci Saadia
Abstract:
Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.Keywords: high performance computing, HPC, big data, data analysis
Procedia PDF Downloads 51813216 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging
Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati
Abstract:
Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization
Procedia PDF Downloads 7413215 Green Supply Chain Management and Corporate Performance: The Mediation Mechanism of Information Sharing among Firms
Authors: Seigo Matsuno, Yasuo Uchida, Shozo Tokinaga
Abstract:
This paper proposes and empirically tests a model of the relationships between green supply chain management (GSCM) activities and corporate performance. From the literature review, we identified five constructs, namely, environmental commitment, supplier collaboration, supplier assessment, information sharing among suppliers, and business process improvement. These explanatory variables are used to form a structural model explaining the environmental and economic performance. The model was analyzed using the data from a survey of a sample of manufacturing firms in Japan. The results suggest that the degree of supplier collaboration has an influence on the environmental performance directly. While, the impact of supplier assessment on the environmental performance is mediated by the information sharing and/or business process improvement. And the environmental performance has a positive relationship on the economic performance. Academic and managerial implications of our findings are discussed.Keywords: corporate performance, empirical study, green supply chain management, path modeling
Procedia PDF Downloads 39213214 The Effect of Environmental Consciousness on Firm Performance
Authors: Hossein Emari, Hossein Vazifehdoust, Hashem Nikoo Maram
Abstract:
This study aims to develop an original framework of Environmental Consciousness (EC) to explore the positive effect of environmental consciousness on financial performance through the partial mediator - green intellectual capital. A questionnaire survey on the environmental consciousness, intellectual capital, and financial performance of Iran’s manufacturing firms was conducted, and 324 samples were analyzed. This study utilizes structural equation modeling to explore the direct and indirect influences of EC on financial performance. Research results reveal that environmental consciousness had an indirect impact on financial performance through investment in green intellectual capital. It was thus known that green intellectual capital is a mediator of the relationship between environmental consciousness and financial performance. This paper may serve as a reference for firms mapping out future environmental policies and provide an input of various perspectives and arguments into the discipline of green management.Keywords: environmental consciousness, social responsibility, green intellectual capital, financial performance
Procedia PDF Downloads 48613213 Effect of Leadership Style on Organizational Performance
Authors: Khadija Mushtaq, Mian Saqib Mehmood
Abstract:
This paper attempts to determine the impact of leadership style and learning orientation on organizational performance in Pakistan. A sample of 158 middle managers selected from sports and surgical factories from Sialkot. The empirical estimation is based on a multiple linear regression analysis of the relationship between leadership style, learning orientation and organizational performance. Leadership style is measure through transformational leadership and transactional leadership. The transformational leadership has insignificant impact on organizational performance. The transactional leadership has positive and significant relation with organizational performance. Learning orientation also has positive and significant relation with organizational performance. Linear regression used to estimate the relation between dependent and independent variables. This study suggests top manger should prefer continuous process for improvement for any change in system rather radical change.Keywords: transformational leadership, transactional leadership, learning orientation, organizational performance, Pakistan
Procedia PDF Downloads 40213212 The Role of Strategic Flexibility for Achieving Sustainable Competition Advantage and Its Effect on Business Performance
Authors: Kemalettin Eryesil, Osman Esmen, Aykut Beduk
Abstract:
In this study, it has been studied to determine the relationship between business performance and strategic flexibility, which is defined to be the strategic choice that provides the ability of rapidly responding the changes of the dynamic environment of the companies, for having competitive advantages. In this context a field study has been conducted over 56 companies, which are active in informatics and electronics sectors in TEKNOKENT. As a result of the study it has been determined that; strategic flexibility has an effect on business performance and there is a positive and statistically significant relationship between strategic flexibility and business performance.Keywords: sustainable competition advantage, strategic flexibility, firm performance, TEKNOKENT
Procedia PDF Downloads 38113211 The Relationship between Emotional Intelligence and Leadership Performance
Authors: Omar Al Ali
Abstract:
The current study was aimed to explore the relationships between emotional intelligence, cognitive ability, and leader's performance. Data were collected from 260 senior managers from UAE. The results showed that there are significant relationships between emotional intelligence and leadership performance as measured by the annual internal evaluations of each participant (r = .42, p < .01). Data from regression analysis revealed that both variables namely emotional intelligence (beta = .31, p < .01), and cognitive ability (beta = .29, p < .01), predicted leadership competencies, and together explained 26% of its variance. Data suggests that EI and cognitive ability are significantly correlated with leadership performance. In depth implications of the present findings for human resource development theory and practice are discussed.Keywords: emotional intelligence, cognitive ability, leadership, performance
Procedia PDF Downloads 47513210 Effects of Evening vs. Morning Training on Motor Skill Consolidation in Morning-Oriented Elderly
Authors: Maria Korman, Carmit Gal, Ella Gabitov, Avi Karni
Abstract:
The main question addressed in this study was whether the time-of-day wherein training is afforded is a significant factor for motor skill ('how-to', procedural knowledge) acquisition and consolidation into long term memory in the healthy elderly population. Twenty-nine older adults (60-75 years) practiced an explicitly instructed 5-element key-press sequence by repeatedly generating the sequence ‘as fast and accurately as possible’. Contribution of three parameters to acquisition, 24h post-training consolidation, and 1-week retention gains in motor sequence speed was assessed: (a) time of training (morning vs. evening group) (b) sleep quality (actigraphy) and (c) chronotype. All study participants were moderately morning type, according to the Morningness-Eveningness Questionnaire score. All participants had sleep patterns typical of age, with average sleep efficiency of ~ 82%, and approximately 6 hours of sleep. Speed of motor sequence performance in both groups improved to a similar extent during training session. Nevertheless, evening group expressed small but significant overnight consolidation phase gains, while morning group showed only maintenance of performance level attained at the end of training. By 1-week retention test, both groups showed similar performance levels with no significant gains or losses with respect to 24h test. Changes in the tapping patterns at 24h and 1-week post-training were assessed based on normalized Pearson correlation coefficients using the Fisher’s z-transformation in reference to the tapping pattern attained at the end of the training. Significant differences between the groups were found: the evening group showed larger changes in tapping patterns across the consolidation and retention windows. Our results show that morning-oriented older adults effectively acquired, consolidated, and maintained a new sequence of finger movements, following both morning and evening practice sessions. However, time-of-training affected the time-course of skill evolution in terms of performance speed, as well as the re-organization of tapping patterns during the consolidation period. These results are in line with the notion that motor training preceding a sleep interval may be beneficial for the long-term memory in the elderly. Evening training should be considered an appropriate time window for motor skill learning in older adults, even in individuals with morning chronotype.Keywords: time-of-day, elderly, motor learning, memory consolidation, chronotype
Procedia PDF Downloads 13413209 The Effects of Three Leadership Styles on Individual Performance
Authors: Leilei Liang
Abstract:
Leadership is commonly classified as formal leadership and informal leadership, which ignores and neglects the effects of 3rd type leadership. The emergence of 3rd type of leadership is closely related to special relations. To figure out the mechanism and effects of 3rd type leadership as well as the impacts of formal leadership and informal leadership on employee performance, this study collects data from 350 participants through a survey and proposes three hypotheses respectively from the perspective of expectation theory. The analytical results provide strong evidence for two of the three hypotheses, which demonstrate the positive correlation between formal leadership and individual performance and the negative relationship between 3rd type leadership and individual performance. This study contributes to leadership literature by putting forward the concept of the 3rd type of leadership. In addition, the effects of formal leadership, informal leadership, and 3rd type leadership on individual performance are discussed respectively in this study.Keywords: formal leadership, informal leadership, 3rd leadership, individual performance, expectation theory
Procedia PDF Downloads 23913208 Performance Assessment of Islamic Banks in the Light of Maqasid Al-Shariah
Authors: Asma Ammar
Abstract:
Being different in theory and practice from their conventional counterparts, this research aims to assess the performance of Islamic banks beyond the financial performance by emphasizing their ethical and social identity based on the higher purposes of Islamic law, namely Maqasid al-Shariah. Using Imam al-Ghazali’s theory of Maqasid al-Shariah and Sekaran’s (2000) method, we develop a Maqasid-based index including the five objectives of Shariah (preservation of life, religion, intellect, posterity, and wealth). Our sample covers 9 Islamic banks considered among the largest Islamic banks in the world. For the five years of study (2017-2021), our results reveal that the highest score is performed by Bank Muamalat while the least score is given to Dubai Islamic Bank. The overall Maqasid performance of the sample is unimpressive, indicating that there is a lack of achievement in Maqasid al-Shariah performance of Islamic banks. Consequently, serious measures should be taken by Islamic banks to improve their Maqasid performance and thus contribute effectively to the socio-economic development of the countries in which they operate.Keywords: Maqasid al-Shariah, Maqasid al-Shariah index, Islamic banks, performance assessment
Procedia PDF Downloads 7613207 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 33913206 Co-Movement between Financial Assets: An Empirical Study on Effects of the Depreciation of Yen on Asia Markets
Authors: Yih-Wenn Laih
Abstract:
In recent times, the dependence and co-movement among international financial markets have become stronger than in the past, as evidenced by commentaries in the news media and the financial sections of newspapers. Studying the co-movement between returns in financial markets is an important issue for portfolio management and risk management. The realization of co-movement helps investors to identify the opportunities for international portfolio management in terms of asset allocation and pricing. Since the election of the new Prime Minister, Shinzo Abe, in November 2012, the yen has weakened against the US dollar from the 80 to the 120 level. The policies, known as “Abenomics,” are to encourage private investment through a more aggressive mix of monetary and fiscal policy. Given the close economic relations and competitions among Asia markets, it is interesting to discover the co-movement relations, affected by the depreciation of yen, between stock market of Japan and 5 major Asia stock markets, including China, Hong Kong, Korea, Singapore, and Taiwan. Specifically, we devote ourselves to measure the co-movement of stock markets between Japan and each one of the 5 Asia stock markets in terms of rank correlation coefficients. To compute the coefficients, return series of each stock market is first fitted by a skewed-t GARCH (generalized autoregressive conditional heteroscedasticity) model. Secondly, to measure the dependence structure between matched stock markets, we employ the symmetrized Joe-Clayton (SJC) copula to calculate the probability density function of paired skewed-t distributions. The joint probability density function is then utilized as the scoring scheme to optimize the sequence alignment by dynamic programming method. Finally, we compute the rank correlation coefficients (Kendall's and Spearman's ) between matched stock markets based on their aligned sequences. We collect empirical data of 6 stock indexes from Taiwan Economic Journal. The data is sampled at a daily frequency covering the period from January 1, 2013 to July 31, 2015. The empirical distributions of returns indicate fatter tails than the normal distribution. Therefore, the skewed-t distribution and SJC copula are appropriate for characterizing the data. According to the computed Kendall’s τ, Korea has the strongest co-movement relation with Japan, followed by Taiwan, China, and Singapore; the weakest is Hong Kong. On the other hand, the Spearman’s ρ reveals that the strength of co-movement between markets with Japan in decreasing order are Korea, China, Taiwan, Singapore, and Hong Kong. We explore the effects of “Abenomics” on Asia stock markets by measuring the co-movement relation between Japan and five major Asia stock markets in terms of rank correlation coefficients. The matched markets are aligned by a hybrid method consisting of GARCH, copula and sequence alignment. Empirical experiments indicate that Korea has the strongest co-movement relation with Japan. The strength of China and Taiwan are better than Singapore. The Hong Kong market has the weakest co-movement relation with Japan.Keywords: co-movement, depreciation of Yen, rank correlation, stock market
Procedia PDF Downloads 22913205 Analysis of Sound Absorption Coefficient
Authors: Zakiul Fuady, Ismail AB, Fauzi, Zulfian
Abstract:
This research was conducted to analyze the absorption coefficients of sound at several types of materials as well as its combinations. The aim of this research was to find the value of sound absorption coefficients on the materials and its combinations. The materials used in this research were gypsum panel, gypsum-fibre palm, fibre palm-gypsum, and foamed concrete-fibre palm. The test was conducted by using a method of reverberation chamber based on the ISO 354-1985 with the types of the sound source: white noise and pink noise at the frequency of 125 Hz - 8000 Hz. Based on the test results of white noise, it was found that the panel of gypsum-fibre palm has α = 0.93 at low frequency; the panel of fibre palm has α = 0.97 at a medium frequency; and the panel of foamed concrete-fibre palm has α = 0.89 at high frequency. Further, for the sound source of pink noise, it was found that the panel of gypsum-fibre palm has α = 0.99 at low level; the panel of fibre palm-gypsum has α = 0.86 at medium level; and the panel of fibre palm-gypsum has α = 0.64 at high level. The fibre palm panel could absorb the sounds well since this material has bigger airspace (pore) than the foamed concrete and gypsum. Consequently, when the sounds wave enters to this material it will be trapped in the space. The panel of fibre palm affected an increasing of sound absorption coefficient value at the combination materials when the panel of fibre palm was placed under another panel. However, the absorption coefficient values of both fibre palm and fibre palm-gypsum panels are about the same.Keywords: coefficient of sound absorption, pink noise, white noise, palm
Procedia PDF Downloads 25313204 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students
Authors: J. K. Alhassan, C. S. Actsu
Abstract:
This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.Keywords: academic performance, artificial neural network, prediction, students
Procedia PDF Downloads 46613203 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data
Authors: Chico Horacio Jose Sambo
Abstract:
Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.Keywords: neural network, permeability, multilayer perceptron, well log
Procedia PDF Downloads 40213202 Health Hazards of Performance Enhancing Drugs
Authors: Austin Oduor Otieno
Abstract:
There is an ingrained belief that the use of performance-enhancing drugs by athletes enable them to perform better. While this has been found to be truth, it also raises ethical and health issues. This paper analyzes the health hazards associated with performance enhancing drugs. It seeks to achieve this through the analysis of different academic journals as well as publications on the relationship between doping in sports and health. It concludes that there are inherent health hazards associated with the use of performance-enhancing drugs as they affect the physical and psychological health and wellbeing of a user (athlete).Keywords: doping, health hazards, athletes, drugs
Procedia PDF Downloads 16313201 Performance of Nine Different Types of PV Modules in the Tropical Region
Authors: Jiang Fan
Abstract:
With growth of PV market in tropical region, it is necessary to investigate the performance of different types of PV technology under the tropical weather conditions. Singapore Polytechnic was funded by Economic Development Board (EDB) to set up a solar PV test-bed for the research on performance of different types of PV modules in the country. The PV test-bed installed the nine different types of PV systems that are integrated to power utility grid for monitoring and analyzing their operating performances. This paper presents the 12 months operational data of nine different PV systems and analyses on performances of installed PV systems using energy yield and performance ratio. The nine types of PV systems under test have shown their energy yields ranging from 2.67 to 3.36 kWh/kWp and their performance ratios (PRs) ranging from 70% to 88%.Keywords: monocrystalline, multicrystalline, amorphous silicon, cadmium telluride, thin film PV
Procedia PDF Downloads 50513200 A Systematic Review on Energy Performance Gap in Buildings
Authors: Derya Yilmaz, Ali Murat Tanyer, Irem Dikmen Toker
Abstract:
There are many studies addressing the discrepancy between the planned and actual performance of buildings, which is defined as the energy performance gap. The difference between expected and actual project results usually depends on risky events and how these risks are managed throughout the project. This study presents a systematic review of the literature about the energy performance gap in buildings. First of all, a brief history and definitions of the energy performance gap are given. The initial search string is applied on Scopus and Web of Science databases. Research activities in years, main research interests, the co-occurrence of keywords based on average publication year are given. Scientometric analyses are conducted using Vosviewer. After the review, the papers are grouped to thematic relevance. This research will create a basis for analyzing the research focus, methods, limitations, and research gaps of key papers in the field.Keywords: energy performance gap, discrepancy, energy efficient buildings, green buildings
Procedia PDF Downloads 14613199 An Information System for Strategic Performance Scoring in Municipal Management
Authors: Emin Gundogar, Aysegul Yilmaz
Abstract:
Strategic performance scoring is a significant procedure in management. There are various methods to improve this procedure. This study introduces an information system that is developed to score performance for municipal management. The application of the system is clarified by exemplifying municipal processes.Keywords: management information system, municipal management, performance scoring
Procedia PDF Downloads 76713198 Wind Farm Power Performance Verification Using Non-Parametric Statistical Inference
Authors: M. Celeska, K. Najdenkoski, V. Dimchev, V. Stoilkov
Abstract:
Accurate determination of wind turbine performance is necessary for economic operation of a wind farm. At present, the procedure to carry out the power performance verification of wind turbines is based on a standard of the International Electrotechnical Commission (IEC). In this paper, nonparametric statistical inference is applied to designing a simple, inexpensive method of verifying the power performance of a wind turbine. A statistical test is explained, examined, and the adequacy is tested over real data. The methods use the information that is collected by the SCADA system (Supervisory Control and Data Acquisition) from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. The study has used data on the monthly output of wind farm in the Republic of Macedonia, and the time measuring interval was from January 1, 2016, to December 31, 2016. At the end, it is concluded whether the power performance of a wind turbine differed significantly from what would be expected. The results of the implementation of the proposed methods showed that the power performance of the specific wind farm under assessment was acceptable.Keywords: canonical correlation analysis, power curve, power performance, wind energy
Procedia PDF Downloads 33413197 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry
Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak
Abstract:
Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.Keywords: supply chain performance, performance measurement, data mining, automotive
Procedia PDF Downloads 51213196 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security
Authors: Inayat Ur Rehman, Georgia Sakellari
Abstract:
Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.Keywords: cloud computing, cloud monitoring, performance optimization, high availability
Procedia PDF Downloads 6413195 The Role of Organizational Culture, Organizational Commitment, and Styles of Transformational Leadership towards Employee Performance
Authors: Ahmad Badawi Saluy, Novawiguna Kemalasari
Abstract:
This study aims to examine and analyze the influence of organizational culture, organizational commitment, and transformational leadership style on employee performance. This study used descriptive survey method with quantitative approach, and questionnaires as a tool used for basic data collection. The sampling technique used is proportionate stratified random sampling technique; all respondents in this study were 70 respondents. The analytical method used in this research is multiple linear regressions. The result of determination coefficient of 52.3% indicates that organizational culture, organizational commitment, and transformational leadership style simultaneously have a significant influence on the performance of employees, while the remaining 47.7% is explained by other factors outside the research variables. Partially, organization culture has strong and positive influence on employee performance, organizational commitment has a moderate and positive effect on employee performance, while the transformational leadership style has a strong and positive influence on employee performance and this is also the variable that has the most impact on employee performance.Keywords: organizational culture, organizational commitment, transformational leadership style, employee performance
Procedia PDF Downloads 22113194 Sustainable Development Goals: The Effect of a Board Structure on the Sustainability Performance
Authors: V. Naciti, L. Pulejo, F. Cesaroni
Abstract:
This study empirically analyzes whether the composition of the board of directors (BoD) enhances sustainability performance, in order to understand how the BoD contribute to the integration of Sustainable Development Goals (SDGs) in their businesses. Hypotheses are developed based on the agency theory and stakeholder theory. Using a system generalized method of the moment (SGMM) two-step estimator, with data from Sustainalytics and Compustat databases for 362 firms in six regions, we find that firms with more diversity on the board and a separation of chair and CEO roles have higher sustainability performance. Moreover, our findings provide that a higher number of independent directors is negatively associated with sustainability performance. This study contributes to the literature on corporate governance and the firm’s performance by demonstrating that the composition of the board of directors contributes to a better sustainability performance: by the implementation of a particular corporate governance mechanism, it is possible to integrate SDGs in the corporate strategy.Keywords: sustainable development goals, corporate governance, board of directors, sustainability performance
Procedia PDF Downloads 17813193 Performance of Environmental Efficiency of Energy Consumption in OPEC Countries
Authors: Bahram Fathi, Mahdi Khodaparast Mashhadi, Masuod Homayounifar
Abstract:
Global awareness on energy security and climate change has created much interest in assessing energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production frame work of desirable and undesirable outputs, in this paper we construct energy efficiency performance index for measuring energy efficiency performance by using environmental DEA model with CO2 emissions. We finally apply the index proposed to assess the energy efficiency performance in OPEC over time.Keywords: energy efficiency, environmental, OPEC, data envelopment analysis
Procedia PDF Downloads 385