Search results for: optimal homotopy asymptotic method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21238

Search results for: optimal homotopy asymptotic method

20938 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone

Authors: Xinhuang Wu, Yousef Sardahi

Abstract:

A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.

Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones

Procedia PDF Downloads 73
20937 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm

Authors: S. Neelima, P. S. Subramanyam

Abstract:

A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.

Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction

Procedia PDF Downloads 391
20936 Evaluation of MPPT Algorithms for Photovoltaic Generator by Comparing Incremental Conductance Method, Perturbation and Observation Method and the Method Using Fuzzy Logic

Authors: Elmahdi Elgharbaoui, Tamou Nasser, Ahmed Essadki

Abstract:

In the era of sustainable development, photovoltaic (PV) technology has shown significant potential as a renewable energy source. Photovoltaic generators (GPV) have a non-linear current-voltage characteristic, with a maximum power point (MPP) characterized by an optimal voltage, and depends on environmental factors such as temperature and irradiation. To extract each time the maximum power available at the terminals of the GPV and transfer it to the load, an adaptation stage is used, consisting of a boost chopper controlled by a maximum power point tracking technique (MPPT) through a stage of pulse width modulation (PWM). Our choice has focused on three techniques which are: the perturbation and observation method (P&O), the incremental conductance method (InCond) and the last is that of control using the fuzzy logic. The implementation and simulation of the system (photovoltaic generator, chopper boost, PWM and MPPT techniques) are then performed in the Matlab/Simulink environment.

Keywords: photovoltaic generator, technique MPPT, boost chopper, PWM, fuzzy logic, P&O, InCond

Procedia PDF Downloads 323
20935 Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments

Authors: Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo

Abstract:

This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal.

Keywords: blind speech separation, voice activity detector, SRP-PHAT, optimal beamformer

Procedia PDF Downloads 283
20934 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter

Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba

Abstract:

In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.

Keywords: diesel engine, helicopter, simulation, environmental impact

Procedia PDF Downloads 571
20933 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 123
20932 Determination of Four Anions in the Ground Layer of Tomb Murals by Ion Chromatography

Authors: Liping Qiu, Xiaofeng Zhang

Abstract:

The ion chromatography method for the rapid determination of four anions (F⁻、Cl⁻、SO₄²⁻、NO₃⁻) in burial ground poles was optimized. The L₉(₃⁴) orthogonal test was used to determine the optimal parameters of sample pretreatment: accurately weigh 2.000g of sample, add 10mL of ultrapure water, and extract for 40min under the conditions of shaking temperature 40℃ and shaking speed 180 r·min-1. The eluent was 25 mmol/L KOH solution, the analytical column was Ion Pac® AS11-SH (250 mm × 4.0 mm), and the purified filtrate was measured by a conductivity detector. Under this method, the detection limit of each ion is 0.066~0.078mg/kg, the relative standard deviation is 0.86%~2.44% (n=7), and the recovery rate is 94.6~101.9.

Keywords: ion chromatography, tomb, anion (F⁻, Cl⁻, SO₄²⁻, NO₃⁻), environmental protection

Procedia PDF Downloads 102
20931 DG Allocation to Reduce Production Cost by Reducing Losses in Radial Distribution Systems Using Fuzzy

Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao

Abstract:

Electrical energy is vital in every aspect of day-to-day life. Keen interest is taken on all possible sources of energy from which it can be generated and this led to the encouragement of generating electrical power using renewable energy resources such as solar, tidal waves and wind energy. Due to the increasing interest on renewable sources in recent times, the studies on integration of distributed generation to the power grid have rapidly increased. Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss and reduction in operational cost, etc. To reduce production cost, it is important to minimize the losses by determining the location and size of local generators to be placed in the radial distribution systems. In this paper, reduction of production cost by optimal size of DG unit operated at optimal power factor is dealt. The optimal size of the DG unit is calculated analytically using approximate reasoning suitable nodes and DG placement to minimize production cost with minimum loss is determined by fuzzy technique. Total Cost of Power generation is compared with and without DG unit for 1 year duration. The suggested method is programmed under MATLAB software and is tested on IEEE 33 bus system and the results are presented.

Keywords: distributed generation, operational cost, exact loss formula, optimum size, optimum location

Procedia PDF Downloads 484
20930 Comparison of FASTMAP and B0 Field Map Shimming for 4T MRI

Authors: Mohan L. Jayatiake, Judd Storrs, Jing-Huei Lee

Abstract:

The optimal MRI resolution relies on a homogeneous magnetic field. However, local susceptibility variations can lead to field inhomogeneities that cause artifacts such as image distortion and signal loss. The effects of local susceptibility variation notoriously increase with magnetic field strength. Active shimming improves homogeneity by applying corrective fields generated from shim coils, but requires calculation of optimal current for each shim coil. FASTMAP (fast automatic shimming technique by mapping along projections) is an effective technique for finding optimal currents works well at high-field, but is restricted to shimming spherical regions of interest. The 3D gradient-echo pulse sequence was modified to reduce sensitivity to eddy currents and used to obtain susceptibility field maps at 4T. Measured fields were projected onto first-and second-order spherical harmonic functions corresponding to shim hardware. A spherical phantom was used to calibrate the shim currents. Susceptibility maps of a volunteer’s brain with and without FASTMAP shimming were obtained. Simulations indicate that optimal shim currents derived from the field map may provide better overall shimming of the human brain.

Keywords: shimming, high-field, active, passive

Procedia PDF Downloads 511
20929 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: topology optimization, BESO method, p-norm, fatigue constraint

Procedia PDF Downloads 295
20928 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers

Authors: Pawel Martynowicz

Abstract:

Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.

Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines

Procedia PDF Downloads 124
20927 Asymptotic Confidence Intervals for the Difference of Coefficients of Variation in Gamma Distributions

Authors: Patarawan Sangnawakij, Sa-Aat Niwitpong

Abstract:

In this paper, we proposed two new confidence intervals for the difference of coefficients of variation, CIw and CIs, in two independent gamma distributions. These proposed confidence intervals using the close form method of variance estimation which was presented by Donner and Zou (2010) based on concept of Wald and Score confidence interval, respectively. Monte Carlo simulation study is used to evaluate the performance, coverage probability and expected length, of these confidence intervals. The results indicate that values of coverage probabilities of the new confidence interval based on Wald and Score are satisfied the nominal coverage and close to nominal level 0.95 in various situations, particularly, the former proposed confidence interval is better when sample sizes are small. Moreover, the expected lengths of the proposed confidence intervals are nearly difference when sample sizes are moderate to large. Therefore, in this study, the confidence interval for the difference of coefficients of variation which based on Wald is preferable than the other one confidence interval.

Keywords: confidence interval, score’s interval, wald’s interval, coefficient of variation, gamma distribution, simulation study

Procedia PDF Downloads 427
20926 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach

Authors: Imen Dhaou

Abstract:

This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.

Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization

Procedia PDF Downloads 256
20925 Pairwise Relative Primality of Integers and Independent Sets of Graphs

Authors: Jerry Hu

Abstract:

Let G = (V, E) with V = {1, 2, ..., k} be a graph, the k positive integers a₁, a₂, ..., ak are G-wise relatively prime if (aᵢ, aⱼ ) = 1 for {i, j} ∈ E. We use an inductive approach to give an asymptotic formula for the number of k-tuples of integers that are G-wise relatively prime. An exact formula is obtained for the probability that k positive integers are G-wise relatively prime. As a corollary, we also provide an exact formula for the probability that k positive integers have exactly r relatively prime pairs.

Keywords: graph, independent set, G-wise relatively prime, probability

Procedia PDF Downloads 92
20924 Computational Aided Approach for Strut and Tie Model for Non-Flexural Elements

Authors: Mihaja Razafimbelo, Guillaume Herve-Secourgeon, Fabrice Gatuingt, Marina Bottoni, Tulio Honorio-De-Faria

Abstract:

The challenge of the research is to provide engineering with a robust, semi-automatic method for calculating optimal reinforcement for massive structural elements. In the absence of such a digital post-processing tool, design office engineers make intensive use of plate modelling, for which automatic post-processing is available. Plate models in massive areas, on the other hand, produce conservative results. In addition, the theoretical foundations of automatic post-processing tools for reinforcement are those of reinforced concrete beam sections. As long as there is no suitable alternative for automatic post-processing of plates, optimal modelling and a significant improvement of the constructability of massive areas cannot be expected. A method called strut-and-tie is commonly used in civil engineering, but the result itself remains very subjective to the calculation engineer. The tool developed will facilitate the work of supporting the engineers in their choice of structure. The method implemented consists of defining a ground-structure built on the basis of the main constraints resulting from an elastic analysis of the structure and then to start an optimization of this structure according to the fully stressed design method. The first results allow to obtain a coherent return in the first network of connecting struts and ties, compared to the cases encountered in the literature. The evolution of the tool will then make it possible to adapt the obtained latticework in relation to the cracking states resulting from the loads applied during the life of the structure, cyclic or dynamic loads. In addition, with the constructability constraint, a final result of reinforcement with an orthogonal arrangement with a regulated spacing will be implemented in the tool.

Keywords: strut and tie, optimization, reinforcement, massive structure

Procedia PDF Downloads 141
20923 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia PDF Downloads 254
20922 Two-Warehouse Inventory Model for Deteriorating Items with Inventory-Level-Dependent Demand under Two Dispatching Policies

Authors: Lei Zhao, Zhe Yuan, Wenyue Kuang

Abstract:

This paper studies two-warehouse inventory models for a deteriorating item considering that the demand is influenced by inventory levels. The problem mainly focuses on the optimal order policy and the optimal order cycle with inventory-level-dependent demand in two-warehouse system for retailers. It considers the different deterioration rates and the inventory holding costs in owned warehouse (OW) and rented warehouse (RW), and the conditions of transportation cost, allowed shortage and partial backlogging. Two inventory models are formulated: last-in first-out (LIFO) model and first-in-first-out (FIFO) model based on the policy choices of LIFO and FIFO, and a comparative analysis of LIFO model and FIFO model is made. The study finds that the FIFO policy is more in line with realistic operating conditions. Especially when the inventory holding cost of OW is high, and there is no difference or big difference between deterioration rates of OW and RW, the FIFO policy has better applicability. Meanwhile, this paper considers the differences between the effects of warehouse and shelf inventory levels on demand, and then builds retailers’ inventory decision model and studies the factors of the optimal order quantity, the optimal order cycle and the average inventory cost per unit time. To minimize the average total cost, the optimal dispatching policies are provided for retailers’ decisions.

Keywords: FIFO model, inventory-level-dependent, LIFO model, two-warehouse inventory

Procedia PDF Downloads 279
20921 Optimising Transcranial Alternating Current Stimulation

Authors: Robert Lenzie

Abstract:

Transcranial electrical stimulation (tES) is significant in the research literature. However, the effects of tES on brain activity are still poorly understood at the surface level, the Brodmann Area level, and the impact on neural networks. Using a method like electroencephalography (EEG) in conjunction with tES might make it possible to comprehend the brain response and mechanisms behind published observed alterations in more depth. Using a method to directly see the effect of tES on EEG may offer high temporal resolution data on the brain activity changes/modulations brought on by tES that correlate to various processing stages within the brain. This paper provides unpublished information on a cutting-edge methodology that may reveal details about the dynamics of how the human brain works beyond what is now achievable with existing methods.

Keywords: tACS, frequency, EEG, optimal

Procedia PDF Downloads 83
20920 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy

Authors: Erick Pruchnicki, Nikhil Padhye

Abstract:

Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.

Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials

Procedia PDF Downloads 113
20919 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 309
20918 Optimal Maintenance and Improvement Policies in Water Distribution System: Markov Decision Process Approach

Authors: Jong Woo Kim, Go Bong Choi, Sang Hwan Son, Dae Shik Kim, Jung Chul Suh, Jong Min Lee

Abstract:

The Markov Decision Process (MDP) based methodology is implemented in order to establish the optimal schedule which minimizes the cost. Formulation of MDP problem is presented using the information about the current state of pipe, improvement cost, failure cost and pipe deterioration model. The objective function and detailed algorithm of dynamic programming (DP) are modified due to the difficulty of implementing the conventional DP approaches. The optimal schedule derived from suggested model is compared to several policies via Monte Carlo simulation. Validity of the solution and improvement in computational time are proved.

Keywords: Markov decision processes, dynamic programming, Monte Carlo simulation, periodic replacement, Weibull distribution

Procedia PDF Downloads 424
20917 Solving Optimal Control of Semilinear Elliptic Variational Inequalities Obstacle Problems using Smoothing Functions

Authors: El Hassene Osmani, Mounir Haddou, Naceurdine Bensalem

Abstract:

In this paper, we investigate optimal control problems governed by semilinear elliptic variational inequalities involving constraints on the state, and more precisely, the obstacle problem. We present a relaxed formulation for the problem using smoothing functions. Since we adopt a numerical point of view, we first relax the feasible domain of the problem, then using both mathematical programming methods and penalization methods, we get optimality conditions with smooth Lagrange multipliers. Some numerical experiments using IPOPT algorithm (Interior Point Optimizer) are presented to verify the efficiency of our approach.

Keywords: complementarity problem, IPOPT, Lagrange multipliers, mathematical programming, optimal control, smoothing methods, variationally inequalities

Procedia PDF Downloads 174
20916 Curve Designing Using an Approximating 4-Point C^2 Ternary Non-Stationary Subdivision Scheme

Authors: Muhammad Younis

Abstract:

A ternary 4-point approximating non-stationary subdivision scheme has been introduced that generates the family of $C^2$ limiting curves. The theory of asymptotic equivalence is being used to analyze the convergence and smoothness of the scheme. The comparison of the proposed scheme has been demonstrated using different examples with the existing 4-point ternary approximating schemes, which shows that the limit curves of the proposed scheme behave more pleasantly and can generate conic sections as well.

Keywords: ternary, non-stationary, approximation subdivision scheme, convergence and smoothness

Procedia PDF Downloads 477
20915 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand

Authors: Leila Jafari, Viliam Makis

Abstract:

In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.

Keywords: condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand

Procedia PDF Downloads 465
20914 Air Cargo Overbooking Model under Stochastic Weight and Volume Cancellation

Authors: Naragain Phumchusri, Krisada Roekdethawesab, Manoj Lohatepanont

Abstract:

Overbooking is an approach of selling more goods or services than available capacities because sellers anticipate that some buyers will not show-up or may cancel their bookings. At present, many airlines deploy overbooking strategy in order to deal with the uncertainty of their customers. Particularly, some airlines sell more cargo capacity than what they have available to freight forwarders with beliefs that some of them will cancel later. In this paper, we propose methods to find the optimal overbooking level of volume and weight for air cargo in order to minimize the total cost, containing cost of spoilage and cost of offloaded. Cancellations of volume and weight are jointly random variables with a known joint distribution. Heuristic approaches applying the idea of weight and volume independency is considered to find an appropriate answer to the full problem. Computational experiments are used to explore the performance of approaches presented in this paper, as compared to a naïve method under different scenarios.

Keywords: air cargo overbooking, offloading capacity, optimal overbooking level, revenue management, spoilage capacity

Procedia PDF Downloads 321
20913 Bounded Solution Method for Geometric Programming Problem with Varying Parameters

Authors: Abdullah Ali H. Ahmadini, Firoz Ahmad, Intekhab Alam

Abstract:

Geometric programming problem (GPP) is a well-known non-linear optimization problem having a wide range of applications in many engineering problems. The structure of GPP is quite dynamic and easily fit to the various decision-making processes. The aim of this paper is to highlight the bounded solution method for GPP with special reference to variation among right-hand side parameters. Thus this paper is taken the advantage of two-level mathematical programming problems and determines the solution of the objective function in a specified interval called lower and upper bounds. The beauty of the proposed bounded solution method is that it does not require sensitivity analyses of the obtained optimal solution. The value of the objective function is directly calculated under varying parameters. To show the validity and applicability of the proposed method, a numerical example is presented. The system reliability optimization problem is also illustrated and found that the value of the objective function lies between the range of lower and upper bounds, respectively. At last, conclusions and future research are depicted based on the discussed work.

Keywords: varying parameters, geometric programming problem, bounded solution method, system reliability optimization

Procedia PDF Downloads 133
20912 Distribution System Planning with Distributed Generation and Capacitor Placements

Authors: Nattachote Rugthaicharoencheep

Abstract:

This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.

Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm

Procedia PDF Downloads 177
20911 Multiobjective Economic Dispatch Using Optimal Weighting Method

Authors: Mandeep Kaur, Fatehgarh Sahib

Abstract:

The purpose of economic load dispatch is to allocate the required load demand between the available generation units such that the cost of operation is minimized. It is an optimization problem to find the most economical schedule of the generating units while satisfying load demand and operational constraints. The multiobjective optimization problem in which the engineer’s goal is to maximize or minimize not a single objective function but several objective functions simultaneously. The purpose of multiobjective problems in the mathematical programming framework is to optimize the different objective functions. Many approaches and methods have been proposed in recent years to solve multiobjective optimization problems. Weighting method has been applied to convert multiobjective optimization problems into scalar optimization. MATLAB 7.10 has been used to write the code for the complete algorithm with the help of genetic algorithm (GA). The validity of the proposed method has been demonstrated on a three-unit power system.

Keywords: economic load dispatch, genetic algorithm, generating units, multiobjective optimization, weighting method

Procedia PDF Downloads 150
20910 An Efficient Robot Navigation Model in a Multi-Target Domain amidst Static and Dynamic Obstacles

Authors: Michael Ayomoh, Adriaan Roux, Oyindamola Omotuyi

Abstract:

This paper presents an efficient robot navigation model in a multi-target domain amidst static and dynamic workspace obstacles. The problem is that of developing an optimal algorithm to minimize the total travel time of a robot as it visits all target points within its task domain amidst unknown workspace obstacles and finally return to its initial position. In solving this problem, a classical algorithm was first developed to compute the optimal number of paths to be travelled by the robot amidst the network of paths. The principle of shortest distance between robot and targets was used to compute the target point visitation order amidst workspace obstacles. Algorithm premised on the standard polar coordinate system was developed to determine the length of obstacles encountered by the robot hence giving room for a geometrical estimation of the total surface area occupied by the obstacle especially when classified as a relevant obstacle i.e. obstacle that lies in between a robot and its potential visitation point. A stochastic model was developed and used to estimate the likelihood of a dynamic obstacle bumping into the robot’s navigation path and finally, the navigation/obstacle avoidance algorithm was hinged on the hybrid virtual force field (HVFF) method. Significant modelling constraints herein include the choice of navigation path to selected target points, the possible presence of static obstacles along a desired navigation path and the likelihood of encountering a dynamic obstacle along the robot’s path and the chances of it remaining at this position as a static obstacle hence resulting in a case of re-routing after routing. The proposed algorithm demonstrated a high potential for optimal solution in terms of efficiency and effectiveness.

Keywords: multi-target, mobile robot, optimal path, static obstacles, dynamic obstacles

Procedia PDF Downloads 281
20909 Decision Support System for Optimal Placement of Wind Turbines in Electric Distribution Grid

Authors: Ahmed Ouammi

Abstract:

This paper presents an integrated decision framework to support decision makers in the selection and optimal allocation of wind power plants in the electric grid. The developed approach intends to maximize the benefice related to the project investment during the planning period. The proposed decision model considers the main cost components, meteorological data, environmental impacts, operation and regulation constraints, and territorial information. The decision framework is expressed as a stochastic constrained optimization problem with the aim to identify the suitable locations and related optimal wind turbine technology considering the operational constraints and maximizing the benefice. The developed decision support system is applied to a case study to demonstrate and validate its performance.

Keywords: decision support systems, electric power grid, optimization, wind energy

Procedia PDF Downloads 153